JPS6058426B2 - Low concentration gas radioactivity measuring device - Google Patents

Low concentration gas radioactivity measuring device

Info

Publication number
JPS6058426B2
JPS6058426B2 JP6672877A JP6672877A JPS6058426B2 JP S6058426 B2 JPS6058426 B2 JP S6058426B2 JP 6672877 A JP6672877 A JP 6672877A JP 6672877 A JP6672877 A JP 6672877A JP S6058426 B2 JPS6058426 B2 JP S6058426B2
Authority
JP
Japan
Prior art keywords
concentration
measuring device
gas
membrane concentrator
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6672877A
Other languages
Japanese (ja)
Other versions
JPS542180A (en
Inventor
克巳 久保
楠夫 芦部
秀明 日置
脩 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP6672877A priority Critical patent/JPS6058426B2/en
Publication of JPS542180A publication Critical patent/JPS542180A/en
Publication of JPS6058426B2 publication Critical patent/JPS6058426B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は気体放射能量を低濃度領域においてオンライ
ンで測定できるようにした測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device that can measure the amount of gaseous radioactivity online in a low concentration region.

置によりクリプトンガスを分離濃縮してそのガスをベー
タ線又はガンマ線検出器て測定する装置においては、サ
ンプリングガス中の放射能量が一定であつても放射線検
出器の計数は濃縮率の変動により変化する。
In equipment that separates and concentrates krypton gas and measures the gas using a beta-ray or gamma-ray detector, even if the amount of radioactivity in the sampled gas is constant, the counts on the radiation detector will change due to fluctuations in the concentration rate. .

そこで濃縮装置での濃縮率を常時監視し、その値で計数
値を補正する必要があつた。 しカルながら従来は濃縮
率をオンラインで正確に求める手段がなく、定期的な較
正に頼る方法しかなかつた。
Therefore, it was necessary to constantly monitor the concentration rate in the concentrator and correct the counted value based on that value. However, in the past, there was no way to accurately determine the concentration ratio online, and the only way to do so was to rely on periodic calibration.

本発明はかかる事情に鑑みてなされたのであつて、膜
濃縮装置における濃縮率は酸素濃度を演算器で処理して
得るようにし、その値て分離濃縮されたガスを放射線検
出器用計測装置で計測された値を補正することにより、
入口濃度を正確に表示できるようにするものである。
以下本発明の詳細をその一実施例の示される第1図によ
つて説明するに、大気をポンプ14を用いてサンプリン
グノズルより吸入し、大気中の酸素濃度を前段の酸素濃
度計3aによつて測定する。
The present invention has been made in view of the above circumstances, and the concentration ratio in the membrane concentrator is obtained by processing the oxygen concentration with a calculator, and the value is used to measure the separated and concentrated gas with a radiation detector measuring device. By correcting the calculated value,
This allows the inlet concentration to be displayed accurately.
The details of the present invention will be explained below with reference to FIG. 1 showing one embodiment of the present invention. Air is sucked in through a sampling nozzle using a pump 14, and the oxygen concentration in the air is measured by an oxygen concentration meter 3a in the previous stage. and measure.

サンプリングガスを分離濃縮する膜濃縮装置1の濃縮率
は、クリプトンガスの濃度を前段および後段で測定し、
その比で求めることができるが入口濃度が低濃度であれ
ば測定が不可能となる。
The concentration rate of the membrane concentrator 1 that separates and concentrates the sampling gas is determined by measuring the concentration of krypton gas in the front and rear stages,
It can be determined by the ratio, but if the inlet concentration is low, measurement is impossible.

しかし膜濃縮装置1の透過膜をたとえばシリコーンゴム
で構成すると、その透過係数をクリプトンガスに対して
〜8×10−6cc−c!rl/Cll・Sec・At
ml酸素に対して〜4×10−6cc●CTn/Crl
●Sec◆Atmにすることができ、クリプトンガスと
酸素を一定の割合で選択的に分離濃縮することができる
。そこで手軽に測定できる分離濃縮されたガス中の酸素
濃度を後段の酸素濃度計3bにより測定する。この分離
濃縮されたガス中の酸素濃度とクリプトンガス濃縮率と
の関係は、たとえば第2図に示すようにシリーズ接続さ
れた第1、第2セル1a,1bで膜濃縮装置1を構成し
て、第2セル1bの透過膜15を透過したガスをポンプ
14の前段に帰還させ、第1セル1aの透過膜16を透
過して分離濃縮されたガスを取り出すようにすると、1
気圧のサンプルガスをポンプ14で6気圧に加圧し、第
1セル1aのカット01を0.01、第2セル1bのカ
ットθ2を0.08とするとき、第3図に曲線Aで示す
関係が、また同一条件で第1セル1aのカットθ,を0
.02、第2セル1bのカットθ2を0.09にすると
き、曲線Bで示す関係が得られる。
However, if the permeable membrane of the membrane concentrator 1 is made of silicone rubber, for example, its permeability coefficient for krypton gas will be ~8 x 10-6 cc-c! rl/Cll・Sec・At
~4×10-6cc for ml oxygen CTn/Crl
●Sec◆Atm, it is possible to selectively separate and concentrate krypton gas and oxygen at a fixed ratio. Therefore, the oxygen concentration in the separated and concentrated gas, which can be easily measured, is measured using the oxygen concentration meter 3b in the subsequent stage. The relationship between the oxygen concentration in the separated and concentrated gas and the krypton gas concentration rate can be determined, for example, by configuring the membrane concentrator 1 with first and second cells 1a and 1b connected in series as shown in FIG. , if the gas that has permeated through the permeable membrane 15 of the second cell 1b is returned to the front stage of the pump 14, and the separated and concentrated gas that has permeated through the permeable membrane 16 of the first cell 1a is taken out, 1
When the sample gas at atmospheric pressure is pressurized to 6 atmospheres by the pump 14, the cut 01 of the first cell 1a is 0.01, and the cut θ2 of the second cell 1b is 0.08, the relationship shown by curve A in FIG. 3 is obtained. However, under the same conditions, the cut θ, of the first cell 1a is set to 0.
.. 02, when the cut θ2 of the second cell 1b is set to 0.09, the relationship shown by curve B is obtained.

