JPS6059089A - Electrolytic device for generating continuously monosilane - Google Patents
Electrolytic device for generating continuously monosilaneInfo
- Publication number
- JPS6059089A JPS6059089A JP58167551A JP16755183A JPS6059089A JP S6059089 A JPS6059089 A JP S6059089A JP 58167551 A JP58167551 A JP 58167551A JP 16755183 A JP16755183 A JP 16755183A JP S6059089 A JPS6059089 A JP S6059089A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- salt
- cathode
- convection
- eutectic salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はモノシランの連続発生用電解装置に係わる。[Detailed description of the invention] The present invention relates to an electrolytic device for continuous generation of monosilane.
従来のモノシランの連続発生用電解における塩化カリウ
ム、塩化リチウムの混合塩を不活性ガス雰囲気中で溶融
し、該共融塩f:電電気跡し、塩素ガスならびにリチウ
ムを取出すのに用いる電解装置に関しては、特公昭39
−3660号、および特願昭55−72789号に記載
されている。Concerning an electrolysis device used to melt a mixed salt of potassium chloride and lithium chloride in an inert gas atmosphere in conventional electrolysis for continuous generation of monosilane, generate an electric charge, and extract chlorine gas and lithium. is a special public official in 1977
-3660 and Japanese Patent Application No. 55-72789.
従来の該電解装置の概略を第1図に示す。A schematic diagram of the conventional electrolyzer is shown in FIG.
該電解装置は、例えば中100%、厚さ30%、長さ1
200%の4本のカーボン製板状陽極lとニッケル製板
状陰極2が極間距11i1U8o〜100%で塩化カリ
ウム、塩化リチウム共融塩3内で対面している。The electrolyzer is, for example, 100% medium, 30% thick, and 1
Four 200% carbon plate-shaped anodes 1 and nickel plate-shaped cathodes 2 face each other in a potassium chloride/lithium chloride eutectic salt 3 with an interpolar distance of 11i1U8o to 100%.
又、陽極lから電解発生する塩素4の他部分への漏洩防
止と陰極2で生成するリチウム12との再結合防止をか
ねて、長円形断面をもつ金属製隔膜5が両枠1と陰極2
の両極間に距離比2:1になるごとく取付けである。Further, in order to prevent leakage of chlorine 4 electrolytically generated from the anode 1 to other parts and to prevent recombination with lithium 12 generated at the cathode 2, a metal diaphragm 5 with an oval cross section is provided between the frames 1 and the cathode 2.
It is installed so that the distance ratio between the two poles is 2:1.
一方、陽lid 1 +1’−J:常時共融塩中に下端
を没する長円筒吠の陽極室6の中央にセットされ、電解
で発生する塩素ガス4は陽極室6上部ガス出ロアより槽
外へ取出される。On the other hand, positive lid 1 +1'-J: It is set in the center of the anode chamber 6 of a long cylindrical shape whose lower end is always submerged in eutectic salt, and the chlorine gas 4 generated by electrolysis is sent to the tank from the upper gas output lower part of the anode chamber 6. taken outside.
陰極2は、例えば+j+ 500%、16さ400%、
の上部が尖った板状であり、その上方には電解により発
生し、陰極板より離脱したリチウムメタルを捕集し、他
部へ導くためのリチウム4市集移送器8が数個けられて
いる。The cathode 2 is, for example, +j+ 500%, 16+ 400%,
The upper part has a sharp plate shape, and above it there are several lithium 4 collection and transfer devices 8 for collecting lithium metal generated by electrolysis and separated from the cathode plate and guiding it to other parts. There is.
また、陰極、陽極共にリード部は上部反応槽蓋にテフロ
ン製絶縁部品9で絶縁、ソールされて取付けられた+1
91造をし7ている。In addition, the lead parts of both the cathode and anode are insulated and soled with Teflon insulation parts 9 and attached to the upper reaction tank lid.
There are 91 buildings and 7.
本従来例の電解装置を用いで、電・解會行った場合、電
解速贋に対して、゛電解装置内部での共融塩の対流速度
が見合うか、それ以上であれば共融塩組成の片寄りはな
く、正常な電解継続が可能であるが、従来の電解装置の
構造では陽極室界面10近傍に、第3図のごとき共融塩
の対流口11が無いため、対流が抑制され電解速度に見
合う共融塩の対流が得られなかった。そのため、電解速
度を増して行くと浴抵抗が上昇し、はなはだしい場合は
共融塩の組成変化により同化をまねき、電解継続が不能
はなることがあった。When electrolysis is carried out using the electrolysis device of this conventional example, if the convection speed of the eutectic salt within the electrolysis device is equal to or higher than the electrolytic speed, then the eutectic salt composition There is no deviation, and normal electrolysis can continue.However, in the structure of the conventional electrolyzer, there is no convection opening 11 for eutectic salt near the anode chamber interface 10 as shown in Fig. 3, so convection is suppressed. Convection of the eutectic salt commensurate with the electrolysis rate could not be obtained. Therefore, as the electrolysis rate increases, the bath resistance increases, and in extreme cases, changes in the composition of the eutectic salt may lead to assimilation, making it impossible to continue electrolysis.
