JPS6059473A - Circuit for producing projection waveform - Google Patents

Circuit for producing projection waveform

Info

Publication number
JPS6059473A
JPS6059473A JP58167110A JP16711083A JPS6059473A JP S6059473 A JPS6059473 A JP S6059473A JP 58167110 A JP58167110 A JP 58167110A JP 16711083 A JP16711083 A JP 16711083A JP S6059473 A JPS6059473 A JP S6059473A
Authority
JP
Japan
Prior art keywords
picture
projection waveform
memory
output
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58167110A
Other languages
Japanese (ja)
Other versions
JPH0120469B2 (en
Inventor
Makoto Imamura
誠 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58167110A priority Critical patent/JPS6059473A/en
Publication of JPS6059473A publication Critical patent/JPS6059473A/en
Publication of JPH0120469B2 publication Critical patent/JPH0120469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To obtain the information on the picture structure of a specific direction by obtaining a distribution on a specific line passing through the center on a 2-dimensional Fourier space exclusively by performing a 1-dimensional Fourier transform for a projection waveform from a picture having variable density supplied to a picture processor. CONSTITUTION:A straight line to be projected is shown in an equation ax+by+ c=0, and l1-l3 of this projection waveform mean the cumulative values of each density level of the picture. Thus the density level is obtained for an area a picture f (x, y) overlaps an equation bx-ay+d+pi=0 which is vertical to the first equation. An operator 1 obtains cumulative values (x) and (y) of each clock number every time clocks (x) and (y) are applied for raster scan. At the same time, pi=ay-bx-d is also obtained. The pi is applied to a memory 3 through an MPX2 in the form an address (n), and the contents D(n) are sent to a latch 4 to be added with the density level of a picture having variable density given from a line 8. The result of this addition is written again to an (n) address. Hereafter this procedure is carried out to the entire part of a screen.

Description

【発明の詳細な説明】 [発明の属づる分野〕 本発明は、画像処理装置等におい−C1入力された濃淡
画像から、任意方向に投影された波形をcrb速に生成
する投影波形生成回路に関するものである。
[Detailed Description of the Invention] [Field to which the invention pertains] The present invention relates to a projection waveform generation circuit that generates a waveform projected in an arbitrary direction at CRB speed from a grayscale image inputted to -C1 in an image processing device or the like. It is something.

し従来技術] 従来にす、画像の特徴をめるための解析手法として二次
元フーリエ変換法は有効であるとされている。
Prior Art] Conventionally, the two-dimensional Fourier transform method is considered to be effective as an analysis method for determining the characteristics of an image.

二次元フーリエ変換は、一般に、第1図(イ)から(1
コ)に示すように一次元フーり主変換を行数だ(プ行い
、続いて結果に対しく同図(1」)からくハ)に示ずよ
うに縦方向に列数P t:J再び一次几フーり主変換を
711!iりもので、この様な変換には膨大な4弁と、
大容量のデータ記10用のメしりを必要どした。
Two-dimensional Fourier transform is generally performed from Figure 1 (a) to (1
As shown in (c), the one-dimensional hoop principal transformation is performed with the number of rows. 711 primary transformation again! It's a car, and it takes a huge amount of 4 valves for this kind of conversion,
I needed a memory for 10 large-capacity data records.

ところで、二次元ノーリ1変換の応用としては。By the way, as an application of the two-dimensional Nori 1 transformation.

二次元フーリエ空間」−で中心を通る特定のラインー1
の分布だ()を見ればよいという場合が多い。
A specific line passing through the center in two-dimensional Fourier space-1
In many cases, it is enough to look at the distribution of ().

しかし、この様な場合でも、従来の例で(よ高速ノーり
土変換(「F T >を用いることから、全画面に対し
C二次元ノーリ工変換を行ねなりればならづ゛、非1i
に肋間とコストがかかり実用的では4Tいという欠点が
あった。
However, even in such a case, since the conventional example uses a higher-speed Nori conversion (F 1i
However, it has the drawback that it is expensive and requires 4T for practical use.

