JPS6059094B2 - How to polish a shaving cutter - Google Patents

How to polish a shaving cutter

Info

Publication number
JPS6059094B2
JPS6059094B2 JP1689781A JP1689781A JPS6059094B2 JP S6059094 B2 JPS6059094 B2 JP S6059094B2 JP 1689781 A JP1689781 A JP 1689781A JP 1689781 A JP1689781 A JP 1689781A JP S6059094 B2 JPS6059094 B2 JP S6059094B2
Authority
JP
Japan
Prior art keywords
cutter
gear
shaving
angle
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1689781A
Other languages
Japanese (ja)
Other versions
JPS57132923A (en
Inventor
敏廣 林
康男 深沢
博 長富
善久 山本
良治 実石
志郎 松下
賢 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1689781A priority Critical patent/JPS6059094B2/en
Publication of JPS57132923A publication Critical patent/JPS57132923A/en
Publication of JPS6059094B2 publication Critical patent/JPS6059094B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • B23F21/28Shaving cutters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 この発明はシェービングカッタの研磨方法に関する。[Detailed description of the invention] The present invention relates to a method for polishing a shaving cutter.

従来より、シェービングカッタは、例えば多量生産を行
なう自動車用変速歯車の最終切削加工用回転型工具とし
く広く用いられている。すなわち、ホブ、ピニオンカッ
タ等で被削歯車を粗歯切りするとき、被削歯車歯面に僅
かな削り代を残しておき、次工程のシェービング加工に
て、第1図に示すようにシェービングカッタ(以下単に
カッタと云う)1と被削歯車2とを噛合わせかつカッタ
1を回転駆動し、テーブル3を矢印A、、Bで示すよう
に往復動させることにより、前記僅かな削り代を削り取
り、寸法精度の高い歯車に仕上け るのである。 とこ
ろが、1個のカッタで例えば約50前側の歯車を加工す
ると、第2図に示すようなりツタ歯面に設けてある溝4
のエッジ部が磨耗変形して切れ味が低下する。
Conventionally, shaving cutters have been widely used as rotary tools for the final cutting of, for example, transmission gears for mass-produced automobiles. In other words, when a gear to be cut is roughly cut with a hob, pinion cutter, etc., a slight cutting allowance is left on the tooth surface of the gear to be cut, and in the next shaving process, the shaving cutter is used as shown in Figure 1. (hereinafter simply referred to as a cutter) 1 and the gear to be cut 2 are engaged, the cutter 1 is driven to rotate, and the table 3 is reciprocated as shown by arrows A and B, thereby removing the slight cutting allowance. This makes it possible to create gears with high dimensional accuracy. However, when cutting, for example, about 50 front gears with one cutter, the grooves 4 formed on the vine tooth surface as shown in Figure 2.
The edges of the blade are worn and deformed, reducing sharpness.

そこで、カッタを交換して再びシェービング加工を続行
するが、前記切れ味の低下したカッタは再ひ使用できる
ように、カッタ歯面の研磨を行なう。このような研磨は
1個のカッタで10〜20回程度行なわれるので、通常
このような研磨を再研磨と呼んでいる。なお、20回も
再研磨を行なうとカッタの歯が非常に痩せて来て、カッ
タ歯面に設けてある多条の溝4(第2図参照)の深さが
極端に浅くなり使用に堪えなくなる。 通常、被削歯車
ははすば歯車又は平歯車であり、これを切削するカッタ
もねじれ角は被削歯車のそれと異なるけれども、はすば
歯車又は平歯車であり、これら両歯車の噛合いは喰違い
軸転位歯車として取扱われている。 シェービングカッ
タの設計で最も重要なことの’一つはカッタの基準ピッ
チ値円上のねじれ角βCoの決定であり、これは第3図
イ、口、ハかられかるように、通常次式で決定される。
Therefore, the cutter is replaced and the shaving process is continued again, but the cutter tooth surface is polished so that the cutter whose sharpness has deteriorated can be used again. Since such polishing is performed approximately 10 to 20 times with one cutter, such polishing is usually called re-polishing. Note that after re-sharpening 20 times, the cutter teeth become very thin, and the depth of the multi-striped grooves 4 (see Figure 2) on the cutter tooth surface becomes extremely shallow, making it unusable. It disappears. Usually, the gear to be cut is a helical gear or a spur gear, and the cutter that cuts it is also a helical gear or a spur gear, although the helix angle is different from that of the gear to be cut, and the meshing of these two gears is It is handled as a gear with offset shaft. One of the most important things in the design of a shaving cutter is the determination of the helix angle βCo on the cutter's reference pitch value circle, and this is usually calculated using the following formula, as shown in Figure 3 A, C, and C. It is determined.

