JPS6059088A - Method for sealing ion exchange membrane and gasket - Google Patents

Method for sealing ion exchange membrane and gasket

Info

Publication number
JPS6059088A
JPS6059088A JP58165156A JP16515683A JPS6059088A JP S6059088 A JPS6059088 A JP S6059088A JP 58165156 A JP58165156 A JP 58165156A JP 16515683 A JP16515683 A JP 16515683A JP S6059088 A JPS6059088 A JP S6059088A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
gasket
water repellent
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58165156A
Other languages
Japanese (ja)
Inventor
Masaichi Miyashita
宮下 政一
Katsutoshi Onishi
勝利 大西
Tetsushi Yamada
哲史 山田
Masao Nakajima
正雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58165156A priority Critical patent/JPS6059088A/en
Publication of JPS6059088A publication Critical patent/JPS6059088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent sustainedly a leak of an electrolytic soln. by making a water repellent exist on the surface of an ion exchange membrane to be sealed in an electrolytic cell. CONSTITUTION:When an ion exchange membrane and a gasket are press-sealed, a water repellent is made to exist on the surface of at least the part of the membrane contacting with the gasket by coating, dipping or other method. A leak of an electrolytic soln. from the press-sealed part can be sustainedly prevented. Any water repellent which does not deteriorate the membrane and the gasket and does not contaminate an electrolyzate may be used as said water repellent.

Description

【発明の詳細な説明】 本発明はイオン交換膜とガスナツトのシール方法に関し
、特にイオン交換膜電解槽の電解液の洩れを防止するシ
ール方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of sealing an ion exchange membrane and a gas nut, and particularly provides a sealing method for preventing leakage of electrolyte in an ion exchange membrane electrolytic cell.

イオン交換膜電解槽においては、陽極室および陰極室を
区画する隔膜としてイオン交換膜が用φられる。通常、
イオン交換膜は、陽極室枠。
In an ion exchange membrane electrolytic cell, an ion exchange membrane is used as a diaphragm that partitions an anode chamber and a cathode chamber. usually,
The ion exchange membrane is the anode chamber frame.

陰極室枠に夫々ガスケットを存在させてシールする。し
かしながら、イオン交換膜と力゛スケットとの接触面で
は、イオン交換膜の表面の凹凸。
A gasket is placed on each cathode chamber frame to seal it. However, at the contact surface between the ion exchange membrane and the force socket, the surface of the ion exchange membrane is uneven.

特にバンキングクロスにより生する凹凸のため、完全な
シールが行い難い。シール部に僅かに生ずる隙間から毛
細管現象により、電解液が吸い出される。このため、電
解液、ブスバー等の腐食をまねき、延いては、電解効率
を損う一因ともなる。斯様なトラブルを防止するため一
般にフィルタープレス型電解槽にあっては、締付圧を、
例えば50製以上の如く、極めて大きくするのが常であ
るが、かかる場合であっても、なお電解液の漏洩の心配
が完全にないというわけではない。更に別の問題として
、強く締め付けることにより、ガスケットが変形するた
め、これと接するイオン交換膜が引き伸ばされることに
なり、バッキング当り面でイオン交換膜の破損を生ずる
おそれもある。
In particular, it is difficult to achieve a complete seal due to the unevenness caused by the banking cloth. The electrolyte is sucked out through the small gap created in the seal by capillary action. This leads to corrosion of the electrolytic solution, busbars, etc., which in turn becomes a factor that impairs electrolysis efficiency. To prevent such troubles, the tightening pressure for filter press type electrolytic cells is generally
For example, it is customary to make it very large, such as one made of 50 or more, but even in such a case, there is still no possibility of leakage of the electrolyte. Another problem is that when the gasket is tightly tightened, the gasket deforms and the ion exchange membrane in contact with it is stretched, which may cause damage to the ion exchange membrane at the backing contact surface.

