JPS6059038B2 - Ammonium ion removal equipment in water - Google Patents

Ammonium ion removal equipment in water

Info

Publication number
JPS6059038B2
JPS6059038B2 JP52079905A JP7990577A JPS6059038B2 JP S6059038 B2 JPS6059038 B2 JP S6059038B2 JP 52079905 A JP52079905 A JP 52079905A JP 7990577 A JP7990577 A JP 7990577A JP S6059038 B2 JPS6059038 B2 JP S6059038B2
Authority
JP
Japan
Prior art keywords
exchange membrane
cation exchange
ammonium ions
adsorbent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52079905A
Other languages
Japanese (ja)
Other versions
JPS5415361A (en
Inventor
伊久夫 下河辺
昌治 久保田
史登 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52079905A priority Critical patent/JPS6059038B2/en
Publication of JPS5415361A publication Critical patent/JPS5415361A/en
Publication of JPS6059038B2 publication Critical patent/JPS6059038B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、水中のアンモニウムイオンの除去装置に関し
、さらに詳しくは上水、下水、廃水等の液中のアンモニ
ウムイオンを陽イオン交換機能を有する吸着剤によつて
除去し、同時に該吸着剤を同一装置内において再生する
ことができる水中のアンモニウムイオンの除去装置に関
するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an apparatus for removing ammonium ions in water, and more specifically, an apparatus for removing ammonium ions in liquids such as tap water, sewage, and wastewater using an adsorption device having a cation exchange function. This invention relates to a device for removing ammonium ions in water, which can remove ammonium ions from water using an adsorbent and simultaneously regenerate the adsorbent within the same device.

〔発明の背景〕[Background of the invention]

下水、廃水等の水中のアンモニウムイオン(以下JNH
4+ョと記すことがある)は、リンと同じく、水を富栄
養化ならしめ、水質を著しく低下させる。
Ammonium ions (hereinafter referred to as JNH) in water such as sewage and wastewater
(sometimes written as 4+)), like phosphorus, makes water eutrophic and significantly reduces water quality.

従つて、下水、廃水等の高度処理においてはその除去処
理が必要である。従来のアンモニウムイオンの除去法と
しては、(1)次亜塩素酸ソーダ(または塩素)による
不連続処理法、(2)アンモニアストリツピング法、(
3)イオン交換法、(4)ゼオライト吸着法、(5)生
物化学的方法などがあるが、以下に述べるように種々の
欠点がある。
Therefore, in advanced treatment of sewage, wastewater, etc., removal treatment is necessary. Conventional ammonium ion removal methods include (1) discontinuous treatment with sodium hypochlorite (or chlorine), (2) ammonia stripping, (
There are 3) ion exchange methods, (4) zeolite adsorption methods, and (5) biochemical methods, but these methods have various drawbacks as described below.

すなわち、次亜塩素酸ソーダ(または塩素)による処理
法てはNH4+を窒素ガスに分解してしまうのべ望まし
いものではあるが、塩素添加物を過剰にすると、クロラ
ミン系の悪臭成分を生成し、また添加量が不足すると、
NH4+の分解反応が進行しないので、その調整が厄介
である。
In other words, the treatment method using sodium hypochlorite (or chlorine) is desirable because it decomposes NH4+ into nitrogen gas, but if the chlorine additive is used in excess, it generates chloramine-based malodorous components. Also, if the amount added is insufficient,
Since the decomposition reaction of NH4+ does not proceed, its adjustment is troublesome.

アルカリ剤を添加し、空気を吹き込んで処理するストリ
ツピング法では、アンモニアのストリツピング効率が悪
く、またストリツピングされたアンモニアガスが大気中
へ放出されて二次公害を引き起こすという問題がある。
イオン交換法、ゼオライト吸着法ては吸着剤の再生が厄
介てあり、かつ再生液の処理等が問題になる。
In the stripping method, which involves adding an alkaline agent and blowing air into the treatment, there is a problem that the ammonia stripping efficiency is poor and that the stripped ammonia gas is released into the atmosphere, causing secondary pollution.
In the ion exchange method and the zeolite adsorption method, it is difficult to regenerate the adsorbent, and treatment of the regenerated liquid becomes a problem.