又、共融塩対流口が存在しないため、界面10に電解で
崩壊したカーボンの粉がたまり、ショート現象を造り出
し、その結果、例えば炉壁金属材で塩素を発生するよう
になり、該炉壁金属材の腐蝕並びに電解効率の低下が起
った。In addition, since there is no eutectic salt convection port, carbon powder disintegrated by electrolysis accumulates at the interface 10, creating a short circuit phenomenon, and as a result, for example, chlorine is generated in the metal material of the furnace wall, and the furnace wall Corrosion of metal materials and a decrease in electrolytic efficiency occurred.
又、前述のごとく、板状対面電極構造をとっているため
、電極の対向面間以外に電場が漏れ、電極以外の金属製
構造材料の電解腐蝕をまねくことがあった。Furthermore, as described above, since the plate-like facing electrode structure is used, the electric field leaks to areas other than between the opposing surfaces of the electrodes, which may lead to electrolytic corrosion of metal structural materials other than the electrodes.
本発明はこれらの諸問題を解決する手段を提供するもの
である。The present invention provides a means to solve these problems.
本発明の要旨は、モノシランの連続発生用電解装置にお
いて、円柱状陽極を中心とし、該陽極と対面するごとく
、円筒状陰極を設け、且つ、共融塩対流口を設けたこと
を特徴とする電解装置に存する。The gist of the present invention is an electrolytic device for continuous generation of monosilane, which is characterized by having a cylindrical anode at the center, a cylindrical cathode facing the anode, and a eutectic salt convection port. Exists in electrolysis equipment.
以下、本発明を一実施態様により、図面を用いて説明す
る。EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the present invention will be explained using drawings.
第3図は本発明による電解装置の一実施例を示し、第4
図は第3図におけるB−B断面を示す図である。FIG. 3 shows an embodiment of the electrolyzer according to the present invention;
The figure is a diagram showing a BB cross section in FIG. 3.
本発明は、電極以外の部分への電場の漏れを防止するた
め、第3図および第4図に示すごとく、グラファイト製
陽極13を円柱状としこれを中rIl)として、該陽極
と対面するごとく、円筒状陰極14を設けた。即ち、円
柱状陽極側面を円筒状陰極で取り巻く構造とし、側面か
らの電場の漏れを防止し、又、電極の下部からの市、場
漏れを防ぐため、陽極13の下端より陰極14の下端を
大きく下け、電場を包み込む構造とした。In order to prevent leakage of the electric field to parts other than the electrodes, as shown in FIGS. 3 and 4, the present invention provides a graphite anode 13 with a cylindrical shape and a cylindrical shape that faces the anode. , a cylindrical cathode 14 was provided. That is, the cylindrical cathode surrounds the side surface of the cylindrical anode, and in order to prevent electric field leakage from the side surface and to prevent field leakage from the lower part of the electrode, the lower end of the cathode 14 is connected to the lower end of the anode 13. It has a structure that is lowered significantly and envelops the electric field.
一次に、電解時に発生する塩素ガス4は浮力で上昇する
ため、電解部の共融塩には上向きの力が働らくが、例え
ば、第1図に示すごとき、従来の電解装置のごとく、上
部が袋状になっていると、塩の対流が抑制され、種々の
問題が生ずることは前述した。First, since the chlorine gas 4 generated during electrolysis rises due to buoyancy, an upward force acts on the eutectic salt in the electrolysis section. As mentioned above, if the salt is shaped like a bag, the convection of the salt will be suppressed and various problems will occur.
このため、上部に開口部を設けて袋状態を解消する手段
として、本発明では、共融塩界面15の下部、陽極室6
の壁に塩対流口11を設け、電解部の共融塩の対流の促
進を計った。For this reason, in the present invention, as a means to eliminate the bag state by providing an opening in the upper part, the opening is provided in the lower part of the eutectic salt interface 15, in the anode chamber 6.
A salt convection port 11 was provided in the wall of the chamber to promote convection of the eutectic salt in the electrolytic section.