なお、第3図ではカッタ、被削歯車とも基準ピッチ円同
志で噛合つた場合を示している。ここで βoは被削歯車の基準ピッチ円上のねじれ角Xは軸交叉
角即ちカッタ回転中心線と被削歯車回転中心線との交叉
角第3図ハは平歯車のシェービング加工を表わすもので
あり、βo=0であるから式(1)は成立する。
In addition, FIG. 3 shows a case where both the cutter and the gear to be cut are meshed with each other at the reference pitch circles. Here, βo is the torsion angle on the reference pitch circle of the gear to be cut. Since βo=0, equation (1) holds true.

軸交叉角Xはカッタの切れ味に影響し、止むを得ない場
合、例えば段付歯車でカッタとの干渉が問題となる場合
には3付位に決定することがあるが、通常は10に〜1
5位が最も良好な結果が得られるとされている。このよ
うにしてカッタの基準ピッチ円上のねじれ角β。
The shaft intersection angle X affects the sharpness of the cutter, and if it is unavoidable, for example, if interference with the cutter is a problem with stepped gears, it may be determined to be at position 3, but usually it is set at position 10. 1
It is said that 5th place will give the best results. In this way, the helix angle β on the standard pitch circle of the cutter is determined.

が決定されたら被削歯車の歯数Zに対して適切なりツタ
歯数Zcを決定し、さらに、歯直角モジュールm及び歯
直角工具圧力角α。を被削歯車と共通にして、後記する
表に示すようなりツタ諸元を決定する。そして従来、一
たん決定されたこれらの諸元はカッタ新品時から再研磨
の繰返しにより使用に堪えなくなるまでの間変えないで
、上記諸元に従つてカッタ歯面の研磨を行なつていた。
ところが、相当回数再研磨したカッタを使用してこれを
シェービング盤のカッタヘッド5(第1図)に取付けて
、歯車をシェービング加工,しようとするとき、カッタ
は再研磨によりその歯厚が減少しているため、カッタと
被削歯車との間にバックラッシュが生じ、そのバックラ
ッシュをなくすため、両者間の中心距離を縮めなければ
ならない。ところが、このように中心距離を縮める,”
減少する。そして噛合ピッチ円径が減少することにより
、両者のねじれ角もそれぞれ変化する。いま変化したね
じれ角をそれぞれβr(歯車)、β,c(カッタ)とす
れば軸交叉角Xrは次式のようになる。従来、このX、
を見出すため、連続生産シェービング加工をする前に、
試し切りを行ない、削られた歯車のねじれ角またはリー
ドを測定してその良否を判定し、カッタヘッド5の回転
(第1図の矢印F)量を調整する。
Once determined, the number of teeth Zc appropriate for the number of teeth Z of the gear to be cut is determined, and furthermore, the normal module m and the normal tool pressure angle α are determined. Make it common to the gear to be cut, and determine the ivy specifications as shown in the table below. In the past, once these specifications were determined, the cutter tooth surface was polished according to the specifications without changing them from when the cutter was new until it became unusable due to repeated re-polishing.
However, when using a cutter that has been reground a considerable number of times and attaching it to the cutter head 5 (Fig. 1) of a shaving machine to shave a gear, the tooth thickness of the cutter decreases due to the resharpening. As a result, backlash occurs between the cutter and the gear to be cut, and in order to eliminate this backlash, the center distance between the two must be shortened. However, if we reduce the center distance in this way,
Decrease. As the engagement pitch circle diameter decreases, the torsion angles of both also change. Letting the torsion angles that have just changed be βr (gear), β, and c (cutter), respectively, the shaft intersection angle Xr will be as shown in the following equation. Conventionally, this X,
Before serial production shaving processing, in order to find out the
A test cut is made, and the helix angle or lead of the cut gear is measured to determine its quality, and the amount of rotation of the cutter head 5 (arrow F in FIG. 1) is adjusted.