すなわち、再生を短時間で行なうことがで.きないので
、再生と吸着を交互に行なうために別に吸着塔を用意し
なければならない。また、これらの吸着剤は例えばナト
リウムイオン等を含む薬剤によつて再生し得るが、再生
液には濃縮されたアンモニウムイオンが含まれるため、
二次処理が・必要となる。またゼオライトは300〜7
00℃に加熱して再生することができるが、アンモニウ
ム成分はNH3またはNOxになるので、やはり後処理
が必要である。また吸着と脱着を同時に行なうことがで
きず、NH4+処理の連続化が困難であるなどの種々の
欠点がある。生物化学的理法は硝化菌によりNH4+を
硝化してNOxとし、さらに脱窒菌で窒素ガスに分解す
る方法である。しかし、反応速度が遅いため大きな反応
層を必要とするという欠点がある。〔発明の目的〕 本発明の目的は、下水、廃水等のNH,+を迅速かつ完
全に除去するのに好適な水中のアンモニウノムイオンの
除去装置を提供することにある。
In other words, playback can be performed in a short time. Therefore, a separate adsorption tower must be prepared to perform regeneration and adsorption alternately. In addition, these adsorbents can be regenerated by using chemicals containing sodium ions, etc., but since the regenerating solution contains concentrated ammonium ions,
Secondary treatment is required. Also, zeolite is 300-7
Although it can be regenerated by heating to 00° C., post-treatment is still required since the ammonium component becomes NH3 or NOx. Furthermore, there are various drawbacks such as the inability to perform adsorption and desorption at the same time, making it difficult to carry out continuous NH4+ treatment. The biochemical method uses nitrifying bacteria to nitrify NH4+ to NOx, and denitrifying bacteria to decompose it into nitrogen gas. However, it has the disadvantage that a large reaction layer is required due to the slow reaction rate. [Object of the Invention] An object of the present invention is to provide an apparatus for removing ammonium ions in water suitable for quickly and completely removing NH, + from sewage, wastewater, etc.

〔発明の概要〕上記目的を達するため、本発明の第1は
、陽イオン交換膜と陰イオン交換膜とによつてはさまれ
た空間に陽イオン交換機能を有する吸着剤が充填・され
た吸着塔と、該吸着塔の外側に陽イオン交換膜および陰
イオン交換膜にそれぞれ対応して設けられ、電圧が印加
される負および正の電極を有する各電極室と、前記吸着
塔に被処理液を流通させる手段と、前記電極室にアルカ
リ金属塩化物溶液・を流通させる手段と、当該電極室を
出たガスおよび液を混合して反応させる反応塔とを含む
ことを特徴とするものである。
[Summary of the Invention] In order to achieve the above object, the first aspect of the present invention is that an adsorbent having a cation exchange function is filled in a space sandwiched between a cation exchange membrane and an anion exchange membrane. an adsorption tower, each electrode chamber having negative and positive electrodes provided outside the adsorption tower corresponding to a cation exchange membrane and an anion exchange membrane and to which a voltage is applied; It is characterized by comprising means for circulating a liquid, means for distributing an alkali metal chloride solution into the electrode chamber, and a reaction tower for mixing and reacting the gas and liquid exiting the electrode chamber. be.

また、本発明の第2は、上記発明をさらに反応塔で得ら
れた反応液をもとの電極室へ戻す循環経路とを設けたこ
とを特徴とするものてある。
A second aspect of the present invention is that the above-described invention is further provided with a circulation path for returning the reaction liquid obtained in the reaction tower to the original electrode chamber.

上記本願第1の発明ては、水中アンモニウムイオンは陽
イオン交換機能を有する吸着剤に吸着されると同時に、
同一装置内でこのNH4+イオンを吸着した吸着剤を再
生することがてきる。また、脱着されたNH4+イオン
は反応塔内て無害な窒素ガスに変換される。また、上記
本願第2の発明では、反応塔内の反応液を電極室へ循環
しているために、NH4+の処理をクローズド化するこ
とができる。
In the first invention of the present application, ammonium ions in water are adsorbed on an adsorbent having a cation exchange function, and at the same time,
The adsorbent that has adsorbed this NH4+ ion can be regenerated within the same device. Furthermore, the desorbed NH4+ ions are converted into harmless nitrogen gas within the reaction tower. Further, in the second invention of the present application, since the reaction liquid in the reaction tower is circulated to the electrode chamber, the treatment of NH4+ can be closed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す実施例によりさらに詳細に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