1翔明の目的」 本発明は、このような点に鑑み、本発明により1〔Iら
れた投影波形について一次元ノーリ1変換を行うのみで
二次元ノーリ1空間上で中心を通る特定のライン上の分
布を得ることがひきるようなその様な投影波形を、入力
画像の(■意方向にJコいて高速に得ることができる簡
単な構成の投影波形生成回路を提供りることにある。
1. In view of these points, the present invention has been developed to obtain a specific line passing through the center on a 2-dimensional Nori 1 space by simply performing a 1-dimensional Nori 1 transformation on the projected waveform. It is an object of the present invention to provide a projection waveform generation circuit having a simple configuration that can rapidly obtain such a projection waveform that the above distribution can be obtained by moving the input image in the desired direction. .

[発明の概要] この様な目的を達成するだめの本発明は、画像処理装置
においで、画面の任意の座標(x、y)に対してay−
bx−d (a、bは係数、(jは定数)の演算を行う
演算器と、この演算器の出力をアドレス入力とし読出し
および書込みのC′きるメモリと、前記座標(x、y)
が対象図形内にあるときはその点のm瓜しベルを示’J
−1f4を前記メしり出力に加算する加棹手段と、この
加算手段からの出力を前記メモリの同一アドレスに再び
内込む肉込み手段どを具備し、任意方向への投影波形が
メモリより1qられるようにしたことを特徴とりる。
[Summary of the Invention] To achieve such an object, the present invention uses an image processing device to perform ay-
bx-d (a, b are coefficients, (j is a constant) an arithmetic unit, a memory that uses the output of this arithmetic unit as an address input and can be read and written, and the coordinates (x, y)
When is within the target figure, show the bell at that point.
A projection waveform in an arbitrary direction is obtained by 1q from the memory, including a processing means for adding -1f4 to the multiplication output, and a processing means for inserting the output from the addition means into the same address of the memory again. It is characterized by the fact that it is made as follows.

[実施例] 以下図面を用いて本発明の詳細な説明Jる。二次元ノー
リJ−変換に関しては[ある画像の投影波形のノーリ」
−変換は、その画像の二次元ノーり土変換のうち投影方
向に対した角;良で切った中心線上の値に等しい」とい
う定理がある。TlなりI5、第2図に示すような実空
間2上内にある対象物22に係る投影波形(23、2/
l、 2 !i )があれば、これの−次元F F l
’を1回ijうだ()(゛ノーリ■空間(26)上の中
心を通る直線」−の波形を15することができる。この
波形分布を見ることによって、例えば特定方向の画像構
造に関りる情報が1〔1られ、パターン認識等に利用す
ることができる。
[Example] The present invention will be described in detail below with reference to the drawings. Regarding the two-dimensional Nori J-conversion, [Nori of the projected waveform of a certain image]
There is a theorem that says, ``The transformation is equal to the value on the center line cut by the angle relative to the projection direction of the two-dimensional Nordic transformation of the image.'' Tl or I5, the projected waveform (23, 2/
l, 2! i), its −dimension F F l
It is possible to calculate the waveform of ``a straight line passing through the center of space (26)'' once. By looking at this waveform distribution, for example, it is possible to This information can be used for pattern recognition, etc.

ここでは、−次元F F T’に関しては公知の方法を
用いるどして、投影波形を高速で1りるハードウェアの
構成について説明づる。
Here, regarding the -dimensional FFT', a hardware configuration for generating a projection waveform at high speed will be explained using a known method.

J、す゛、本発明の原理を第3図を1照し−C説明する
。今、投影しようとする直線(例えば、X、y軸とか慣
性主軸等)を数式で表ずと、一般に、aX→−by+c
=0 ト書()る。これに対して投影波形を得ることは、図の
I+、12.13それぞれにお(Jる画像の濃度レベル
の累積値をめることに他ならない。これは、式く1)と
垂直な直線すなわら b x−a y + d 十p + = 0 (2)b
X−ay+d+D2=o (3) b x −a y + d −+ +) 3 = 0 
、 (4>等と画@f (x、y)とが車なっている部
分の澗Inレベルをめることである。
J. The principle of the present invention will be explained with reference to FIG. Now, unless we express the straight line (e.g.
=0 Write (). On the other hand, obtaining the projection waveform is nothing but adding the cumulative value of the density level of the image (J) to each of I+ and 12.13 in the figure. That is, b x-a y + d 10p + = 0 (2) b
X-ay+d+D2=o (3) b x -a y + d -+ +) 3 = 0
, (4> etc.) and the image @f (x, y) are to find the In level of the part where it is a car.