他方、イオン交換膜を筒状又は袋状に成形して、一方の
電極を収容することにより、陽極室と陰極室とを区画す
る形態の例えば、濾過性隔膜電解槽の改造によって得ら
れた偏平チューブ(プール)型電解槽においても、同様
に陽極室液と陰極室液との混合を防止するためイオン交
換膜とガスケットとによるシール部が存在するが、やは
り、当該ケ所からの漏洩の問題がある。
On the other hand, for example, a flat ion exchange membrane obtained by modifying a filterable diaphragm electrolytic cell in which an anode chamber and a cathode chamber are partitioned by forming an ion exchange membrane into a cylindrical or bag shape and accommodating one electrode. In a tube (pool) type electrolytic cell, there is also a sealing part made up of an ion exchange membrane and a gasket to prevent the anode and cathode compartment liquids from mixing, but there is still the problem of leakage from this area. be.

イオン交換膜とガスケットとのシール性を向上させる手
段として、ガスケットへの当り面のイオン交換膜のイオ
ン交換基を予め除去することにより、疎水化して電解液
の洩れを防止する方法も考えられる。しかし、該イオン
交換膜の伸びなど物性が変化するために実用的でない。
As a means to improve the sealing performance between the ion exchange membrane and the gasket, it is also possible to remove in advance the ion exchange groups of the ion exchange membrane on the surface that contacts the gasket to make it hydrophobic and prevent electrolyte leakage. However, this is not practical because the physical properties such as elongation of the ion exchange membrane change.

さらに、イオン交換膜とガスケットのシール面に液洩れ
を防止するため種々の油性薬剤を塗布する方法も提案さ
れているが、特に効果の持続性の観点から満足できるも
のが少ない。
Furthermore, methods have been proposed in which various oil-based chemicals are applied to the sealing surfaces of the ion exchange membrane and gasket to prevent liquid leakage, but few of these methods are satisfactory, especially from the viewpoint of sustainability of the effect.

本発明者らは、上記した問題を解決するために鋭意研究
の結果、イオン交換膜とガスケットを押圧シールするに
際して、該イオン交換膜の少なくとも、ガスケツ1と接
する部分の表面に予め撥水剤を存在させることによって
イオン交換膜電解槽における電解液の洩れを持続性よく
防止できることを見出し、本発明を提供するに至ったも
のである。即ち、本発明によれば、イオン交換膜電解槽
においてイオン交換膜をガスケットと押圧シールした部
分からの電解液の洩れが持続性よく防止できるために、
電解効率の向上を図ることが出来る。
In order to solve the above-mentioned problems, the present inventors conducted extensive research and found that when press-sealing an ion exchange membrane and a gasket, a water repellent agent was applied in advance to at least the surface of the ion exchange membrane in contact with the gasket 1. The inventors have discovered that leakage of electrolyte in an ion-exchange membrane electrolytic cell can be prevented in a sustained manner by the presence of such an ion-exchange membrane electrolyte, and have thus come to provide the present invention. That is, according to the present invention, leakage of the electrolyte from the part where the ion exchange membrane is press-sealed with the gasket in the ion exchange membrane electrolytic cell can be prevented in a sustained manner.
It is possible to improve electrolysis efficiency.

本発明に用いられる撥水剤は、イオン交換膜およびガス
ケット材質を損うことなく、また電解生成物を汚染しな
いものであれば、公知の撥水剤が侮辱制限なく使用でき
る。特に、例えば70ロガードxy−300,フロロガ
ード5p−soO(いずれもネオス社製、商品名)、テ
ックスガード(ダイキン社製、商品名)などのフッ素系
撥水剤、あるいは例えば5D−8000(東レシリコン
社製、商品名)などのシリコン系撥水剤が好ましく用い
られる。なかでも、電解生成物により変質しない安定な
物質として、含フツ素化合物、特にパーフロロカーボン
系のシリコン化合物が好ましい。
As the water repellent used in the present invention, any known water repellent can be used without any restrictions as long as it does not damage the ion exchange membrane and gasket materials and does not contaminate the electrolyzed product. In particular, fluorine-based water repellents such as 70 Rogard A silicone-based water repellent such as (manufactured by Co., Ltd., trade name) is preferably used. Among these, fluorine-containing compounds, particularly perfluorocarbon-based silicon compounds, are preferred as stable substances that are not altered by electrolytic products.