この調整作業を行なわなければならないので、これがシ
ェービング加工工程における作業能率の向上に大きな障
害となつていた。この発明は以上述べた従来のシェービ
ング加工工程における試し切りによる調整作業という無
駄な作業時間をなくし、相当回数再研磨したカッタを使
用する場合でも常に軸交叉角x、を一定値にしてシェー
ビング加工が行えるようにカッタを研磨する方法を提供
することを目的とするものであり、この目的は、被削歯
車に対するシェービングカッタの噛合ピッチ円上におけ
るねじれ角β,cがシェービングカッタに対する被削歯
車の噛合ピッチ円上のねじれ角β1に対して、βRc=
β,−Xrもしくはβ、。
Since this adjustment work must be carried out, this has been a major obstacle to improving work efficiency in the shaving process. This invention eliminates the wasted work time of adjustment work by trial cutting in the conventional shaving processing process mentioned above, and allows shaving processing to be performed with the axis intersection angle x always at a constant value even when using a cutter that has been reground a considerable number of times. The purpose is to provide a method for polishing a cutter such that the helix angle β,c on the meshing pitch circle of the shaving cutter with the workpiece gear is equal to the meshing pitch of the workpiece gear with the shaving cutter. For the torsion angle β1 on the circle, βRc=
β, -Xr or β,.

=β,+X、なる関係となるようにカッタ歯面を研磨す
ることにより達成できるのである。以下この発明の一実
施例を詳細に説明する。
This can be achieved by polishing the cutter tooth surface so that the relationship becomes =β, +X. An embodiment of the present invention will be described in detail below.

被削歯車及びカッタの諸元を下表のように表わすこ上表
で○印で囲まれた諸元は不変であるが、O印で囲まれな
い諸元はカッタ研磨ごとに変化する。被削歯車は相手の
歯車と噛合うよう予め設計されているので殆んどの諸元
は不変であるが、カッタとの噛合に関する諸元は変化し
ていく。シェービング加工時のカッタと被削歯車との噛
合いは、第2図に示すように、噛合ピッチ点Pにおける
歯直角断面で転がり接触する転位歯車同志の噛合いと考
えることができ、歯直角噛合圧力角αは一般に次式で表
わされる。ここでz″は歯直角断面における被削歯車の
仮想歯数で、で求められ、z″。
The specifications of the gear to be cut and the cutter are shown in the table below.In the table above, the specifications surrounded by O marks remain unchanged, but the specifications not enclosed by O marks change every time the cutter is polished. The gear to be cut is designed in advance to mesh with the mating gear, so most of its specifications remain unchanged, but the specifications related to its engagement with the cutter change. As shown in Fig. 2, the meshing between the cutter and the gear to be cut during shaving can be thought of as the meshing of shifted gears that roll into contact with each other in the normal cross section at the meshing pitch point P, and the normal meshing pressure The angle α is generally expressed by the following formula. Here, z″ is the virtual number of teeth of the gear to be cut in the cross section perpendicular to the tooth, and is determined by z″.

は歯直角断面におけるカッタの仮想歯数で、で求められ
る。式(3)において、被削歯車の転位係数Xはこの歯
車と噛合うべき相手歯車(図示せず)との関係で、歯車
設計の段階で定められた一定値であるのに対し、カッタ
の転位係数Xcはカッタ歯面を研磨するごとに変化する
is the virtual number of teeth of the cutter in the perpendicular cross section, and is determined by . In equation (3), the shift coefficient The shift coefficient Xc changes each time the cutter tooth surface is polished.

