JPS6057954B2 - Primer-resistant, low hydrogen-based coated arc welding rod - Google Patents

Primer-resistant, low hydrogen-based coated arc welding rod

Info

Publication number
JPS6057954B2
JPS6057954B2 JP53113087A JP11308778A JPS6057954B2 JP S6057954 B2 JPS6057954 B2 JP S6057954B2 JP 53113087 A JP53113087 A JP 53113087A JP 11308778 A JP11308778 A JP 11308778A JP S6057954 B2 JPS6057954 B2 JP S6057954B2
Authority
JP
Japan
Prior art keywords
weight
carbon
primer
ferroalloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53113087A
Other languages
Japanese (ja)
Other versions
JPS5540064A (en
Inventor
功輝 佐藤
昇 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP53113087A priority Critical patent/JPS6057954B2/en
Publication of JPS5540064A publication Critical patent/JPS5540064A/en
Publication of JPS6057954B2 publication Critical patent/JPS6057954B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 この発明は、対プライマ耐気孔性、低水素系被覆アーク
溶接棒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a primer porosity-resistant, low hydrogen-based coated arc welding rod.

この発明はとくに有機質プライマーが塗布されたような
場合に従来のつき合わせ或いはすみ肉溶接では不可避と
された機孔発生の問題の解消に有利な溶接棒用低水素系
被覆剤組成の開発成果をこ)に提案するものである。従
来低水素系被覆アーク溶接棒による溶接が、その施工の
際すでに発銹したり、あるいはプライマーが塗布された
鋼板に適用された場合には、とくに突合せ又はすみ肉溶
接部に気孔(ビットおよびブローホール)が発生し易い
という問題があつた。
This invention is the result of the development of a low-hydrogen coating composition for welding rods that is advantageous in solving the problem of pitting that is inevitable in conventional butt or fillet welding, especially when an organic primer is applied. This is what we propose. When welding with conventional low-hydrogen coated arc welding rods is applied to steel plates that have already rusted or have been coated with a primer, pores (bits and blowholes) may occur, especially in butt or fillet welds. There was a problem that holes were likely to occur.

こ)にJlSでは溶接金属の拡散性水素量測定法を規定
し、この測定方法によつて求めたときの拡散性水素量が
10(ml/溶接金属100y)以下の溶接棒を低水素
系溶接棒と定め、これらの低水素系溶接棒を用いて高張
力鋼を溶接すれば、水素による脆化や割れ防止の為に極
めて有効であることは公知である。
For this reason, JLS stipulates a method for measuring the amount of diffusible hydrogen in weld metal, and welding rods with a diffusible hydrogen amount of 10 (ml/100 y of weld metal) or less when determined by this measurement method are classified as low hydrogen welding. It is well known that welding high-strength steel using these low-hydrogen welding rods is extremely effective in preventing hydrogen-induced embrittlement and cracking.

しかしながらこれらの溶接棒を用いてウォッシュプライ
マーやジンクリッチプライマー等を塗布した鋼材の下向
あるいは水平すみ肉溶接部材を手溶接や重力式溶接法で
溶接するとき、プライマーに起因する気孔が発生する為
、その欠陥部の補修溶接が必要であつたり、あるいは気
孔発生防止の為すみ肉溶接部材のプライマーを予め研摩
除去したりするなど多大の労力が払われている。
However, when using these welding rods to manually or gravity weld downward or horizontal fillet welding parts of steel coated with a wash primer or zinc-rich primer, pores may be generated due to the primer. A great deal of effort is required to repair the defective parts, or to polish and remove the primer of the fillet welding member in advance to prevent the formation of pores.

プライマー塗布鋼板のすみ肉溶接における気孔発生の原
因は、すみ肉溶接部材の空隙部に発生したプライマーの
燃焼ガスによつて生成する気孔の成長と、溶融メタルの
凝固の進みとが一致する為と解釈され、これと全く同じ
現象が突合せ溶接の場合に起ることがある。
The cause of pores during fillet welding of primer coated steel plates is that the growth of pores generated by the combustion gas of the primer generated in the voids of the fillet welded parts coincides with the progress of solidification of the molten metal. This very same phenomenon can occur in the case of butt welding.