そこでこの第3図の関係に基づいて第1の演算器12に
より酸素濃度計3bにより測定された分離濃縮されたガ
ス中の酸素濃度と酸素濃度計3aにより測定された酸素
濃度からクリプトンガスの濃縮率を算出する。一方、膜
濃縮装置1により分離濃縮されたクリプトンガスはベー
タ線を検出する放射線検出器2に導入され検出される。
Therefore, based on the relationship shown in FIG. 3, the first computing unit 12 calculates the concentration of krypton gas from the oxygen concentration in the separated and concentrated gas measured by the oxygen concentration meter 3b and the oxygen concentration measured by the oxygen concentration meter 3a. Calculate the rate. On the other hand, krypton gas separated and concentrated by the membrane concentrator 1 is introduced into a radiation detector 2 for detecting beta rays and detected.

この放射線検出器2に高圧電源4より前置増幅器5を介
して1500V程度の高電圧を印加して信号を得るよう
にする。そして前置増幅器5で電荷を電圧パルスに変換
し、この前置増幅器5に接続された本増幅器6て増幅す
る。増幅されたパルスを計測するために本増幅器6に接
続されたディスクリミネータ8で波形整形してノイズを
除去し、計数器10またはレートメータ9に導入して計
測する。
A high voltage of about 1500 V is applied to this radiation detector 2 from a high voltage power supply 4 via a preamplifier 5 to obtain a signal. The preamplifier 5 converts the charge into a voltage pulse, and the main amplifier 6 connected to the preamplifier 5 amplifies the voltage pulse. In order to measure the amplified pulses, a discriminator 8 connected to the main amplifier 6 shapes the waveform to remove noise, and the pulse is introduced into a counter 10 or a rate meter 9 for measurement.

第1図の演算器12、計数器10またはレートメータ9
に接続された第2の演算器11は、第1の演算器12で
求められた濃縮率と計数器10またはレートメータ9で
計測された計測値とを入口濃度が得られるように処理し
、表示器13に導入する。
Arithmetic unit 12, counter 10 or rate meter 9 in FIG.
A second computing unit 11 connected to the processing unit 11 processes the concentration rate determined by the first computing unit 12 and the measurement value measured by the counter 10 or the rate meter 9 so as to obtain the inlet concentration, It is introduced into the display device 13.

上記より明らかなように本発明によれば、サンプリング
ガスの濃度が変化し濃縮率が変動しても入口濃度を正確
にオンラインで求めることができるので、その実用価値
は大である。
As is clear from the above, according to the present invention, even if the concentration of the sampling gas changes and the concentration rate fluctuates, the inlet concentration can be accurately determined online, so it has great practical value.

なお、膜濃縮装置の分離濃縮条件が一定している場合は
前段の酸素濃度計で酸素濃度を測定するだけでクリプト
ンガスの濃縮率を算出することができる。
Note that if the separation and concentration conditions of the membrane concentrator are constant, the concentration rate of krypton gas can be calculated simply by measuring the oxygen concentration with the oxygen concentration meter in the previous stage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる低濃度気体放射能測定装置の構
成図、第2図は膜濃縮装置の一例を示す図、第3図は酸
素濃度とクリプトン濃縮率の関係を示す線図である。 1・・・膜濃縮装置、2・・・放射線検出器、3・・・
酸素濃度計、4・・・高圧電源、5,6・・・増幅器、
8・・・ディスクリミネータ、9・・ルートメータ、1
0・・・計数器、11・・・第1の演算器、12・・・
第2の演算器、13・・・表示器。
Fig. 1 is a configuration diagram of a low concentration gas radioactivity measuring device according to the present invention, Fig. 2 is a diagram showing an example of a membrane concentrator, and Fig. 3 is a diagram showing the relationship between oxygen concentration and krypton concentration rate. . 1... Membrane concentrator, 2... Radiation detector, 3...
Oxygen concentration meter, 4... High voltage power supply, 5, 6... Amplifier,
8... Discriminator, 9... Route meter, 1
0... Counter, 11... First computing unit, 12...
Second arithmetic unit, 13...display unit.