この結果、電解部における、下から吸込み、塩対流口1
工から出て行く流れのスムーズな共融塩の対流が促進さ
れ、電カイ部における、塩化カリウムがリンチ状態にな
る共融塩の組成の片寄りによる同化現象がなくなると同
時に、浴抵抗の低下が計られ、電力効率の向上ができた
。As a result, in the electrolytic section, suction from below, salt convection port 1
The smooth convection of the eutectic salt flowing out of the bath is promoted, eliminating the assimilation phenomenon caused by the uneven composition of the eutectic salt that causes potassium chloride to enter a lynch state in the electric field, and at the same time reducing the bath resistance. was measured, and power efficiency was improved.
又、塩の対流が促進されることにより、共融塩内で発生
する塩素ガス4の横方向への広が9が小さくなり、共融
塩内で極間に位置した塩素捕集網である円筒状隔膜16
からの陰極側への塩素ガス漏れがなくなった。In addition, by promoting the convection of the salt, the lateral spread 9 of the chlorine gas 4 generated within the eutectic salt becomes smaller, resulting in a chlorine trapping network located between the poles within the eutectic salt. Cylindrical diaphragm 16
No more chlorine gas leaking from the to the cathode side.
このことによって、漏れた塩素ガスと、陰極で発生する
リチウムとのM結合反応がなくなり、極間距離を更に縮
めることができた。This eliminated the M bond reaction between the leaked chlorine gas and the lithium generated at the cathode, making it possible to further reduce the distance between the electrodes.
次に、塩の対流口11を設けたことにより、雪解の結果
陽極表面の崩壊により発生し、陽極極室共融塩界面15
に浮遊しているグラファイト粉を定期的に陽極室を加圧
して地対流口11から放出させることにより、ショート
現象をなくシ、長時間の安定した電解反応を継続するこ
とができた。Next, by providing the salt convection port 11, the convection occurs due to the collapse of the anode surface as a result of snow melting, and the anode chamber eutectic salt interface 15
By periodically pressurizing the anode chamber and releasing the graphite powder suspended in the anode chamber from the ground convection port 11, it was possible to eliminate the short-circuit phenomenon and continue a stable electrolytic reaction for a long time.
実施例1
陽極室6は内径380%f1厚さ5%のLc−Nl製の
円筒でできており、共融塩界面15下400%に開口し
ている。Example 1 The anode chamber 6 is made of a cylinder made of Lc-Nl with an inner diameter of 380% f1 and a thickness of 5%, and is open 400% below the eutectic salt interface 15.
陽極室壁には地対流口11が共融塩界面15下75%の
所に2ケ所開口し、その大きさは高さ60%、巾310
へであり、その開口部には屋根状のカバー17が取付け
られ、地対流口11がら出て行く塩は下向きとなる。父
、カバーを取付けることにより、この部分より他部への
電解で発生した塩素漏れを防止している。Two ground convection ports 11 are opened in the anode chamber wall at 75% below the eutectic salt interface 15, and the size thereof is 60% in height and 310% in width.
A roof-like cover 17 is attached to the opening, and the salt exiting from the ground convection opening 11 is directed downward. By installing a cover, we prevent chlorine from leaking from this part to other parts due to electrolysis.
グラファイト製の陽極13は300%fのムク棒ででき
ており、寸Φ入深さは共融塩界面15下1100%であ
る。The anode 13 made of graphite is made of a solid rod of 300% f, and the Φ penetration depth is 1100% below the eutectic salt interface 15.
陰極14と対面して電解に寄与している陽極13の表面
積は約6100 cbfである。又、電解時の電、解電
流I’11.5000 A 、賜倹ノ電流密度は0.8
A/−1極間距船は60Xである。The surface area of the anode 13, which faces the cathode 14 and contributes to electrolysis, is about 6100 cbf. In addition, the electrolytic current during electrolysis is I'11.5000 A, and the current density is 0.8.
A/-1 pole-to-pole ship is 60X.
電解で発生する塩素ガスの他部への漏れを防止し、陰極
14で発生するリチウムとの再結合を防止するために、
1()メノンーの金属製円筒状隔膜16が陽極13と隔
膜16間35%、隔膜16と陰@i、14 INj25
%の間隔でセントされる。In order to prevent chlorine gas generated during electrolysis from leaking to other parts and to prevent recombination with lithium generated at the cathode 14,
1 () Menon metal cylindrical diaphragm 16 is 35% between anode 13 and diaphragm 16, diaphragm 16 and negative @i, 14 INj25
cents in % intervals.