本発明の実施態様は、イオン交換膜のシール部分の少な
くとも表面に上記の如き撥水剤を予め存在させた後、力
′スケットと押圧シールする等で十分である。かくする
ことにより、イオン交換膜表面に撥水剤の均一な被膜が
存在するため本発明の効果は極めて顕著となる。しかる
に、ガスケット表面に撥水剤を塗布した場合には上記効
果が発揮されない場合があるので好ましい態様とはなら
ない。イオン交換膜の表面に撥水剤を存在させる方法は
、一般に該撥水剤と有機溶剤との混合溶液をイオン交換
膜に塗布するか、あるいはイオン交換膜の所望の部分を
該溶液に浸漬することにより付着させる方法が適宜採用
される。イオン交換膜の少なくとも表[111に存在さ
せる撥水剤の量は、該撥水剤の種類などにより一概に決
定できないが、一般に05〜3μ厚さ、或いはOO3〜
110011I/crIの範囲で用いるのが好ましい。
In the embodiment of the present invention, it is sufficient to pre-exist the water repellent agent as described above on at least the surface of the sealed portion of the ion exchange membrane, and then press-seal it with the force-sket. By doing so, a uniform coating of the water repellent agent is present on the surface of the ion exchange membrane, so that the effects of the present invention become extremely significant. However, if a water repellent is applied to the surface of the gasket, the above effect may not be achieved, so this is not a preferred embodiment. The method for making a water repellent agent present on the surface of an ion exchange membrane is generally to apply a mixed solution of the water repellent agent and an organic solvent to the ion exchange membrane, or to immerse a desired part of the ion exchange membrane in the solution. A method of attaching the material by attaching the material may be adopted as appropriate. The amount of water repellent present in at least the surface [111] of the ion exchange membrane cannot be determined unconditionally depending on the type of water repellent, etc., but it is generally 05 to 3μ thick, or 003 to 3μ thick.
It is preferable to use the range of 110011I/crI.

又、撥水剤はイオン交換膜面のガスケットと接する部に
は最低存在させることが必要であるが、塩化アルカリ金
属水溶液の電解においては、塩素又は塩素飽和塩水を含
む環境であるため長期間使用する場合には、電解面以外
の全てに撥水剤を存在させることが好ましい。
In addition, it is necessary to have a water repellent at least on the part of the ion exchange membrane surface that comes into contact with the gasket, but in the electrolysis of aqueous alkali metal chloride solutions, the environment contains chlorine or chlorine-saturated salt water, so it cannot be used for a long period of time. In this case, it is preferable that a water repellent agent be present on all surfaces other than the electrolytic surface.