ここで、f (x、y)は対象とり−る画像で、図形の
部分はそれぞれの41ノベルを早し、背景の部分はIN
 !JIレベル0の値をとるものとする。式(2)ヘー
(4)の一般式として、 bx−ay+d+l)t =0 を得る(ただし、ptは一定数)。従って、11上では
ay−bx=pl となるので、plをパラメータど考
え、p□と1対1に対応した番地(ptそのままを番地
としてもよい)を持つメモリを用意すればラスタスキ1
1ンされた点が11−1−に来たどきに対応した番地を
アク[スすることがiiJ能どなる。
Here, f (x, y) is the target image, the graphic part is the same as each 41 novel, and the background part is the IN
! It is assumed that the value is JI level 0. As a general formula of equation (2) and equation (4), we obtain bx-ay+d+l)t=0 (where pt is a constant number). Therefore, on 11, ay-bx=pl, so if you consider pl as a parameter and prepare a memory with an address that has a one-to-one correspondence with p□ (pt may be used as an address), raster ski
When the point entered by 1 reaches 11-1-, it becomes impossible to access the corresponding address.

そこで・、子の番地の内容を、a y −b x −<
4−p工かつf (x、y)に、atプるml爽レベル
を加詩りるものどづれば、全画面走査後には濃度レベル
を累積して得られるところの投影波形を得ることができ
る。
Therefore, the content of the child address is a y −b x −<
4-If we add the ml refreshing level to p and f (x, y), we can obtain the projected waveform obtained by accumulating the density levels after scanning the entire screen. .

第4図はこの様な原理に基づく本発明(、−係る投影波
形生成回路の一実施例を示づ構成図ひある。
FIG. 4 is a block diagram showing one embodiment of a projection waveform generation circuit according to the present invention based on such a principle.

同図において、1は画像の任意のFl・↑標(x、y)
に対してay−bx−dの演のを行う演咋器、2はマル
ヂブレクリ(以下MPXと略称りる)で、演陣器1の出
力はMPX2を通しCメLす3のj′ドレスに接続され
、現座標に対応したメモリ番地の読出し、書込みができ
るようになっている。
In the same figure, 1 is an arbitrary Fl of the image (x, y)
2 is a multi-branch (hereinafter abbreviated as MPX) which performs the ay-bx-d performance on the input device, and the output of the performer 1 passes through MPX2 to the j' address of the The memory address corresponding to the current coordinates can be read and written.

4はメーしり3のデータ出力を一旦記憶するラップ、5
5はラッチ4の出力デ′−タと入力される濃淡レベル値
を加粋づ−る加算器である。加算器5の出力は再びメ七
り3に書込まれるように構成されでいる。
4 is a wrap that temporarily stores the data output of mail 3, 5
Reference numeral 5 denotes an adder that adds the output data of latch 4 and the input gray level value. The output of the adder 5 is configured to be written to the register 3 again.

6と7はバッファで、これらのバッフ1を介しくメモリ
3の出力ないしM P X 20)−万の入力が、図示
しないコンピュータ等に授受されるJ、うになっCいる
Reference numerals 6 and 7 designate buffers, through which the output of the memory 3 or the input of M.sub.PX20) is sent to and received from a computer (not shown).

この様な4fij成にお番フる動作を第5図のタイムチ
ャー1へを参照しつつ次に説明する。メしり3は割数走
査前に伺らかの手段(例えば小ストコンピュータ等によ
り)で予めその内容がクリ77されCいるものとりる。
The operation of the four-fij configuration will be described next with reference to time chart 1 in FIG. The contents of the screen 3 are cleared in advance by some means (for example, by a small computer) before the division scanning.

演算器1ぐは、ウスタス4:ヤンのためのXクロック(
第5図の(イ))+3よびyり目ツク(l]Ij直り向
走査用のり[1ツク)が与えられるごどに各りに1ツク
数の累積111x、y、(ただし、×は水平同期信号の
発生毎に、またyは垂直同期信号の発生毎にそれぞれリ
セツ1〜される)をめると共に演幹によりp1=ay−
bx−dをめる。plはM I) X 2を通し゛C第
5図(1」)に示づように1ドレスnとしてメモリ3に
与えられる。
Arithmetic unit 1, Ustas 4: X clock for Yang (
(a) in Fig. 5) +3 and y-th cross (l) Ij Each time the straight direction scanning glue [1 cross] is given, the cumulative number of crosses is 111 x, y, (however, x is y is reset each time a horizontal synchronizing signal is generated and each time a vertical synchronizing signal is generated.
Add bx-d. pl is applied to the memory 3 as one address n through MI)X2 as shown in FIG. 5(1).