これは突合せ開先面の雨濡れや、湿分によつて間隙部に
存在する水分の影響や、ないしはこれに基いて錆中の水
分が発生源となり、こうしたときには前述したプライマ
ー塗布鋼材の溶接の場合と同様な気孔を発生し、従つて
この発明ではその防止についても対プライマー.耐気孔
性に含めるものとする。発明者らはかような気孔発生の
防止対策に関してさきに特公昭55−24397号の公
報の発明を提案した。
This is caused by rain on the butt groove surfaces, the influence of moisture existing in the gap due to moisture, or moisture in rust based on this, and in such cases, welding of primer-coated steel materials as described above. The same pores as in the case of primers are generated, and therefore, the present invention is also concerned with prevention of these pores. It shall be included in porosity resistance. The inventors previously proposed the invention disclosed in Japanese Patent Publication No. 55-24397 as a measure to prevent the occurrence of such pores.

これは主に溶接金属の濡れ性を向上させる手段によるも
のでかなりの効果をみているが、しかしこの方法は被覆
剤を塩基性にする必要があるため必らずしも溶接作業性
において十分満足できる結果が得られない面を残してい
る。さて溶接部材にプライマーなどが存在しない場合に
おいても、拡散性水素量と気孔の発生は密接な関係があ
り、発明者らの検討により第1図〜第3図のようにまと
めることができる。
This method is mainly due to the method of improving the wettability of the weld metal, and has been shown to be quite effective. However, this method does not always satisfy welding workability because it requires the coating material to be basic. There are still some aspects where we are not getting the results we could have. Now, even in the case where a primer or the like is not present in the welding member, there is a close relationship between the amount of diffusible hydrogen and the generation of pores, and the inventors' studies can summarize the results as shown in FIGS. 1 to 3.

これらを要約すれば第3図に示したように、低水素量領
域では溶接金属中に気孔を発生するだけのガスを生じな
い為、結果的に凝固した溶接金属に気孔は発生しないこ
とがわかる。一方高水素量領域に於いては溶接金属の凝
固に伴つて過飽和に溶解した水素が溶融金属内に極めて
盛んに放出され、このため・に溶接溶融金属内のガス泡
は系外に放出され易くなり、結果的に凝固金属中の気孔
が消滅し、気孔は発生しない結果となる。この様な効果
を発明者らはしくプリング効果ョと呼んでいる。これに
対し、中間水素量領域では溶融金属内にガス泡を生成す
るに十分な水素溶解量が存在するし、又、かと云つて前
述のバブリング効果が表われるだけの十分な水素量は存
在しない為、溶接溶融金属の凝固と気孔の発生、生長の
タイミングが合致して、結果的に凝固した溶接金属に気
孔が発生するわけである。
To summarize these, as shown in Figure 3, in the low hydrogen content region, there is not enough gas to generate pores in the weld metal, so as a result, no pores are generated in the solidified weld metal. . On the other hand, in the high hydrogen content region, as the weld metal solidifies, supersaturated dissolved hydrogen is extremely actively released into the molten metal, and for this reason, gas bubbles in the weld metal are likely to be released outside the system. As a result, the pores in the solidified metal disappear and no pores are generated. The inventor calls this kind of effect the pulling effect. On the other hand, in the intermediate hydrogen content region, there is enough dissolved hydrogen to generate gas bubbles in the molten metal, and on the other hand, there is not enough hydrogen to cause the bubbling effect mentioned above. Therefore, the timing of the solidification of the weld molten metal and the generation and growth of pores coincide, and as a result, pores are generated in the solidified weld metal.

一般に軟鋼用溶接棒は非低水素型溶接棒である為、先述
の水素による1バブリング効果ョが強くてプライマーな
どの影響を受けず、プライマー塗布部材あるいは発錆材
に対しても鈍感で、気孔を発生することなく使用が可能
である。
In general, welding rods for mild steel are non-low hydrogen type welding rods, so they have a strong bubbling effect due to hydrogen and are not affected by primers, etc., and are insensitive to primer-coated parts or rusting materials, and have pores. It can be used without causing any problems.