図面は、本発明装置の一実施例を示す概略フローシート
である。この装置は、陰イオン交換膜2と陽イオン交換
膜3によつてはさまれた空間に陽イオン交換機能を有す
る吸着剤、典型的にはゼオライトまたは/および陽イオ
ン交換樹脂(以下、吸着剤と総称することがある)が充
填された吸着塔4と、該吸着塔4の両側に陰イオン交換
膜2および陽イオン交換膜3にそれぞれ対応して設けら
れた正および負の電極5および6を有する電極室5Aお
よび6Aと、前記吸着塔に被処理液1を流通させるため
の配管1Aおよび1Bと、電極室にアルカリ金属塩化物
溶液8を流通させるための配管8Aおよび8Bとから主
としてなる。アルカリ金属塩化物溶液の導入用の配管8
Aは、電棄室5Aおよび6Aにそれぞれ連結されている
。この実施例では、アルカリ金属塩化物溶液は電解処理
を受けて電極室の上部からさらに配管8Bを経て反応管
9に入るように構成され、ここで後述の反応によりアル
カリ金属塩化物が再生され、再び該塩化物溶液8のタン
クに戻され、再循環されるように構成されている。上記
反応塔9には生成した窒素ガス等のガス出口10が設け
られ、また循環系には反応後の循環液のPHを調整する
ためのPH調整液11の供給手段が設けられている。な
お、7は電源を示す。上記装置系統において、MVを含
有する被処理液1は陰イオン交換膜2および陽イオン交
換膜3を有する吸着塔4内の吸着剤により処理され、配
管1Bから清浄水として放流または再使用される。
The drawing is a schematic flow sheet showing one embodiment of the device of the present invention. This device uses an adsorbent having a cation exchange function, typically zeolite or/and a cation exchange resin (hereinafter referred to as an adsorbent), in a space sandwiched between an anion exchange membrane 2 and a cation exchange membrane 3. an adsorption tower 4 filled with adsorption towers (sometimes collectively referred to as It mainly consists of electrode chambers 5A and 6A having . Piping 8 for introducing alkali metal chloride solution
A is connected to discharge chambers 5A and 6A, respectively. In this embodiment, the alkali metal chloride solution is electrolytically treated and then flows from the upper part of the electrode chamber through the pipe 8B and into the reaction tube 9, where the alkali metal chloride is regenerated by the reaction described below. It is configured to be returned to the tank of the chloride solution 8 and recycled. The reaction tower 9 is provided with a gas outlet 10 for the generated nitrogen gas, and the circulation system is provided with means for supplying a pH adjustment liquid 11 for adjusting the pH of the circulating liquid after the reaction. Note that 7 indicates a power source. In the above system, a liquid to be treated 1 containing MV is treated by an adsorbent in an adsorption tower 4 having an anion exchange membrane 2 and a cation exchange membrane 3, and is discharged or reused as clean water from a pipe 1B. .

このときの反応式(1)を示す。式中、Zはゼオライト
、Rはイオン交換膜剤母体をそれぞれ意味する。
The reaction formula (1) at this time is shown. In the formula, Z means zeolite and R means an ion exchange membrane agent matrix.

一般に処理される廃水量Q(1)は、吸着剤量W(g)
,NH4+濃度C(Ppm),および吸着剤のMVの吸
着容量q(M9−NH4+/V)により下記(2)式に
より決定される。
Generally, the amount of wastewater to be treated Q(1) is the amount of adsorbent W(g)
, NH4+ concentration C (Ppm), and adsorption capacity q (M9-NH4+/V) of MV of the adsorbent according to the following equation (2).

したがつて従来の吸着操作においては、Q(ト))処理
した時点て吸着操作を一旦停止し、何らかの方法で吸着
剤を再生しなければならなかつた。
Therefore, in conventional adsorption operations, the adsorption operation had to be temporarily stopped after the Q(g) treatment, and the adsorbent had to be regenerated by some method.

(実際にはQより小なる(破過点)て吸着操作は停止し
なければならない。)本発明においては、吸着塔外の電
極5および6に直流電圧を印加し、電極室5Aおよび6
Aに塩化ナトリウム(NaCl),塩化カリウム(KC
り等のアルカリ金属塩化物溶液を循環液8して供給する
(Actually, the adsorption operation must be stopped when Q becomes smaller (breakthrough point).) In the present invention, a DC voltage is applied to electrodes 5 and 6 outside the adsorption tower, and
A contains sodium chloride (NaCl), potassium chloride (KC
A circulating liquid 8 is supplied with an alkali metal chloride solution such as chloride.