本発明の対象となる電槽は、特に限定されない。例えば
食塩水その他の塩水溶液の濃縮又は脱塩に用ψられる電
槽等イオン交換膜を通じてイオンを移動し、分離する機
能を有する電槽であれはよく、アルカリ金属塩水溶液の
電解等に用いられる電解槽であってもよい。更に、拡散
透析の如く、外部から電流を供給しないタイプの電槽に
ついても有効である。また電槽の形式も任意であり、フ
ィルタープレス型、プール型・フィンガー型、その他い
かなる形態であってもよい。斐は、イオン交換膜とガス
ケットとを圧接することにより、その間から内容液或い
は気体が漏洩するのを防止する構造の電槽であればよい
。また使用されるイオン交換膜の種類や構造は、本発明
の主旨から限定されるものでないことも容易に理解され
るであろう。本発明は特に補強用の織布等の繊維を用い
表面に凹凸が存在する一般にシールし難いタイプのイオ
ン交換膜に対して有効な点が特徴とされる。イオン交換
膜を用いる技術のうち、特にアルカリ金属塩水溶液の電
解にあっては、イオン交換膜の耐久性の観、点から、一
般に四フッ化エチレンとペンダント基にイオン交換基を
有するパーフロロカーボンビニルエーテルとの共重合体
であり架橋構造を持たないのが特徴である。斯様な膜は
、シールの目的で強く締付けた場合、例えば30製以上
の如き高い面圧で締め付ける操作を繰り返し行えば、ク
リープ現象によりソール部分が薄化し弱くなるなどの不
都合を生ずるため、あまりに強圧することはできない。
The battery case to which the present invention is applied is not particularly limited. For example, a battery tank used for concentrating or desalting salt water or other salt solutions, etc.A battery tank that has the function of transferring and separating ions through an ion exchange membrane is suitable, and is also used for electrolysis of aqueous alkali metal salt solutions. It may also be an electrolytic cell. Furthermore, it is also effective for a type of battery that does not supply current from the outside, such as diffusion dialysis. Further, the format of the container is also arbitrary, and may be a filter press type, pool type/finger type, or any other type. The battery case may have a structure in which the ion exchange membrane and the gasket are brought into pressure contact with each other to prevent leakage of the liquid or gas contained therebetween. Furthermore, it will be easily understood that the type and structure of the ion exchange membrane used are not limited in view of the gist of the present invention. The present invention is characterized in that it is particularly effective for ion exchange membranes of the type that use reinforcing fibers such as woven fabrics and have uneven surfaces and are generally difficult to seal. Among technologies using ion exchange membranes, in particular for electrolysis of aqueous alkali metal salt solutions, from the viewpoint of durability of the ion exchange membrane, tetrafluoroethylene and perfluorocarbon vinyl ether having ion exchange groups as pendant groups are generally used. It is a copolymer with , and its characteristic is that it does not have a crosslinked structure. When such a membrane is tightened strongly for the purpose of sealing, for example, if the operation of tightening with high surface pressure is repeated with a product made of 30 or more, the sole part becomes thinner and weaker due to the creep phenomenon. You can't force it.

従って、どうしてもイオン交換膜のシール部分から液又
は気体の漏洩が生じやすい。本発明はかかる漏洩の防止
の課題を解決するのに極めて有効である。
Therefore, liquid or gas tends to leak from the sealed portion of the ion exchange membrane. The present invention is extremely effective in solving the problem of preventing such leakage.

本発明に適用されるガスケット(バッキング)は、特に
限定されない。公知のバッキング材。
The gasket (backing) applied to the present invention is not particularly limited. Known backing material.

例えば、天然ゴム、合成ゴム、軟質ポリ塩化ビニル、ポ
リエチレン、ホ′リプロピレン、エチレンーフロヒレン
共重合体樹脂、四フッ化エチレン、その他弾性又は可撓
性を有するものが使用できる。
For example, natural rubber, synthetic rubber, soft polyvinyl chloride, polyethylene, polypropylene, ethylene-fluoroethylene copolymer resin, tetrafluoroethylene, and other elastic or flexible materials can be used.

以下、本発明の詳細な説明するために実施例を示すが、
本発明は以下の実施例に限定されるものではない。
Examples will be shown below to explain the present invention in detail, but
The present invention is not limited to the following examples.

実施例1゜ 電極面積が110crnX40cmのアクリル樹脂製の
電解槽で、陽極に酸化ルテニウムと酸化チタンとの混合
物をコーティングしたチタンラス材。
Example 1 An electrolytic cell made of acrylic resin with an electrode area of 110 crn x 40 cm, the anode of which was coated with a mixture of ruthenium oxide and titanium oxide using a titanium lath material.