ところて第3図の気孔が発生する中間水素量領域は溶接
条件(溶接電流、被覆剤の塩基度、母材化学成分等)お
よびプライマーの存在等で若干のずれがあることを発明
者らは確認している。
However, the inventors have discovered that the intermediate hydrogen content region where pores occur in Figure 3 varies slightly depending on welding conditions (welding current, basicity of coating material, chemical composition of base material, etc.) and the presence of primer. I've confirmed it.

プライマーの存在は概ね拡散性水素量が約3〜5m1上
昇する様な現象を示す。この現象を50HTJ11Mg
0一SiO2−TiO2系すみ肉溶接棒について述べる
ならば、プライマー塗布がない部材のすみ肉溶接におい
て拡散性水素量が約13m1を境にして低い側はビット
が発生し、それより高い場合にはビットが発生しない。
これに対し9.5m1の拡散性水素量をもつ溶接棒を用
い、プライマーを塗布しないすみ肉溶接部材の溶接にお
いては気孔が発生するのに対し、プライマーを膜厚20
〜30μmで塗布した部材のすみ溶接を行なつた場合に
は気光が発生しない結果となる。しかしながら、JIS
D5O26(50HT用すみ肉溶接棒)の規格において
は拡散性水素量が10m1以下であることが必要である
から、この条件を満足し、なおかつ対プライマー耐気孔
性を満足させながらプライマーのない状態で気孔を発生
することなく、作業性にすぐれ50HT用すみ肉溶接棒
は末だ開発されていない状態にあつた。この発明は従来
の対プライマー耐気孔性にすぐれた溶接棒が強度のバブ
リング効果によることに着目し、JISに規制される拡
散性水素量を10mL以下にした場合のバブリング効果
の不足を、まず溶接溶融金属に溶解中の炭素と酸素の反
応生成ガスCOの利用によつて補うことにより対プライ
マー耐気孔性を完全にし、また被覆剤中に窒化マンガン
や窒化モリブデンなどの窒素化合物を添加し、溶接溶融
金属中の窒素溶解量を増し、溶融金属の凝固に伴う窒素
溶解度の減少による過飽和窒素のガス放出によつてバブ
リング効果を増強し、耐気孔性を完全にした被覆溶接棒
の改良を提案するものてある。
The presence of the primer generally exhibits a phenomenon in which the amount of diffusible hydrogen increases by about 3 to 5 ml. 50HTJ11Mg
Regarding the 01 SiO2-TiO2 fillet welding rod, bits occur when the amount of diffusible hydrogen is lower than about 13 ml in fillet welding of parts without primer coating, and when it is higher than that, bits occur. Bit does not occur.
On the other hand, when fillet welding parts are welded using a welding rod with a diffusible hydrogen content of 9.5 m1 and no primer is applied, pores occur, whereas the primer is applied to a film thickness of 20 m1.
Corner welding of parts coated with a thickness of ~30 μm results in no light generation. However, JIS
The standard for D5O26 (fillet welding rod for 50HT) requires that the amount of diffusible hydrogen be 10ml or less, so this condition can be met, and the porosity resistance against primer can be satisfied without using a primer. Fillet welding rods for 50HT, which do not generate pores and have excellent workability, have not yet been developed. This invention focuses on the fact that conventional welding rods with excellent anti-primer pore resistance have a strong bubbling effect, and first solves the lack of bubbling effect when the amount of diffusible hydrogen regulated by JIS is 10 mL or less. Complete primer porosity resistance is achieved by supplementing the molten metal with CO, a gas produced by the reaction of carbon and oxygen, and by adding nitrogen compounds such as manganese nitride and molybdenum nitride to the coating material, welding. We propose an improved coated welding rod that increases the amount of nitrogen dissolved in the molten metal and enhances the bubbling effect by releasing supersaturated nitrogen gas due to the decrease in nitrogen solubility as the molten metal solidifies, making it completely resistant to pores. There are things.

前述の如く拡散性水素量とビット発生の関係は各種の溶
接条件で影響を受けるが、発明者らは第4図の如く溶接
金属中の脱酸成分によつて気孔が発生する限界拡散性水
素量が大きく変化することを見出した。
As mentioned above, the relationship between the amount of diffusible hydrogen and the generation of bits is affected by various welding conditions, but as shown in Figure 4, the inventors have determined the limit diffusibility of hydrogen, where pores are generated by deoxidizing components in the weld metal. It was found that the amount varies greatly.