このとき陰イオン交換膜2側は陽極、陽イオン交換膜3
側は陰極となるように前記電圧が印加されらる。したが
つてこの装置は電気透析槽を形成し、吸着塔4内は電気
透析技術でいうところの脱塩室(または希釈室)となる
。したがつて被処理水1のNH4+が吸着塔4に流入す
ると、大部分のNH,+はイオン交換樹脂またはゼオラ
イトに吸着される。(一部は交換膜を通つて陰極に達す
る)が、吸着されたMVは電場の影響を受けて吸着剤か
ら脱離し、吸着剤が再生され、NH4+は陽イオン交換
膜3を通過し陰極6に達する。すなわち、電源7により
加電することにより被処理水1は浄化されるが、吸着塔
4内の吸着剤は破過されない。したがつて、再生のため
に吸着操作を停止することなく、吸着および脱着を同一
装置内で連続的に行なうことができる。このとき、陽極
5の表面では次の(3)式により塩素イオンは酸化され
、塩素ガスが発生する。一方、陰極6の表面では(4)
式に示すように0H−イオンが生成する。電極室5A内
のCl2と電極室6A内の0H−は、アルカリ金属塩化
物溶液とともに反応管9に送られる。同時に前述のNl
I4+も電極室6Aから反応管9に送られ、ここでNH
4+とCl2,OH−が混合され、次の(5)式および
(6)式に示されるように反応し、NH4+はN2ガス
となつて無害化される。発生したN2ガスはガス出口1
0から系外に放出される。以上のマスバランスを考える
と、系内から放出されるのはN2ガスのみであり、その
他はプロトン(Hつの発生を伴なつて液中に残るので、
結局、次式(7)のように整理され、液は必要に応じて
PH調整液11が添加され、アルカリ金属塩化物・溶液
(循環液8)として再使用することができる。
At this time, the anion exchange membrane 2 side is the anode, and the cation exchange membrane 3 side is the anode.
The voltage is applied so that the side becomes a cathode. This device therefore forms an electrodialysis cell, and the interior of the adsorption tower 4 becomes a desalination chamber (or dilution chamber) in the sense of electrodialysis technology. Therefore, when NH4+ in the water to be treated 1 flows into the adsorption tower 4, most of the NH,+ is adsorbed by the ion exchange resin or zeolite. However, the adsorbed MVs are desorbed from the adsorbent under the influence of the electric field, the adsorbent is regenerated, and NH4+ passes through the cation exchange membrane 3 and reaches the cathode 6. reach. That is, although the water to be treated 1 is purified by applying electricity from the power source 7, the adsorbent in the adsorption tower 4 is not penetrated. Therefore, adsorption and desorption can be performed continuously in the same device without stopping the adsorption operation for regeneration. At this time, chlorine ions are oxidized on the surface of the anode 5 according to the following equation (3), and chlorine gas is generated. On the other hand, on the surface of cathode 6 (4)
0H- ions are generated as shown in the formula. Cl2 in the electrode chamber 5A and OH- in the electrode chamber 6A are sent to the reaction tube 9 together with the alkali metal chloride solution. At the same time, the aforementioned Nl
I4+ is also sent from the electrode chamber 6A to the reaction tube 9, where NH
4+, Cl2, and OH- are mixed and react as shown in the following equations (5) and (6), and NH4+ becomes N2 gas and becomes harmless. The generated N2 gas is removed from gas outlet 1.
0 is released outside the system. Considering the above mass balance, only N2 gas is released from the system, and the rest remains in the liquid with the generation of protons (H).
In the end, it is arranged as shown in the following equation (7), and the pH adjustment liquid 11 is added to the liquid as necessary, so that it can be reused as an alkali metal chloride solution (circulating liquid 8).

以下、本発明の実施例および比較例を示す。Examples and comparative examples of the present invention are shown below.