陰極は軟鉄メツシュを用いた試験電槽であって、カスケ
ラトとして陽極側に厚さ4 tnm + 陰極側に厚さ
2trmのクロロプレンゴムな用い、イオン交換膜とし
て、陰極側にカルボン酸基の薄層を有L−1他Uスルホ
ン酸基を有するパーフロロカーボン系陽イオン交換膜(
デュポン社製すフイオン415をベースとし、徳山曹達
株式会社にて、カルボン酸基を導入したもの)を用いた
。ガスケットとイオン交換膜との間は面圧15りとなる
よう締付けて用いる。
The cathode was a test cell using a soft iron mesh, with a 4 tnm thick chloroprene rubber on the anode side and a 2 trm thick chloroprene rubber on the cathode side as a caskerat, and a thin layer of carboxylic acid groups on the cathode side as an ion exchange membrane. Perfluorocarbon-based cation exchange membrane having L-1 and other U sulfonic acid groups (
A product based on Fuion 415 manufactured by DuPont, into which a carboxylic acid group was introduced by Tokuyama Soda Co., Ltd.) was used. The gasket and the ion exchange membrane are tightened so that the surface pressure is 15 degrees.

陽極室には4.5Nの食塩水を供給し、陰極室はl0I
Jの苛性ソーダを取得することくなし、陽極室100σ
水柱、陰極室は120cm水柱の条件下に2OA/dm
“ 80℃にて電解を行った。
4.5N saline solution is supplied to the anode chamber, and l0I is supplied to the cathode chamber.
To obtain J's caustic soda, anode chamber 100σ
Water column, cathode chamber is 2OA/d under the condition of 120cm water column.
“ Electrolysis was performed at 80°C.

イオン交換膜のガスケット当り面より外縁にフロロガー
ドBM−300を塗布、乾燥後用いた場合には30日間
の電解中、全く液漏はなかった。
When Fluoroguard BM-300 was applied to the outer edge of the ion exchange membrane from the gasket contacting surface and used after drying, no liquid leakage occurred during 30 days of electrolysis.

他方、上記の如き処理を行わなかった場合には、寅、解
3日目から、カスケラト部に食塩の結晶が生じ日毎に成
長して行くのが観察された。
On the other hand, when the above-mentioned treatment was not carried out, it was observed that salt crystals were formed in the casket part from the third day onward and grew day by day.

実施例2 イオン交換vc(実施例1.と同種のもの)を用いて、
たて130口、楢7σ、深さ100σで上面が開口する
よう箱状に加工した。(これを以後バッグと称する)。
Example 2 Using ion exchange VC (same type as in Example 1),
It was machined into a box shape with a length of 130 holes, an oak of 7σ, and a depth of 100σ with an open top. (This will be referred to as a bag from now on).

このバッグの上端部150Bの辺までシリコン系撥水剤
(トーレシリコン社製5D−800)を塗布する。乾燥
後、純水に浸漬し、バッグを伸ばして陽極に装着した。
A silicone water repellent (5D-800 manufactured by Toray Silicon Co., Ltd.) is applied up to the upper end 150B of this bag. After drying, the bag was immersed in pure water, stretched, and attached to the anode.

陽極なつつんだバッグを第1図に示すように電解槽に固
定した。即ち、陰8!i!1の間に挿入されたバッグ2
下部は、底板3かも起立したり一ド4が貫通し、@極5
に給πLすると共に陽極およびバッグが固定されている
。上部は電極枠体6とプラグ7間でパツキン8を介して
固定されている。その彼、押えボルト9により、40k
17cInのトルクで押え込んだ。
The bag containing the anode was fixed in the electrolytic cell as shown in FIG. That is, Yin 8! i! Bag 2 inserted between 1
At the bottom, the bottom plate 3 also stands up, and the lead 4 penetrates, @pole 5
The anode and the bag are fixed. The upper part is fixed between the electrode frame 6 and the plug 7 via a packing 8. He is 40k with the presser bolt 9
It was held down with a torque of 17 cIn.