メモリ3はXクロックが1−ドのとき読出し七−ドとな
るのでアドレスnの内容D(n)(第55図の(ハ〉)
がラッチ4に送出さねる。続い−(、加絆器5において
、このl) (+1 >とライン8を通して与えられる
濃淡画像の濃度レベルの111(との加鋒が行われる〈
第5図(ボ))。加0結果は、Xクロックが′L″から
’ l−1”に切り変り、メ[−93が読み出し七−ド
に切り変る時点で円びn ?fi地に書込まれる。
Memory 3 is read as 7th word when the
is not sent to latch 4. Subsequently, -(, in the adder 5, this l) (+1 > is added to 111 (of the density level of the grayscale image given through line 8).
Figure 5 (Bo)). The addition result is circular n? when the X clock changes from ``L'' to ``l-1'' and the mode 93 changes to the read 7th mode. It is written to the fi location.

次に、Xクロックが与えられるど、演陣器1−1は新た
なアドレス1]′がめられメ[す33をアクロスする(
第5図(ロ))。続い(、」−述ど同様な動作によりI
)(n’)と濃度レベルどの加拌、13よびぞの加1i
i結果の由込みが実tjされる。
Next, when an
Figure 5 (b)). Continuing (,'' - I
)(n') and the concentration level, 13 and 1i.
The input of the i result is actually performed.

以降同様の動作が一画面全体にhつで11!返され、結
果としてメモリ3には投影波形が記憶さf;る。
After that, the same operation is performed on the entire screen with h to 11! As a result, the projected waveform is stored in the memory 3.

第6図は演棹器1の他の実施例を示づプロッタ図(゛あ
る。同図に+3いC1aレジスタ61 、 bレジスタ
62おJ、び(」レジスタ63には図示しないコンビコ
ータなどからそれぞれ係数a、−1)と定数−dがレッ
1−される。データはレクタ64は第1の走査ラインの
X同期信号時おにび各ラインのX同期信号部の次のクロ
ック時に加算器66にOを出力し、その他のタイミング
で(よりレジスタ62の値−L)を出力する。
FIG. 6 is a plotter diagram showing another embodiment of the deducer 1. In the same figure, +3 C1a register 61, b register 62, J, and register 63 are input from a combination coater (not shown), etc. Coefficients a, -1) and constant -d are read respectively.The data is input to the adder 64 at the time of the X synchronization signal of the first scanning line and at the time of the next clock of the X synchronization signal part of each line. 66, and outputs (the value of register 62 -L) at other timings.

他方のデータセレクタ65は第1ラインのX同+llJ
信目時にOを出力し、その他のタイミングでは[レジス
タ68の値ト(x−1)を出力する。Fレジスタ68は
Xクロックに同期し”Cそのとさの加詩器66の出ツノ
値を保持する。他方Gレジスタ67は×同期仏丹に同期
し′(そのときの加算器66の出力値を保持づる。加t
1器6Gではデータセレクタ64おJ、び65の出力を
加粋し、座標(x、y)に対応してF (x) −ay
−bx−dηなわら前述のplを得る。
The other data selector 65 is the first line
O is output at the timing of the signal, and at other timings, the value of the register 68 (x-1) is output. The F register 68 is synchronized with the X clock and holds the output value of the adder 66 at that time.On the other hand, the G register 67 is synchronized with the Hold the
In the single device 6G, the outputs of the data selectors 64, J, and 65 are added, and F (x) −ay corresponds to the coordinates (x, y).
-bx-dη, the above-mentioned pl is obtained.

第6図の構成によれば、高価な係数乗り器を使用するこ
となく、安価で千軒にリアルタイムで座標変換を行うこ
とができるという利点がある。
The configuration shown in FIG. 6 has the advantage that coordinate transformation can be performed in real time at low cost without using an expensive coefficient multiplier.

なお、演樟器は第6図の構成に限定さイ;るものではな
く、例えばタロツクではなく座標^iii x 。
Note that the magnifier is not limited to the configuration shown in FIG.

yそのものが入力されてa y −b x −dがめら
れるという構成のものであっても良い。
It may be configured such that y itself is input and a y -b x -d is determined.