実ノ施例1および比較例NH4+50ppmを含む廃液
を、天然ゼオライトを充填した高さ50CT!1,断面
積100cIt(1泗×100)の吸着塔内をSV=団
−1,液量251/hで通過させてNlil+の除去処
理を行なつた(比較例1)。
EXAMPLE 1 AND COMPARATIVE EXAMPLE A 50CT high vessel filled with natural zeolite was filled with waste liquid containing 50 ppm of NH4+! 1. Nlil+ was removed by passing through an adsorption tower with a cross-sectional area of 100 cIt (1 x 100) at SV=group-1 and liquid volume of 251/h (Comparative Example 1).

この方法では1ボの廃水を処理すると処理水にNH,+
が検出され、4時間の運転て吸着剤を再生する必要が生
じた。次に吸着剤として天然ゼオライト、アルカリ金属
塩化物溶液として塩化ナトリウム水溶液を用い、図面に
示した本発明装置による処理を行なつた。
In this method, when one bottle of wastewater is treated, the treated water contains NH, +
was detected, requiring a 4-hour run to regenerate the adsorbent. Next, using natural zeolite as an adsorbent and an aqueous sodium chloride solution as an alkali metal chloride solution, treatment was carried out using the apparatus of the present invention shown in the drawings.

吸着塔サイズ、廃水のNH4+濃度、SV等の条件は上
記と同じである。イオン交換膜としては通常の市販品を
、循環液としては2%NaCl液を用いて5e/hの流
量て循環させた。電極には両極とも白金板(10×50
cIt)を用い、27■(DC定電圧)を印加した。吸
着塔内に蒸留水を満した状態では電流は流れなかつたが
、NH4+50ppmを含む廃液を吸着塔内に供給する
と1〜詰の電流が流れた。このとき陽極表面からは、C
l2ガスの発生が認められ、さらに反応塔9内で気泡が
発生し、このガスはN2ガスであることが認められた。
さらに運転を続けると反応塔内のPHが1まで低下した
ので(初めのNaCl液のPHは6)、1%NaOH溶
液からなるPH調整液が添加され、PH6にして−循環
使用された。20時間の連続運転を行なつたが、処理水
からNHl+は検出されなかつた。
The conditions such as adsorption tower size, wastewater NH4+ concentration, and SV are the same as above. A common commercial product was used as the ion exchange membrane, and a 2% NaCl solution was used as the circulating fluid, which was circulated at a flow rate of 5 e/h. The electrodes are platinum plates (10 x 50
cIt), and 27cm (DC constant voltage) was applied. When the adsorption tower was filled with distilled water, no current flowed, but when a waste liquid containing 50 ppm of NH4+ was supplied into the adsorption tower, a current of 1 to 100% flowed. At this time, from the anode surface, C
Generation of l2 gas was observed, and bubbles were also generated within the reaction tower 9, and this gas was confirmed to be N2 gas.
As the operation continued, the pH inside the reaction column decreased to 1 (the initial pH of the NaCl solution was 6), so a PH adjustment solution consisting of a 1% NaOH solution was added to bring the pH to 6 and the reactor was recycled. After 20 hours of continuous operation, no NHL+ was detected in the treated water.

実施例2吸着塔のSVを1011−1とする以外は実施
例1と同じ条件で廃水を処理したところ、処理水から;
0.2ppm(7)NH4+が検出され、1時間後には
10ppmとなつた。
Example 2 Wastewater was treated under the same conditions as Example 1 except that the SV of the adsorption tower was 1011-1. From the treated water;
0.2 ppm (7) NH4+ was detected, which decreased to 10 ppm after 1 hour.

そこで廃水の供給をSV5h−1になるように低下した
ところ、1紛間の後に処理水からのMVの検出は認めら
れなかつた。本実施例の場合SVlOh−1では吸着帯
が長くなり、NH,+の漏出があつたものと考えられる
。また、この実験から吸着剤が破過しても、SVを低下
させることにより吸着剤の再生が行なわれることが明ら
かとなつた。実施例3 実施例1において天然ゼオライトの代りに市販の陽イオ
ン交換樹脂を用いても、ほぼ同様の結果が得られた。
Therefore, when the wastewater supply was lowered to SV5h-1, no MV was detected in the treated water after one sieve. In the case of this example, the adsorption zone became longer in SVlOh-1, and it is thought that NH,+ leaked out. Furthermore, this experiment revealed that even if the adsorbent breaks through, the adsorbent can be regenerated by lowering the SV. Example 3 Even when a commercially available cation exchange resin was used in place of the natural zeolite in Example 1, almost the same results were obtained.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、吸着と再生を同時に行なうこと
ができるので、従来のように運転を一旦停止して再生操
作を行なう必要がなく、連続的にかつ迅速に被処理液を
処理することができる。
As described above, according to the present invention, since adsorption and regeneration can be performed simultaneously, there is no need to temporarily stop the operation and perform the regeneration operation as in the conventional case, and the liquid to be treated can be processed continuously and quickly. Can be done.