陰極14は内径420シf1長さ742 ′Xで電解に
寄与する表面積は9800c+Jで、円柱状陽極13を
中心に同窓円状に陽極13に対面してセットされ、均一
な極間距離を保ち、下端は電場封じ込めのため、陽極1
3の下端より100%下げである。The cathode 14 has an inner diameter of 420 mm, a length of f1, and a length of 742' The bottom end is anode 1 for electric field containment.
It is 100% down from the bottom of 3.
以上の条件で、電解?継続し、塩素発生効率98%14
1だ。又、ショート現象の防止のための共融塩界面15
の浮遊物の陽極室外への追い出し操作は、24間間に1
回の1:す合で実施した0
(の実施+l1li1は下記のことくである。Electrolysis under the above conditions? Continuing to achieve chlorine generation efficiency of 98%14
It's 1. In addition, the eutectic salt interface 15 for preventing the short phenomenon
The operation of expelling suspended matter outside the anode room is carried out once every 24 days.
The implementation of 0 (+l1li1) carried out in the 1:sequence is as follows.
更に陽極室6を加圧して界面15に浮遊している崩壊グ
ラファイト粉を地対流口11から置換ガスとともに、陽
極室外へ追い出し、陽極室と、所定圧力に戻す作業を数
回繰り返した後、電解電流を徐々に上げ、5[u+Aで
電解を継続する。Furthermore, the anode chamber 6 is pressurized to expel the collapsed graphite powder floating at the interface 15 from the ground convection port 11 together with the replacement gas, and after repeating the process several times to return the anode chamber to a predetermined pressure, the electrolysis begins. Gradually increase the current and continue electrolysis at 5 [u+A.
以上、詳述したごと< 、lJ4極]3を円柱状とし、
陽極室6の共融塩界面15下に地対流口11を設けたた
め、発生した塩素の上昇効果が大きくなり、電解部分の
塩の組成が塩化カリウムリンチとなるごとき片寄りを生
じることなく、又、電解部の浴抵抗を低下させると共に
、温度上昇した共融塩を移動させることにより、共融塩
の温度上昇を押さえることかできるようになり、長時間
安定した電解の継MLが可能となった。As detailed above, < , lJ4 pole] 3 is cylindrical,
Since the ground convection port 11 is provided below the eutectic salt interface 15 of the anode chamber 6, the effect of increasing the generated chlorine is increased, and the composition of the salt in the electrolytic part is prevented from being biased such as potassium chloride lynch. By lowering the bath resistance of the electrolytic part and moving the eutectic salt whose temperature has increased, it has become possible to suppress the temperature rise of the eutectic salt, making it possible to maintain stable electrolysis over a long period of time. Ta.
また、陽極室側面共−煤界面下に塩対iAi口11をも
うけることにより、電解で崩壊し界1ni15に浮遊す
るショートの原因物質であるグラファイト粉を定期的に
陽極尾外へ排出処理することが可能になった結果、電庁
fの効率向上に大きく寄与した。In addition, by providing a salt port 11 under the soot interface on the side of the anode chamber, it is possible to periodically discharge graphite powder, which is a substance that causes short circuits and disintegrates due to electrolysis and floats in the anode tail, to the outside of the anode tail. As a result, it has greatly contributed to improving the efficiency of the Electric Power Agency f.
さらに、陰極14の下端を陽極13の下端より100X
下げることにより、電場の封じ込めが計られ、電蝕の危
険を解消することができたFurthermore, the lower end of the cathode 14 is 100X lower than the lower end of the anode 13.
By lowering it, the electric field was contained and the risk of electrolytic corrosion was eliminated.