また、メモリ3のアドレスには、演時器1の出力にV]
せて図形の番号も人力できるようにすれば、複数個の図
形に対して同一フレームで処11!りることができ、高
速化に寄与できる。この場合、メヒリ3を各図形毎に分
割し−C割当てるようにし、各分割領域でそれぞれの図
形の投影波形をめる。
Also, the address of memory 3 has V] at the output of timer 1.
If you can also manually number the shapes, you can handle multiple shapes in the same frame! This can contribute to faster speeds. In this case, the grid 3 is divided into each figure and -C is assigned, and the projected waveform of each figure is calculated in each divided area.

また、MPX2としては、3スデート素rを用いてもよ
い。
Further, as MPX2, a trisodium element r may be used.

[発明の効果] 以上ぴ2明し1=ように、本発明+:二J: +1. 
fよ、次のJ、うな効果がある。
[Effect of the invention] As described above, the present invention +: 2J: +1.
F has the same effect as the next J.

■ 任意方向にお目る対象図形の投影波形を容易に得る
ことができる投影波形生成回路を実現づることかできる
(2) It is possible to realize a projection waveform generation circuit that can easily obtain a projection waveform of a target figure viewed in any direction.

@) 演Q′aとして画像処理装置(゛よく使用される
。バー1ヘウJ)′(アフィン変換器、Uストグラム累
詩器冑)が利用でさる構成なので、安1IllIな構成
でありながらも高速に投影波形を得ることができる。
@) Since the configuration uses an image processing device (frequently used) (affine transformer, U stogram accumulation device) as the performance Q'a, it is an inexpensive configuration. Projection waveforms can be obtained at high speed.

■ 二次元フーリエ空間上の特定の直線下の波形lfi
 −IfのFF「で得られるので、高速の特徴抽出が可
能である。
■ Waveform lfi under a specific straight line in two-dimensional Fourier space
-If is obtained by FF ", high-speed feature extraction is possible.

■ どのよう4T方向の投影像も得られるので、例えば
C]−等のシコミレーションデータ等が容易に得られる
(2) Since projection images in any 4T direction can be obtained, sicomilation data such as C]- can be easily obtained.

■ 投影方向の角麿を順次変え、O〜180°の方向の
投影波形のド[:王を行うことにより、極座将;形式の
L次元ノーり土変換が実現Cきる。
■ By sequentially changing the angle of the projection direction and converting the projected waveform in the direction from 0 to 180°, the L-dimensional transformation of the Gokuzasho; format can be realized.

【図面の簡単な説明】 第1図は二次元F F T−の方法を説明ηるIcめの
図、第2図はツーり工学間と投影波形の関係を示(1図
、第33図は本発明の詳細な説明りるための図、第4図
は本発明に係る投影波形生成回路の一実施例を示す10
ツク描成図、゛第5図は動作説明のためのタイム・ヂャ
ー1〜、第6図は演時器の実施例図である。 1、、.3Q算器、2.、、:?ルヂゾレクリ、33.
、メモリ、4.1.ラッチ、5.66、、。 加算器、61.(32,63,、、レジスタ、64゜6
5、、、データt?レクタ、67、、、(3レジズタ、
68.、、Fレジスタ。
[Brief explanation of the drawings] Figure 1 is a second diagram explaining the method of two-dimensional F 10 is a diagram for explaining the present invention in detail, and FIG. 4 shows an embodiment of the projection waveform generation circuit according to the present invention.
Fig. 5 shows time dials 1 to 1 to explain the operation, and Fig. 6 shows an embodiment of the time dial. 1,,. 3Q calculator, 2. ,,:? Rudzizorekuri, 33.
,Memory,4.1. Latch, 5.66,. Adder, 61. (32,63,, register, 64°6
5. Data t? Rector, 67, (3 registers,
68. ,,F register.