すなわち全溶接金属中のマンガン含有量が1.0重量%
の場合はその限界拡散性水素量が14m1であるのに対
し、0.35重量%では約10m1にまで減少する。
That is, the manganese content in the total weld metal is 1.0% by weight.
In the case of , the limit diffusible hydrogen amount is 14 ml, whereas at 0.35% by weight, it decreases to about 10 ml.

こ)でJISD5O26の拡散性水素量の規格値は10
m1以下であるから溶接金属中のマンガン量を0.35
重量%以下とすればほぼ満足できるが、拡散性水素量の
測定値のバラツキを考慮すると十分満足できる値ではな
い。溶接金属中の溶解酸素濃度は溶接溶融金属中の脱酸
剤濃度に逆比例するが、被覆剤中に赤鉄鉱、磁鉄鉱、イ
ルミナイトあるいは二酸化マンガンなどの酸化物を添加
し、溶鋼中の酸素濃度を高めることはCO反応を積極的
に起させるのに効果的であるが、下記の如く被覆剤中に
炭素を添加する場合は必らずしも必要としない。
In this case, the standard value for the amount of diffusible hydrogen according to JISD5O26 is 10.
Since it is less than m1, the amount of manganese in the weld metal is set to 0.35.
Although it is almost satisfactory if it is less than % by weight, it is not a fully satisfactory value when considering the dispersion of the measured value of the amount of diffusible hydrogen. The dissolved oxygen concentration in the weld metal is inversely proportional to the deoxidizing agent concentration in the weld molten metal, but by adding oxides such as hematite, magnetite, illuminite, or manganese dioxide to the coating material, the oxygen concentration in the molten steel can be reduced. Although increasing the CO reaction is effective in actively causing the CO reaction, it is not always necessary when carbon is added to the coating material as described below.

すなわちバブリング作用を高める為被覆剤中にグラファ
イト、活性炭あるいは炭素を含有する合金、例えば、中
、高炭フェロマンガン(JISG23Ol)、高炭フェ
ロモリブデン(JISG23O7)あるいは鋳鉄、銑鉄
などを添加するのも効果的である。
In other words, to enhance the bubbling effect, it is also effective to add graphite, activated carbon, or alloys containing carbon, such as medium- and high-carbon ferromanganese (JISG23Ol), high-carbon ferromolybdenum (JISG23O7), cast iron, and pig iron to the coating material. It is true.

被覆剤への炭素の添加量は本来最終的な溶接金属中炭素
および酸素濃度で規制すべきであり、溶接金属中炭素量
は0.04〜0.1鍾量%以下とするのが良い。
The amount of carbon added to the coating material should be regulated by the final carbon and oxygen concentrations in the weld metal, and the amount of carbon in the weld metal is preferably 0.04 to 0.1 slag weight % or less.

溶接金属中炭素が0.04重量%未満ではCO反応とし
てバブリング効果を起すだけの十分な炭素量ではなく、
0.1踵量%を越えれば、溶接金属の硬さを増し、衝撃
性能を著しく劣化させるので良くない。
If the carbon content in the weld metal is less than 0.04% by weight, the amount of carbon is not sufficient to cause a bubbling effect as a CO reaction,
If it exceeds 0.1% heel weight, it is not good because it increases the hardness of the weld metal and significantly deteriorates the impact performance.

ここで発明者らは被覆剤への炭素の添加がグラファイト
あるいは活性炭の如く単体および高炭フェロマンガン、
中炭フェロマンガンなどの合金として添加してもその効
果には全く差がなく、これらの炭素量の合計添加量とし
て考えれば良いことを確認した。
Here, the inventors have discovered that the addition of carbon to the coating material is simple, such as graphite or activated carbon, as well as high carbon ferromanganese,
It was confirmed that there is no difference in the effect even if it is added as an alloy such as medium-charcoal ferromanganese, and that it is sufficient to consider it as the total addition amount of these carbon amounts.