通常カッタ新品の転位係数にはバラツキがあり、またカ
ッタ歯面が予め定めた転位係数値に研磨されていたとし
ても、研磨するごとに転位係数X。は変化する。したが
つて、研磨をしようとするカッタについては、先づこの
転位係数Xcの値を求めなければならない。そこでギア
キヤリパにて歯厚を測定することにより、あるいはまた
ぎ歯厚もしくはオーバーボール径を測定することにより
、カッタの転位係数を求める。例えばまたぎ歯厚測定法
を採用する場合には次式によりカッタの転位係数XCl
を求める。上式で例えばXOlの添字1は研磨第1回目
という意味をもつ(以下他の符号についても同じ)。ま
た、Enlはまたぎ歯厚の測定値、 α,は軸直角圧力角で を用いて求める。
Normally, the shift coefficient of a new cutter varies, and even if the cutter tooth surface has been polished to a predetermined shift coefficient value, the shift coefficient X changes each time it is polished. changes. Therefore, for a cutter to be polished, the value of the dislocation coefficient Xc must first be determined. Therefore, the shift coefficient of the cutter is determined by measuring the tooth thickness with a gear caliper, or by measuring the straddle tooth thickness or overball diameter. For example, when using the straddle tooth thickness measurement method, the cutter shift coefficient XCl is expressed by the following formula:
seek. In the above formula, for example, the subscript 1 of XOl means the first polishing (the same applies to other symbols hereinafter). Further, Enl is the measured value of the straddle tooth thickness, and α is determined using the pressure angle perpendicular to the axis.

nはまたぎ歯の数を表わす。n represents the number of straddle teeth.

このようにして求めたカッタ転位係数X。The cutter dislocation coefficient X obtained in this way.

lを式(3)のXcに代人することにより、被削歯車と
カッタとの歯直角噛合圧力角α1を求めることができる
。歯直角噛合圧力角α1から被削歯車の噛合ピッチ円上
におけるねじれ角β,1及びカッタの噛合ピッチ円上に
おけるねじれ角βRcl″を次式により求める。
By substituting l for Xc in equation (3), the normal meshing pressure angle α1 between the gear to be cut and the cutter can be determined. From the normal meshing pressure angle α1, the helix angle β,1 on the meshing pitch circle of the gear to be cut and the helix angle βRcl″ on the meshing pitch circle of the cutter are determined by the following equation.

式(6)よりカッタの噛合ピッチ円径D,Clを次式に
より求めておく。
From equation (6), the cutter engagement pitch circle diameters D and Cl are determined by the following equations.

次に本発明方法の特徴である軸交叉角Xrを一定値に保
つため、式(6)にて求めたカッタの噛合ピッチ円上に
おけるねじれ角β、C1″の代りに次式による修正ねじ
れ角βRclを採用する。
Next, in order to keep the axis crossing angle βRcl is adopted.

すなわち 次に、式(7)、式(8)を用い、カッタ歯面の新たな
リードL1カッタの新たな基準ピッチ円上のねじれ角β
That is, next, using equations (7) and (8), the torsion angle β on the new standard pitch circle of the new lead L1 cutter on the cutter tooth surface is calculated.
.

1、新たな軸直角圧力角α5。1. New axis-perpendicular pressure angle α5.

1、新たな基準ピッチ円径DCl、新たな基礎円径Dg
Olを次各式により求める。
1. New standard pitch circle diameter DCl, new base circle diameter Dg
Obtain Ol using the following formulas.

以上でカッタ研磨に必要とする諸元が求められる。With the above steps, the specifications required for cutter polishing are determined.

実際にカッタ研磨には通常第4図イ,口に示すようなシ
ェービングカッタグラインダを使用し、適当な直径D.
(バンド8,8″の厚さを含めて)のピッチブロック7
を用い、研磨砥石10を一種のラック型工具として創成
研削作業を行なうので、下記諸式を用いて任意のピッチ
ブロック円径Dm上のねじれ角β..1、同じく歯直角
圧力角α、1を求める。すなわち、第4図に示すように
、緊張したバンド8,8″に取付けたピッチブロック7
をカッタ取付軸9に固定し、砥石10の傾き角を歯直角
圧力角αm1に設定し、砥石台の水平回転角をβm1に
設定した後、カッタ取付軸9を矢印G及びHの向きに回
転させる。
In practice, a shaving cutter grinder as shown in Fig. 4A is usually used for cutter polishing, and a suitable diameter D.
Pitch block 7 (including band 8,8″ thickness)
Since the generating grinding work is performed using the grinding wheel 10 as a type of rack-type tool, the helix angle β. .. 1. Similarly, find the normal pressure angle α, 1. That is, as shown in FIG. 4, the pitch block 7 attached to the tensioned band 8,8''
is fixed to the cutter mounting shaft 9, the inclination angle of the grindstone 10 is set to the normal pressure angle αm1, and the horizontal rotation angle of the grindstone head is set to βm1, and then the cutter mounting shaft 9 is rotated in the directions of arrows G and H. let