Claims (1)

【特許請求の範囲】[Claims] 1 供給されるサンプリングガスを分離濃縮する膜濃縮
装置と、この膜濃縮装置の前段または前段および後段に
て酸素濃度を測定する測定器と、上記膜濃縮装置により
分離濃縮されたガスの放射能を検出する放射線検出器と
、この放射線検出器で検出された放射能を計測する計測
装置と、上記測定器で測定された酸素濃度から上記膜濃
縮装置により分離濃縮されたガスの濃縮率を算出する第
1の演算器と、この第1の演算器で算出された濃縮率と
上記計測装置から得られる計測値とを入口濃度に補正す
る第2の演算器と、この第2の演算器から得られる補正
された数値を表示する表示装置とから構成されたことを
特徴とする低濃度気体放射能測定装置。
1. A membrane concentrator that separates and concentrates the supplied sampling gas, a measuring device that measures the oxygen concentration at the front stage of the membrane concentrator, or at the front and rear stages of the membrane concentrator, and a measuring device that measures the radioactivity of the gas separated and concentrated by the membrane concentrator. A radiation detector to detect, a measuring device to measure the radioactivity detected by the radiation detector, and a concentration ratio of the gas separated and concentrated by the membrane concentrator from the oxygen concentration measured by the measuring device. a first computing unit; a second computing unit that corrects the concentration ratio calculated by the first computing unit and the measured value obtained from the measuring device to the inlet concentration; 1. A low-concentration gas radioactivity measurement device comprising: a display device that displays corrected numerical values.
JP6672877A 1977-06-08 1977-06-08 Low concentration gas radioactivity measuring device Expired JPS6058426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6672877A JPS6058426B2 (en) 1977-06-08 1977-06-08 Low concentration gas radioactivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6672877A JPS6058426B2 (en) 1977-06-08 1977-06-08 Low concentration gas radioactivity measuring device

Publications (2)

Publication Number Publication Date
JPS542180A JPS542180A (en) 1979-01-09
JPS6058426B2 true JPS6058426B2 (en) 1985-12-19

Family

ID=13324233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6672877A Expired JPS6058426B2 (en) 1977-06-08 1977-06-08 Low concentration gas radioactivity measuring device

Country Status (1)

Country Link
JP (1) JPS6058426B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626190A (en) * 1985-07-03 1987-01-13 Nippon Atom Ind Group Co Ltd Radioactive iodine monitoring device
US10456302B2 (en) 2006-05-18 2019-10-29 Curt G. Joa, Inc. Methods and apparatus for application of nested zero waste ear to traveling web
US9908739B2 (en) 2012-04-24 2018-03-06 Curt G. Joa, Inc. Apparatus and method for applying parallel flared elastics to disposable products and disposable products containing parallel flared elastics

Also Published As

Publication number Publication date
JPS542180A (en) 1979-01-09

Similar Documents

Publication Publication Date Title
DE3752118D1 (en) Multi-channel gas analyzer
JPS58501310A (en) lung carbon dioxide gas analyzer
JP2018146319A5 (en)
US4355233A (en) Method and apparatus for negating measurement effects of interferent gases in non-dispersive infrared analyzers
JPS6058426B2 (en) Low concentration gas radioactivity measuring device
CN106442680B (en) A kind of portable electrochemical method dissolved oxygen meter calibration method
US4522204A (en) Respiratory gas concentration measuring apparatus
KR19990072147A (en) Method and apparatus for measuring ethanol vapor concentration
US3600134A (en) Method for the determination of alcohol and other oxidizable organic compounds in respired air and body fluids
JPS5723843A (en) Measuring apparatus of concentration of respiratory gas
CN108732176A (en) A kind of medical respiration carbon dioxide detecting system
EP0261452B1 (en) Gas analyzer
EP0015068B1 (en) Non-dispersive infrared analyzers
WO2023159729A1 (en) Novel multi-point monitoring device for oxygen concentration in life cabin
JP2004003900A (en) Apparatus for measuring concentration of suspended particulate matter
Gayle et al. A cigarette smoke monitoring device for continuous animal exposure systems
SU124554A1 (en) Method for stabilizing the sensitivity of a photocell amplifier scintillation counter system
JPS60113173A (en) Background subtracting method of pollutive radiation dode measuring device
Holub et al. Evaluation of MDA instant working level meters
KR820000744B1 (en) Method of measurement for process of assimilation
JPS5932731B2 (en) radiation analyzer
JPS63285485A (en) Detecting apparatus of radiation contamination density
JPH02118442A (en) Gas sensor device
JPS5746459A (en) Mass spectrometer
JPH0527020Y2 (en)