被覆剤への炭素量添加は前述の如く、最終的には溶接金
属中の炭素含有量で管理されねばならないが、これを被
覆剤への添加量に換算すればこれらの炭素量合計が、0
.14重量%から0.85重量%の範囲としなければな
らないことを確認した。
As mentioned above, the amount of carbon added to the coating material must ultimately be controlled by the carbon content in the weld metal, but if this is converted to the amount added to the coating material, the total amount of carbon will be 0.
.. It was confirmed that the content should be in the range of 14% by weight to 0.85% by weight.

溶接溶融金属の酸素溶解量は被覆剤中の前述の酸化物に
よつて影響を受けるが、最終的には溶接金属の脱酸成分
であるマンガン含有量によつて決定される。従つて全溶
接金属中のマンガン含有量は0.35重量%以下とする
ことが必要である。しかしながらマンガン含有量が0.
1呼量%以下では脱酸能力が余りにも不足し、溶接金属
のインクルージヨンが限界以上に増し、溶接金属は不清
浄となり、衝撃性能や延性を著しく障ねるので良くない
。したがつて水素量が10m1以下であることにより耐
気孔性を満足するため、被覆剤へのMn添加量を前述の
如く、最終的には全溶接金属中のMn含有量で管理すべ
きところ、下記の如く酸化剤としての鉄酸化物等の添加
も考慮して種々検討実験し・た結果、Fe−Mnなど、
Mnを含有する合金鉄類の配合によるMn含有量は、1
.9〜6.踵量%の範囲とすることが必要である。
The amount of oxygen dissolved in the weld metal is influenced by the above-mentioned oxides in the coating material, but is ultimately determined by the manganese content, which is a deoxidizing component of the weld metal. Therefore, it is necessary that the manganese content in the total weld metal be 0.35% by weight or less. However, the manganese content is 0.
If it is less than 1% by weight, the deoxidizing ability is too insufficient, inclusions in the weld metal increase beyond the limit, the weld metal becomes unclean, and impact performance and ductility are significantly impaired, which is not good. Therefore, in order to satisfy the porosity resistance by setting the amount of hydrogen to 10 ml or less, the amount of Mn added to the coating material should be ultimately controlled by the Mn content in the total weld metal, as described above. As a result of various studies and experiments considering the addition of iron oxides as oxidizing agents as shown below, we found that Fe-Mn, etc.
The Mn content due to the combination of Mn-containing ferroalloys is 1
.. 9-6. It is necessary to keep it within the range of heel weight%.

また酸化剤としての鉄酸化物の被覆剤への添加量は、上
述の如く溶接金属中の脱酸剤としてのマンガン含有量を
考慮しノたものでなければならないが、赤鉄鉱、磁鉄鉱
あるいはミルスケールのいずれか一つあるいはそれらの
二つあるいは三者の合計が8重量%以下、又、イルミナ
イトの場合は14重量%以下とするのが良い。夫々これ
らの限界添加量を越してもそれに見合うだけの脱酸剤を
添加すればこの発明の効果を何ら損ねるものではないが
、それだけ価格的に高価な脱酸金属を多量に添加すると
になり、経済的に割高となるので、上記限界内とするの
が良い。更に窒素については第5図に示す如く、溶接金
属中に溶解した窒素は水素とほぼ同じ挙動を示すので、
前述の水素同様のバブリング効果が期待できる。
In addition, the amount of iron oxide added to the coating material as an oxidizing agent must be determined by taking into account the manganese content as a deoxidizing agent in the weld metal as described above. It is preferable that any one scale, or the sum of two or three of them, be 8% by weight or less, and in the case of illuminite, 14% by weight or less. Even if these limits are exceeded, the effect of the present invention will not be diminished if an appropriate amount of deoxidizing agent is added, but this means that a large amount of the expensive deoxidizing metal will be added. Since it is economically expensive, it is better to keep it within the above limits. Furthermore, regarding nitrogen, as shown in Figure 5, nitrogen dissolved in weld metal exhibits almost the same behavior as hydrogen.
A bubbling effect similar to that of hydrogen described above can be expected.