第1図は従来の電解装置を示し、第2図は第1図におけ
るA−A断面を示す。
第3図は本発明による電解装置の一実施例を示し、第4
図は第3図のB−B断面金示す図である。
3・・・・・・共融塩、 6・・・・・・陽極室。
9・・・・・・絶縁部品、11・・・・・・地対流口。
12・・・・・・リチウム、13・・・・・・円柱状陽
極。
14・・・・・・円筒状陰棲、15・・・・・・共融塩
界面。
16・・・・・−円筒状隔膜、17・・・・・・カバー
。
特許出願人 工業技術院長
第1図FIG. 1 shows a conventional electrolysis device, and FIG. 2 shows a cross section taken along line AA in FIG. FIG. 3 shows an embodiment of the electrolyzer according to the present invention;
The figure is a cross-sectional view taken along line BB in FIG. 3. 3... Eutectic salt, 6... Anode chamber. 9...Insulating parts, 11...Ground convection opening. 12...Lithium, 13...Cylindrical anode. 14... Cylindrical shade, 15... Eutectic salt interface. 16...-Cylindrical diaphragm, 17...Cover. Patent applicant: Director of the Agency of Industrial Science and Technology Figure 1
Claims (1)
極13を中心とし、該陽極と対面するごとく、円筒状陰
極14を設け、且つ、塩対流口11を説けたことを特徴
とする電解装置。 2、陰極14の下端を電場をつ\み込む如く陽極13の
下端より下けたことを特徴とする特許請求の範囲第1項
の電解装置。 3、塩対流口11は、共融塩界面15の下部で陽極室壁
に設けたことを特徴とする特許請求の範囲第1項の電解
装置。 4 陽極13と陰極14の極間に円筒状隔膜16を設け
たことを特徴とする特許請求の範囲第1項の電解装置。[Scope of Claims] 1. An electrolytic device for continuous monosilane generation, characterized by having a cylindrical anode 13 at the center, a cylindrical cathode 14 facing the anode, and a salt convection opening 11. electrolysis equipment. 2. The electrolytic device according to claim 1, wherein the lower end of the cathode 14 is lower than the lower end of the anode 13 so as to transmit an electric field. 3. The electrolyzer according to claim 1, wherein the salt convection port 11 is provided in the anode chamber wall below the eutectic salt interface 15. 4. The electrolysis device according to claim 1, characterized in that a cylindrical diaphragm 16 is provided between the anode 13 and the cathode 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58167551A JPS6059089A (en) | 1983-09-13 | 1983-09-13 | Electrolytic device for generating continuously monosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58167551A JPS6059089A (en) | 1983-09-13 | 1983-09-13 | Electrolytic device for generating continuously monosilane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6059089A true JPS6059089A (en) | 1985-04-05 |
JPS6247956B2 JPS6247956B2 (en) | 1987-10-12 |
Family
ID=15851811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58167551A Granted JPS6059089A (en) | 1983-09-13 | 1983-09-13 | Electrolytic device for generating continuously monosilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6059089A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03123614U (en) * | 1990-03-30 | 1991-12-16 | ||
WO2007026565A1 (en) * | 2005-08-30 | 2007-03-08 | Osaka Titanium Technologies Co., Ltd. | METHOD FOR ELECTROLYSIS OF MOLTEN SALT, ELECTROLYTIC CELL, AND PROCESS FOR PRODUCING Ti USING SAID METHOD |
-
1983
- 1983-09-13 JP JP58167551A patent/JPS6059089A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03123614U (en) * | 1990-03-30 | 1991-12-16 | ||
WO2007026565A1 (en) * | 2005-08-30 | 2007-03-08 | Osaka Titanium Technologies Co., Ltd. | METHOD FOR ELECTROLYSIS OF MOLTEN SALT, ELECTROLYTIC CELL, AND PROCESS FOR PRODUCING Ti USING SAID METHOD |
Also Published As
Publication number | Publication date |
---|---|
JPS6247956B2 (en) | 1987-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4139447A (en) | Electrolyzer for industrial production of fluorine | |
CA1224743A (en) | Metal production by electrolysis of a molten electrolyte | |
US6419813B1 (en) | Cathode connector for aluminum low temperature smelting cell | |
AU703999B2 (en) | Multi-polar cell for the recovery of a metal by electrolysis of a molten electrolyte | |
US2480474A (en) | Method of producing aluminum | |
CA2445717A1 (en) | Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method thereof | |
US2988587A (en) | Electric batteries | |
WO2016082726A1 (en) | Electrolysis furnace | |
WO2016124034A1 (en) | Electrolytic furnace group | |
CN205062204U (en) | Electrolytic furnace | |
CN105088284A (en) | Electrolytic furnace | |
JPS5481133A (en) | Anodic oxidation device | |
JPS6117914B2 (en) | ||
JPH0158272B2 (en) | ||
CN209843832U (en) | Liquid metal battery | |
CN204661841U (en) | A kind of electrolytic furnace group | |
JPS6059089A (en) | Electrolytic device for generating continuously monosilane | |
CN1052037C (en) | Fluorine cell | |
US4440610A (en) | Molten salt bath for electrolytic production of aluminum | |
US3202600A (en) | Current conducting element for aluminum reduction cells | |
DK202370308A1 (en) | Controlling electrode current density of an electrolytic cell | |
RU2274680C2 (en) | Method of production of metals by electrolysis of the molten salts | |
US3488224A (en) | Fuel cell electrode assembly and method of regenerating cell | |
JPS57101692A (en) | Horizontal electroplating method by insoluble electrode | |
KR880000708B1 (en) | Electrolytic reduction cell |