するとカッタ取付軸9は矢印J及びKの方向に移動し、
ラック型に形成された砥石によつて歯面の創成研磨が行
なわれる。なお図で11は割出板を示し、研磨はこの割
出板を用いて1歯毎に行ない、一方の歯面全部の研磨が
終了したらカッタをひつくり返してカッタ取付軸に取付
け、今度は他方の歯面を1歯毎に研磨して研磨作業を終
了する。このようにして研磨したカッタをシェービング
加工工程にて使用することにより、常に軸交叉角、実際
には第1図におけるカッタヘッド5の矢印Fで示す回転
角を一定にして作業を行なうことができる。
Then, the cutter mounting shaft 9 moves in the directions of arrows J and K.
Generative polishing of the tooth surface is performed using a rack-shaped grindstone. In the figure, reference numeral 11 indicates an index plate. Polishing is performed for each tooth using this index plate. When the entire tooth surface on one side has been polished, the cutter is turned over and attached to the cutter mounting shaft, and this time, the other tooth is polished. The polishing work is completed by polishing the tooth surface one by one. By using the cutter polished in this way in the shaving process, the work can be carried out while keeping the axis intersection angle, in fact, the rotation angle indicated by arrow F of the cutter head 5 in Fig. 1 constant. .

カッタを研磨するたびに、以上述べた手順によりカッタ
研磨段取りを行なうのであるが、通常1回のカッタ研磨
によるカッタ歯厚の減少即ちカツ”夕転位係数の変化は
極めて少ない(歯厚で20P7TL.以下)ので、実際
には研磨のたびに必ず上記の手順を踏まねばならないと
いう訳ではなく、例えばまたぎ歯厚もしくはオーバーボ
ール径の値にある幅をもつた段階を予め定めておき、実
測値が該段階下限値を越えて小さくなつたときに始めて
上記手順に従つてカッタ諸元を僅かづつ変えて行くよう
にするのが良い。
Every time a cutter is polished, the cutter polishing setup is performed according to the procedure described above, but normally the decrease in the cutter tooth thickness, that is, the change in the cutter tip shift coefficient, is extremely small (tooth thickness is 20P7TL. (below), so it is not actually necessary to follow the above steps every time polishing. For example, you can predetermine steps with a certain width for the straddle tooth thickness or overball diameter, and then check the actual value. It is preferable to start changing the cutter specifications little by little according to the above procedure only when the value exceeds the lower limit of the stage and becomes smaller.