Claims (1)

【特許請求の範囲】 1ン 画像処理装置において、画面の任意の座標(x、
y)に対してay−bx−d (a、bは係数、dは定
数)の演算を行う演算器と、この演算器の出力をアドレ
ス入力とし読出しおよび書込みのC・きるメモリと、前
記座標(x、y)が対象図形内にあるときはその点の濃
度レベルを示づ値を前記メモリ出力に加算する加算手段
と、この加算手段からの出ツノを前記メモリの同一7ド
レスに再びn)込む書込み手段とを具備し、任意り向へ
の投影波形がメモリより得られるようにしたことを特徴
とりる投影波形生成回路。 2) 前記演算器は、ラスタ・スキ1?ン型画像装置か
らの同期信+」に対応して、係数a、bのデータ人力お
Jζびト、G両レジスタの出力の内いずれ/J)2′つ
を選択出力づる選択手段と、この選択手段/Jl lら
の前記2つの出力を加nづ“る加q器と、この加n器か
らの出力を保持する前記F、G両レジスタとを備えたも
のであることを特徴とする特n請求の範囲第1項記載の
投影波形生成回路。
[Claims] 1. In an image processing device, arbitrary coordinates (x,
an arithmetic unit that performs ay-bx-d (a, b are coefficients, d is a constant) for y), a memory that uses the output of this arithmetic unit as an address input and can be read and written, and the coordinates Adding means for adding a value indicating the density level of that point to the memory output when (x, y) is within the target figure; ) A projection waveform generation circuit characterized in that the projection waveform generation circuit is provided with a writing means for writing data, so that a projection waveform in an arbitrary direction can be obtained from the memory. 2) Is the arithmetic unit raster ski 1? a selection means for selecting and outputting one of the outputs of the data registers Jζ and G of the coefficients a and b in response to a synchronous signal from the imager; The selection means is characterized by comprising an adder q which adds the two outputs of the selector, and the F and G registers which hold the output from the adder. A projection waveform generation circuit according to claim 1.
JP58167110A 1983-09-09 1983-09-09 Circuit for producing projection waveform Granted JPS6059473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167110A JPS6059473A (en) 1983-09-09 1983-09-09 Circuit for producing projection waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167110A JPS6059473A (en) 1983-09-09 1983-09-09 Circuit for producing projection waveform

Publications (2)

Publication Number Publication Date
JPS6059473A true JPS6059473A (en) 1985-04-05
JPH0120469B2 JPH0120469B2 (en) 1989-04-17

Family

ID=15843615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167110A Granted JPS6059473A (en) 1983-09-09 1983-09-09 Circuit for producing projection waveform

Country Status (1)

Country Link
JP (1) JPS6059473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330601B2 (en) 2000-05-31 2008-02-12 Samsung Electronics Co., Ltd. Method of describing pattern repetitiveness of image
JPWO2006009319A1 (en) * 2004-07-22 2008-05-01 日本電気株式会社 Image processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330601B2 (en) 2000-05-31 2008-02-12 Samsung Electronics Co., Ltd. Method of describing pattern repetitiveness of image
JPWO2006009319A1 (en) * 2004-07-22 2008-05-01 日本電気株式会社 Image processing system
JP4569781B2 (en) * 2004-07-22 2010-10-27 日本電気株式会社 Image processing system
US7831071B2 (en) 2004-07-22 2010-11-09 Nec Corporation Image processing system

Also Published As

Publication number Publication date
JPH0120469B2 (en) 1989-04-17

Similar Documents

Publication Publication Date Title
JPH0628485A (en) Texture address generator, texture pattern generator, texture plotting device and texture address generating method
JPH05158464A (en) Resolution converting circuit
JPS6232476B2 (en)
JPH03127282A (en) Radon transforming method of digital image
JPS5839345B2 (en) Arithmetic mask device
JPS6059473A (en) Circuit for producing projection waveform
JP3074779B2 (en) Special effect generator
KR100358605B1 (en) Image converter
JPS6097474A (en) Method and apparatus for rotating picture
JP2985236B2 (en) Digital special effects device
JPS6061853A (en) Information processor
JP3289850B2 (en) Image conversion device
JP2002342781A (en) Pattern switching simulation system
JPS6353755B2 (en)
JP3004993B2 (en) Image processing device
JP2970607B2 (en) Wipe pattern generator
JP2938064B1 (en) Image generation apparatus and image generation method thereof
JPS6386083A (en) Affine converting system
JP2962148B2 (en) Image processing device
JP2597875B2 (en) Binary image similarity conversion pixel data generator
JP2000350093A (en) Special effect device for video image
JPH0546773A (en) Correlation calculating device
JP2009010656A (en) Data interpolation apparatus and method, and image enlarging and shrinking apparatus
JPH1166308A (en) Image processor
JPH1074077A (en) Method and device for two dimensional spatial conversion of picture