しかしながら溶接金属中の窒素は種々の金属窒化物をつ
くり、脆化させるので、その残存量は制限されねばなら
ない。通常のすみ肉溶接棒の溶接金属中の窒素量は0.
009鍾量%以下であるが、この発明では被覆剤中に窒
素化合物、例えばフェロ窒化マンガン(窒素含有量4〜
6重量%)あるいはフェロ窒化クロム(窒素含有量2〜
4重量%)を添加し、溶接溶融金属の窒素溶解を高め、
窒素によるバブリング効果を起させることを見出した。
However, since nitrogen in the weld metal forms various metal nitrides and causes embrittlement, its remaining amount must be limited. The amount of nitrogen in the weld metal of a normal fillet welding rod is 0.
However, in the present invention, nitrogen compounds such as ferromanganese nitride (nitrogen content of 4 to 4%) are contained in the coating material.
6% by weight) or ferrochromium nitride (nitrogen content 2~
4% by weight) to increase nitrogen dissolution in welding molten metal,
It was discovered that nitrogen causes a bubbling effect.

しかしながら、窒素は前述の如く脆化現象を伴うもので
、凝固した溶接金属中の窒素含有量は0.022重量%
以下に制限されねばならず、そのためフェロ窒化マンガ
ンについては、3重量%以下、フェロ窒化クロムについ
ては4重量%以下とする。以下他の被覆剤組成の限定理
由について述べる。
However, as mentioned above, nitrogen causes embrittlement, and the nitrogen content in the solidified weld metal is 0.022% by weight.
For this reason, ferromanganese nitride should be limited to 3% by weight or less, and ferrochromium nitride should be limited to 4% by weight or less. Other reasons for limiting the coating composition will be described below.

MgCO3はスラグの粘性を調整し、又、分解ガスによ
る大気からのシールド効果がある。
MgCO3 adjusts the viscosity of the slag and also has a shielding effect from the atmosphere caused by decomposed gas.

8重量%未満ではスラグの粘性が高すぎ、又、シールド
効果が薄れ溶接金属のビード形状あるいは機械的性能を
損ねるのて良くない。
If it is less than 8% by weight, the viscosity of the slag will be too high, and the shielding effect will be weakened, impairing the bead shape or mechanical performance of the weld metal, which is not good.

2踵量%を越えれば.スラグ流動が出すぎビード形状を
悪くするので良くない。
If it exceeds 2% heel volume. This is not good because too much slag flow will cause the bead shape to deteriorate.

MgOは本来MgCO3と同じくスラグ粘性調整用とし
て用いられるので、MgOの添加量はMgCO3換算に
して上記の範囲内に制限する必要がある。
Since MgO is originally used for adjusting slag viscosity like MgCO3, the amount of MgO added needs to be limited within the above range in terms of MgCO3.

TiO2+ZrO2は造滓剤としての効果があり、スラ
グ粘性の大部分を支配する。14重量%未満ではスラグ
量が不足し、35重量%を越えればスラグ粘性が増しす
ぎ、溶接中溶接棒端にからみつきアークが不安定になり
、ビード形状を損ねるので良くない。
TiO2+ZrO2 has an effect as a slag forming agent and controls most of the slag viscosity. If it is less than 14% by weight, the amount of slag will be insufficient, and if it exceeds 35% by weight, the slag viscosity will increase too much, and it will become entangled with the end of the welding rod during welding, making the arc unstable and damaging the bead shape, which is not good.

SiO2はTiO2などと同様造滓剤およびスラグ粘性
増加としての働きがある。
Like TiO2, SiO2 acts as a sludge forming agent and increases slag viscosity.

5重量%未満ではスラグ量および粘性が不足し、ビード
形状が悪化する。
If it is less than 5% by weight, the slag amount and viscosity will be insufficient and the bead shape will deteriorate.

又、3鍾量%を越えればスラグ粘性が著しく増しすぎ、
溶接棒にスラグがからみつき、アークが不安定になり、
ビード形状を損ねるので良くない。鉄粉はとくにすみ肉
溶接棒の場合に溶接能率向上の為に在来の慣用に従い添
加することができる。
Also, if the slag weight exceeds 3%, the slag viscosity will increase significantly,
Slag gets entangled in the welding rod, making the arc unstable.
This is not good as it will damage the bead shape. Iron powder can be added according to conventional practice to improve welding efficiency, especially in the case of fillet welding rods.