上記電解槽の@極側に塩水を3101//lで供給し、
陰極室より30重景%の苛性ソーダを得るように電流密
度20 A / cLm +電槽温度80〜90℃の条
件で運転する。
Supplying salt water at 3101//l to the @ pole side of the electrolytic cell,
It is operated at a current density of 20 A/cLm and a cell temperature of 80 to 90°C so as to obtain 30% caustic soda from the cathode chamber.

通電後30日以上経過した時点で塩水のIJ−りは全く
見られなかった。
No IJ leakage of salt water was observed at least 30 days after energization.

実施例3 実施例2.における撥水剤をフッ素系撥水剤(ダイキン
社製、商品名:テックスガード)を用いた以外は実施例
2.と全く同様に行った。
Example 3 Example 2. Example 2 except that a fluorine-based water repellent (manufactured by Daikin Corporation, trade name: Tex Guard) was used as the water repellent in Example 2. I did exactly the same thing.

通電後30日以上経過した時点で塩水のリークは全く見
られなかった。また、実施例2,3゜いずれの場合もシ
ール部の撥水性は通電前と変りなかった。
No leakage of salt water was observed at least 30 days after energization. Further, in both Examples 2 and 3, the water repellency of the seal portion was the same as before energization.

比較例1゜ イオン交換膜に撥水剤を箪布せずに電槽に組み込んだ他
は実施例2.と同一条件で実施した。
Comparative Example 1 Example 2 except that the ion exchange membrane was incorporated into the battery case without applying a water repellent. It was conducted under the same conditions.

通電前の液を張り込んだ状態で塩水もれが発生し、通m
後も塩水リークは発生し、ソール部にMholの結晶が
生成してゆく。シーリングプラグの増結による効果も殆
んどなかった。30日間運転した時点でシール部に析出
した結晶が蓄積し、シール部を洗浄しなければ運転の継
続が困難となった。
Salt water leakage occurs when the liquid is filled before energization, and the
Even after this, salt water leakage continues to occur, and Mhol crystals continue to form in the sole. Adding more sealing plugs had little effect. After 30 days of operation, crystals deposited on the seal part accumulated, making it difficult to continue operation unless the seal part was cleaned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた電解槽の概要を示す図である。 図においてlは陰極、2はバッグ(イオン交換膜)、3
は底板、4はリード、5け陽極、6は電極枠体、7けプ
ラグ、8i;iパツキン。 9#i押へボルトである。 特許出願人 徳山曹達株式会社 図面の浄2)(内容に変更なし) 第1図 手続補正書 昭和59年 3月η日 特許庁長官 若 杉 和 夫 殿 1、J>件の表示 特願昭58−165156号2、発
明の名称 イオン交換膜とガスケットのシール方法3、
補正をする者 事件との関係 特許出願人 住 所 山口県徳山市御影町1番1号 4、補正命令の目付 昭和59作1月11目同 発送口
 昭和59年17+ 31 IJ5、補正の対象 図 
FIG. 1 is a diagram showing an outline of an electrolytic cell used in an example. In the figure, l is the cathode, 2 is the bag (ion exchange membrane), and 3 is the cathode.
is the bottom plate, 4 is the lead, 5 is the anode, 6 is the electrode frame, 7 is the plug, 8i; i is the packing. 9#i push bolt. Patent Applicant: Tokuyama Soda Co., Ltd. Drawings 2) (No change in content) Figure 1 Procedural Amendments March 1980 η Director-General of the Patent Office Kazuo Wakasugi 1, J> Indication of Patent Application 1982 -165156 No. 2, Title of Invention Method for sealing ion exchange membrane and gasket 3,
Relationship with the case of the person making the amendment Patent applicant address: 1-1-4, Mikage-cho, Tokuyama City, Yamaguchi Prefecture, weight of the amendment order: January 11, 1980, same shipping address: 17+31, 1980 IJ5, subject of amendment: Figure
surface