このため従来のように再生のために吸着塔を並設する必
要がなく、装置を小型化することができる。また、再生
操作によつて生ずるNH4+は装置内で電解生成物と反
応さて無害の窒素ガスに変換することができるので、二
次公害を生ぜず、さらに処理液は循環使用することがで
きるので、装置系統全体のクローズが可能になるなど優
れた効果が得られる。
Therefore, there is no need to install adsorption towers in parallel for regeneration as in the conventional case, and the device can be downsized. In addition, NH4+ generated by the regeneration operation reacts with the electrolyzed product within the device and can be converted into harmless nitrogen gas, so no secondary pollution occurs, and the treated liquid can be recycled. Excellent effects such as the ability to close the entire device system can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施例を説明するための装置系統を
示すフローチャートである。 1・・・・・・被処理水、2・・・・・・陰イオン交換
膜、3・・・・・・陽イオン交換膜、4・・・・・・吸
着塔、5,6・・・・・・電極、8・・・・・循環液(
アルカリ金属塩化物溶液)、9・・・・・・反応管、1
1・・・・・・pに凋整液。
The drawing is a flowchart showing an apparatus system for explaining an embodiment of the present invention. 1... Water to be treated, 2... Anion exchange membrane, 3... Cation exchange membrane, 4... Adsorption tower, 5, 6... ... Electrode, 8 ... Circulating fluid (
alkali metal chloride solution), 9... reaction tube, 1
1... Add liquid to p.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜と陰イオン交換膜とによつてはさま
れた空間に陽イオン交換機能を有する吸着剤が充填され
た吸着塔と、該吸着塔の外側に陽イオン交換膜および陰
イオン交換膜にそれぞれ対応して設けられ、電圧が印加
される負および正の電極を有する各電極室と、前記吸着
塔に被処理液を流通させる手段と、前記電極室にアルカ
リ金属塩化物溶液を流通させる手段と、当該電極室を出
たガスおよび液を混合して反応させる反応塔とを含むこ
とを特徴とする水中のアンモニウムイオン除去装置。 2 特許請求の範囲第1項において、前記吸着剤がゼオ
ライトまたは/および陽イオン交換樹脂であることを特
徴とする水中のアンモニウムイオン除去装置。 3 特許請求の範囲第1項または第2項において、アル
カリ金属塩化物が塩化ナトリウムまたは塩化カリウムで
あることを特徴とする水中のアンモニウムイオン除去装
置。 4 陽イオン交換膜および陰イオン交換膜によつてはさ
まれた空間に陽イオン交換機能を有する吸着剤が充填さ
れた吸着塔と、該吸着塔の外側に陽イオン交換膜および
陰イオン交換膜にそれぞれ対応して設けられ、電圧が印
加される負および正の電極を有する各電極室と、前記吸
着塔に被処理液を流通させる手段と、前記電極室にアル
カリ金属塩化物溶液を流通させる手段と、当該両電極室
を出たガスおよび液を混合して反応させる反応塔と、該
反応塔で得られた反応液をもとの電極室へ戻す循環経路
とを含むことを特徴とする水中のアンモニウムイオンの
除去装置。 5 特許請求の範囲第4項において、前記吸着剤がゼオ
ライトまたは/および陽イオン交換樹脂であることを特
徴とする水中のアンモニウムイオンの除去装置。 6 特許請求の範囲第4項または第5項において、前記
反応液の循環経路にpH調整手段を設けたことを特徴と
する水中のアンモニウムイオンの除去装置。 7 特許請求の範囲第4項ないし第6項のいずれかにお
いて、アルカリ金属塩化合物が塩化ナトリウムまたは塩
化カリウムであることを特徴とする水中のアンモニウム
イオンの除去装置。
[Scope of Claims] 1. An adsorption tower in which a space sandwiched between a cation exchange membrane and an anion exchange membrane is filled with an adsorbent having a cation exchange function; Each electrode chamber has negative and positive electrodes provided corresponding to the exchange membrane and anion exchange membrane, respectively, to which a voltage is applied; means for circulating the liquid to be treated to the adsorption tower; An apparatus for removing ammonium ions in water, comprising means for circulating a metal chloride solution, and a reaction tower for mixing and reacting gas and liquid exiting the electrode chamber. 2. An apparatus for removing ammonium ions in water according to claim 1, wherein the adsorbent is a zeolite or/and a cation exchange resin. 3. The device for removing ammonium ions in water according to claim 1 or 2, wherein the alkali metal chloride is sodium chloride or potassium chloride. 4. An adsorption tower filled with an adsorbent having a cation exchange function in a space sandwiched between a cation exchange membrane and an anion exchange membrane, and a cation exchange membrane and an anion exchange membrane outside the adsorption tower. each electrode chamber having negative and positive electrodes provided correspondingly to each other and to which a voltage is applied; a means for circulating the liquid to be treated to the adsorption tower; and a means for circulating the alkali metal chloride solution to the electrode chamber. The method is characterized by comprising means, a reaction column for mixing and reacting the gas and liquid exiting both electrode chambers, and a circulation path for returning the reaction liquid obtained in the reaction column to the original electrode chamber. Equipment for removing ammonium ions in water. 5. An apparatus for removing ammonium ions in water according to claim 4, wherein the adsorbent is zeolite or/and a cation exchange resin. 6. The device for removing ammonium ions in water according to claim 4 or 5, characterized in that a pH adjusting means is provided in the circulation path of the reaction liquid. 7. The device for removing ammonium ions in water according to any one of claims 4 to 6, wherein the alkali metal salt compound is sodium chloride or potassium chloride.
JP52079905A 1977-07-06 1977-07-06 Ammonium ion removal equipment in water Expired JPS6059038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52079905A JPS6059038B2 (en) 1977-07-06 1977-07-06 Ammonium ion removal equipment in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52079905A JPS6059038B2 (en) 1977-07-06 1977-07-06 Ammonium ion removal equipment in water