しかし45重量%を越えればスラグ量が不足し、ビード
形状を損ねるので良くない。タルク、マイカ、カオリン
、セリサイト、白土は夫々結晶水を含む鉱物として溶接
金属中の拡散性水素量に直接に関係を及ぼす点で同効で
あり、これらの一種または一種以上が合計で3重量%を
越えれば、拡散性水素量が10m1を越えてJISD5
O26の規格値を満足できなくなる。
However, if it exceeds 45% by weight, the amount of slag will be insufficient and the bead shape will be impaired, which is not good. Talc, mica, kaolin, sericite, and clay each have the same effect as minerals containing crystalline water in that they have a direct relationship to the amount of diffusible hydrogen in the weld metal, and one or more of these minerals have the same effect in that they have a total weight of 3. %, the amount of diffusible hydrogen exceeds 10ml and JISD5
It becomes impossible to satisfy the standard value of O26.

また0.4重量%未満では溶解水素量が余りにも少なく
、バブリング作用が不足し、気孔を発生するに至る。モ
リブデンおよびニッケルは溶接金属中のマンガン含有量
減少に伴なう溶接金属の引張強さの減少の補正および衝
撃性能改善の為に添加する。モリブデンおよびニッケル
の添加量は夫々の添加量との関連で考慮されねばならな
い。こ)に被覆剤へのモリブデンおよびニッケルの添加
はMO+青N1量%)で示されるMO当量で、3.踵量
%以下とくに、0.7〜3.呼量%の範囲とするのが良
く3.唾量%を越えれば引張強さが出すぎ良くない。
Furthermore, if it is less than 0.4% by weight, the amount of dissolved hydrogen is too small, resulting in insufficient bubbling action and the formation of pores. Molybdenum and nickel are added to compensate for the decrease in tensile strength of the weld metal due to the decrease in manganese content in the weld metal and to improve impact performance. The amounts of molybdenum and nickel added must be considered in relation to their respective amounts. In this case, the addition of molybdenum and nickel to the coating material is MO equivalent expressed as MO+blue N1%), and 3. Heel weight% or less, especially 0.7 to 3. It is best to set it within the range of call volume %3. If the saliva content % is exceeded, the tensile strength is too high, which is not good.

以下表1に記した実施例について述べる。The examples shown in Table 1 will be described below.

NO.lは従来のMgO−SiO2−TiO2系すみ肉
溶接棒(JISD5OOO及びD5OO3)を示したも
ので、拡散性水素量が高く10m1を越える。
No. 1 indicates a conventional MgO-SiO2-TiO2 fillet welding rod (JISD5OOO and D5OO3), which has a high amount of diffusible hydrogen exceeding 10 ml.

NO.2は従来のMgO−SiO2−TiO2系低水素
系すみ肉溶接棒(JISD5O26)を示したものであ
るが、対プライマー耐気孔性が悪い。
No. 2 shows a conventional MgO-SiO2-TiO2 based low hydrogen fillet welding rod (JISD5O26), which has poor pore resistance to primer.

NO.3はこの発明に関連した比較例であり、被覆剤中
の結晶水量が不足し、バブリング効果が十分でなく対プ
ライマー耐気孔性が悪い。
No. No. 3 is a comparative example related to the present invention, in which the amount of crystallization water in the coating material was insufficient, the bubbling effect was insufficient, and the pore resistance to the primer was poor.

NO.4〜7はこの発明の適合例であり、被覆剤中の結
晶水を含む鉱物(タルク、マイカ、カオリン)の添加量
を変化させているが、これらの場合拡散性水素量、耐気
孔性は勿論、すべての点で満足てきる結果が得られる。
No. Examples 4 to 7 are adaptations of the present invention, in which the amount of minerals containing water of crystallization (talc, mica, kaolin) added to the coating material is varied, but in these cases, the amount of diffusible hydrogen and the porosity resistance are Of course, satisfactory results can be obtained in all respects.

NO.8は上述の結晶水鉱物の添加量が多すぎ、拡散性
水素量が10m1を越えJIS規格を満足できない比較
例てある。NO.9〜11は被覆剤中に酸素供給剤とし
ての鉄酸化物を添加したこの発明の適合例であり、この
添加量に見合う脱酸金属の添加によつてこの発明の主旨
に沿つて満足な結果が得られる。
No. No. 8 is a comparative example in which the amount of the above-mentioned crystalline water mineral added is too large, and the amount of diffusible hydrogen exceeds 10 ml, making it impossible to satisfy the JIS standard. No. 9 to 11 are examples of the present invention in which iron oxide as an oxygen supplying agent is added to the coating material, and by adding a deoxidizing metal corresponding to the amount added, satisfactory results are obtained in accordance with the gist of the present invention. is obtained.