Claims (1)

【特許請求の範囲】 1)イオン交換膜とガスケットを抑圧シールするに際し
て、該イオン交換膜のシール表面に予め撥水剤を存在さ
せることを特徴とするイオン交換膜とガスナツトのシー
ル方法。 2)塩化アルカリ金属水溶液を電解する電解槽に用いる
特許請求の範題第1項記載の方法0
[Scope of Claims] 1) A method for sealing an ion exchange membrane and a gas nut, characterized in that a water repellent agent is preliminarily present on the sealing surface of the ion exchange membrane when sealing the ion exchange membrane and the gasket. 2) Method 0 according to claim 1 used in an electrolytic cell for electrolyzing an aqueous alkali metal chloride solution
JP58165156A 1983-09-09 1983-09-09 Method for sealing ion exchange membrane and gasket Pending JPS6059088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165156A JPS6059088A (en) 1983-09-09 1983-09-09 Method for sealing ion exchange membrane and gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165156A JPS6059088A (en) 1983-09-09 1983-09-09 Method for sealing ion exchange membrane and gasket

Publications (1)

Publication Number Publication Date
JPS6059088A true JPS6059088A (en) 1985-04-05

Family

ID=15806933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165156A Pending JPS6059088A (en) 1983-09-09 1983-09-09 Method for sealing ion exchange membrane and gasket

Country Status (1)

Country Link
JP (1) JPS6059088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235492A (en) * 1986-04-04 1987-10-15 Tokuyama Soda Co Ltd Method for fitting ion exchange membrane
JPH01129263U (en) * 1988-02-24 1989-09-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638484A (en) * 1979-09-04 1981-04-13 Toyo Soda Mfg Co Ltd Mounting method of ion exchange membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638484A (en) * 1979-09-04 1981-04-13 Toyo Soda Mfg Co Ltd Mounting method of ion exchange membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235492A (en) * 1986-04-04 1987-10-15 Tokuyama Soda Co Ltd Method for fitting ion exchange membrane
JPH01129263U (en) * 1988-02-24 1989-09-04

Similar Documents

Publication Publication Date Title
CA1072057A (en) Electrolytic cell membrane conditioning
US4892632A (en) Combination seal member and membrane holder for an electrolytic cell
US4898653A (en) Combination electrolysis cell seal member and membrane tentering means
JP2515142Y2 (en) Gasket for electrolytic cell
US4331521A (en) Novel electrolytic cell and method
US4571288A (en) Process for the electrolysis of aqueous alkali metal chloride solution
JPS60255989A (en) Terminal cell connector for multi-polar electrolytic cell
FI67730B (en) ELECTRICAL CATALOG I ELECTRICAL CELL WITH DIAPHRAGM ELLER MEMBRAN
JPS6059088A (en) Method for sealing ion exchange membrane and gasket
US4940518A (en) Combination seal member and membrane holder for a filter press type electrolytic cell
JPS60137936A (en) Manufacture of ion exchange membrane
EP0064324B1 (en) Cladding cathodes of electrolytic cell with diaphragm or membrane
US4361601A (en) Method of forming a permionic membrane
JP3144652B2 (en) Method for producing acid and alkali
CS269953B2 (en) Method of ion exchanger's membrane building-in into electrolyzer
JPS63227795A (en) Electrode support gasket of diaphragm electrolytic cell
US4428813A (en) Cladding cathodes of electrolytic cell with diaphragm or membrane
KR890001490B1 (en) Electrolytic cell and gasket for electrolytic cell
JPS59161436A (en) Adhesion of fluoropolymer material layer
JPS621236Y2 (en)
JP5833594B2 (en) Electrolytic cell assembly method and operation resumption method
JP3226306B2 (en) Production method of alkali hydroxide
JPH0217015Y2 (en)
JPS5831089A (en) Unipolar electrolytic cell
JPS6348954B2 (en)