Publications (2)

Publication Number Publication Date
JPS5415361A JPS5415361A (en) 1979-02-05
JPS6059038B2 true JPS6059038B2 (en) 1985-12-23

Family

ID=13703289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52079905A Expired JPS6059038B2 (en) 1977-07-06 1977-07-06 Ammonium ion removal equipment in water

Country Status (1)

Country Link
JP (1) JPS6059038B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3051456A1 (en) * 2017-03-01 2018-09-07 Axine Water Technologies Inc. Stack of electrochemical cells for wastewater treatment with isolated electrodes

Also Published As

Publication number Publication date
JPS5415361A (en) 1979-02-05

Similar Documents

Publication Publication Date Title
EP0200834B1 (en) Removal of ammonia from wastewater
JP4936505B2 (en) Method and apparatus for treating ammonia-containing water
JPH10174976A (en) Method for treating water containing nitrogen compound
US3766037A (en) Electrochemical processes for the removal of contaminants from aqueous media
JP2873578B1 (en) Method and apparatus for treating electroless nickel plating waste liquid
CN108439540B (en) A kind of reverse osmosis concentrated saline water treatment device of cold rolling wastewater and method
CN104812705A (en) Device for treating ammonia-containing wastewater, and method for treating ammonia-containing wastewater
KR102175423B1 (en) Wastewater treatment method and treatment device
JPS6059038B2 (en) Ammonium ion removal equipment in water
EP1480913B9 (en) Nitrate removal
JP4859201B2 (en) Water treatment method and system
JPH09122643A (en) Method for treating waste water from ion exchange resin regeneration and its apparatus
JPH06269776A (en) Device for removing ammoniacal nitrogen in water
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
RU2217382C1 (en) Method for removing oxygen from water
JPH08311676A (en) Method for removing dissolved hydrogen of electrolyzer and device therefor
JPS6146196B2 (en)
JP2005095741A (en) Water treatment method and water treatment apparatus
KR960009375B1 (en) Method for removing of ammonium ion from water
JP2012192341A (en) Treating method of fluoroborate-containing waste liquid
JPH06346299A (en) Method for recovering and reproducing tin plating solution
JPS6219916B2 (en)
Shuryberko et al. Study of the sorption and desorption processes of sulfites on the anion-exchange redoxites
JPS622875B2 (en)
JP4011197B2 (en) Method for treating ethanolamine-containing water