また、先に述べた手順に従つて新品時から使用に耐えな
くなるまでの計算を行つておき、これを一覧表の形でカ
ッタグラインダ近傍に備えておけば極めて容易にカッタ
研磨作業を行なうことができる。以上述べたように本発
明によれば、シェービング加工におけるカッタ交換時の
試し切りを廃止でき、常に一定の軸交叉角をもつて歯車
を切削仕上げすることができ、シェービング加工工程に
おける作業能率を大いに向上することがてきる。
In addition, if you follow the procedure described above to calculate the time from when it was new until it becomes unusable, and keep this in the form of a list near the cutter grinder, it will be extremely easy to grind the cutter. can. As described above, according to the present invention, it is possible to eliminate trial cuts when changing cutters during shaving processing, and it is possible to finish cutting gears with a constant axis intersection angle at all times, greatly improving work efficiency in the shaving processing process. I can do that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシェービング加工の概要を示す説明図、第2図
はシェービングカッタと被削歯車との関係を示す説明図
、第3図は基準ピッチ円同志で噛合つたときの軸交叉角
の説明図、第4図イはシェービングカッタグラインダの
平面図、第4図口はイ図のローロ線矢視断面図である。
Fig. 1 is an explanatory diagram showing an overview of shaving processing, Fig. 2 is an explanatory diagram showing the relationship between the shaving cutter and the gear to be cut, and Fig. 3 is an explanatory diagram of the shaft intersection angle when the reference pitch circles mesh with each other. 4A is a plan view of the shaving cutter grinder, and the opening in FIG. 4 is a sectional view taken along the Rollo line in FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 シェービング加工時のシェービングカッタと被削歯
車との軸交叉角X_rが常に一定値となるよう、被削歯
車に対するシェービングカッタの噛合ピッチ円上におけ
るねじれ角β_r_cが、シェービングカッタに対する
被削歯車の噛合ピッチ円上におけるねじれ角βにに対し
て、β_r_c=β_r−X_rもしくはβ_r_c=
β_r+X_rなる関係となるようにシェービングカッ
タの歯面を研磨することを特徴とするシェービングカッ
タの研磨方法。
1. The helix angle β_r_c on the engagement pitch circle of the shaving cutter with respect to the workpiece gear is adjusted so that the axis intersection angle X_r between the shaving cutter and the workpiece gear during shaving processing is always a constant value. For the twist angle β on the pitch circle, β_r_c=β_r−X_r or β_r_c=
A method for polishing a shaving cutter, comprising polishing the tooth surface of the shaving cutter so that the relationship β_r+X_r is established.
JP1689781A 1981-02-09 1981-02-09 How to polish a shaving cutter Expired JPS6059094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1689781A JPS6059094B2 (en) 1981-02-09 1981-02-09 How to polish a shaving cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1689781A JPS6059094B2 (en) 1981-02-09 1981-02-09 How to polish a shaving cutter

Publications (2)

Publication Number Publication Date
JPS57132923A JPS57132923A (en) 1982-08-17
JPS6059094B2 true JPS6059094B2 (en) 1985-12-23

Family

ID=11928934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1689781A Expired JPS6059094B2 (en) 1981-02-09 1981-02-09 How to polish a shaving cutter

Country Status (1)

Country Link
JP (1) JPS6059094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217784U (en) * 1985-07-11 1987-02-02

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308362B2 (en) * 2010-01-20 2013-10-09 三菱重工業株式会社 Tooth profile management system for shaving cutter tooth profile grinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217784U (en) * 1985-07-11 1987-02-02

Also Published As

Publication number Publication date
JPS57132923A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
EP2471621B1 (en) Internal gear machining method
EP3200948B1 (en) Axial hob with multi-revolution cutting teeth and method of manufacturing a gear with an axial hob
KR102555094B1 (en) Method for machining a toothing, tool arrangement, and toothing machine
US10744581B2 (en) Power skiving pressure angle correction without tool geometry change
US8851962B2 (en) Barrel-shaped threaded tool for machining internal gear
US8747035B2 (en) Method for producing bevel gears having hypocycloidal teeth in the continuous forming method using corresponding tools
EP2383064A1 (en) Internal gear processing method
JP2018122425A (en) Gear-cutting tool processing device, processing method, tool shape simulation device and tool shape simulation method
JPH01252316A (en) Method of manufacturing and/or finishing crown gear
US6808440B2 (en) Method of grinding cutting blades
EP0693016B1 (en) Method of producing a crown wheel
JPS61168420A (en) Method for cutting and grinding large bevel gear of large module about mp18-mp120 on the basis of generating gear cutting method
US2270422A (en) Method of cutting gears
JPS6059094B2 (en) How to polish a shaving cutter
US2102659A (en) Method of producing gears
GB491077A (en) Improvements in apparatus for trimming grinding worms for finishing bevel gears
US4102583A (en) Profile cutter
US2354670A (en) Gear finishing
JP2001252823A (en) Gear cutting method for hourglass-shape worm
US1689565A (en) Method of and machine for generating worm gears and the like
US1609331A (en) Method of generating gears
US2169632A (en) Method of making rotary gear cutters
US2629973A (en) Method and apparatus for relieving cutter blades
JP2010017795A (en) Grind finishing method of worm wheel and worm gear device
US4170164A (en) Profile cutter