NO.l2はこの発明の別な具体例であり、被覆剤中グ
ラファイトを用いず、炭素源を高炭フェロマンガンから
だけとした例を示す。
No. 12 is another specific example of the present invention, in which graphite was not used in the coating and the carbon source was only high carbon ferromanganese.

NOl3〜15はバブリング効果をとくに被覆剤中に添
加した窒化物(フェロ窒化マンガン、窒素5.1、マン
ガン70重量%)で促進する例を示した。
NO13-15 showed an example in which the bubbling effect was particularly promoted by nitride (ferromanganese nitride, nitrogen 5.1, manganese 70% by weight) added to the coating material.

NOl3,l4はこの発明範囲内であり、全ての面で満
足出来る結果が得られる。しかし、NO.l5では窒化
物の添加量が多く、溶接金属中の窒素濃度が限界値を越
え衝撃性能が著しく悪化する。NO.l6,l7はバブ
リング効果をCO反応ガスと窒素による複合効果を示し
たこの発明の例である。
NOl3 and l4 are within the range of this invention, and satisfactory results can be obtained in all respects. However, NO. In l5, the amount of nitride added is large, the nitrogen concentration in the weld metal exceeds the limit value, and the impact performance deteriorates significantly. No. 16 and 17 are examples of the present invention in which the bubbling effect is a combined effect of CO reaction gas and nitrogen.

両者の制限範囲内での添加量では問題なく良好であるこ
とを示す。NO.l8,l9はこの発明の例として、窒
化クロムを窒素源として用いた場合の例であり、全ての
点で満足出来る結果が得られた。
It is shown that addition amounts within the limits of both are satisfactory without any problems. No. 18 and 19 are examples of the present invention in which chromium nitride was used as the nitrogen source, and satisfactory results were obtained in all respects.

NO.2O,2lは被覆剤中の炭素添加量を少なくした
場合の比較例であり、バブリング効果が薄く耐気孔性が
劣る。
No. 2O, 2L is a comparative example in which the amount of carbon added in the coating material is reduced, and the bubbling effect is weak and the pore resistance is poor.

NO.22は被覆剤中にモリブデンを添加しない場合の
例であり、溶接金属の引張強度がやや不足するがその必
要のない用途には適合する。
No. No. 22 is an example in which molybdenum is not added to the coating material, and although the tensile strength of the weld metal is slightly insufficient, it is suitable for applications where this is not necessary.

低水素系溶接棒としてJIS規格を満足しながら、対プ
ライマー耐気孔性にすぐれた性質を示すこの発明溶接棒
を用いることによつて、気孔発生部の補修はもとより不
要で、気孔防止の為のプライマー除去の如き手間が不必
要となるなどの点で大幅な能率向上が期待できる。
By using the welding rod of this invention, which satisfies the JIS standard as a low-hydrogen welding rod and exhibits excellent porosity resistance against primers, there is no need to repair the pore-generated area, and it can be used to prevent pores. Significant efficiency improvements can be expected in that time and effort such as primer removal is no longer necessary.

なおこの発明被覆剤中に適度のCu,Ni,Crを添加
することによつて耐候性あるいは耐蝕性にすぐれた同主
旨のすみ肉溶接棒が出来ることも確認されている。
It has also been confirmed that by adding appropriate amounts of Cu, Ni, and Cr to the coating material of this invention, a fillet welding rod having the same principle and excellent weather resistance or corrosion resistance can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆剤中の炭酸塩(CO2換算)と結晶水含有
量と気孔発生率との関係を示した図表、第2図は第1図
の試験結果を模式的に示した図表、第3図は第1,2図
の結果を溶接金属中の拡散性水素量と気孔発生数につい
て整理した図表、第4図は全溶接金属中のマンガン含有
量を変化させたノ場合に気孔が発生しはじめる拡散性水
素量の限界値の変化について示した図表、第5図は純鉄
に対する水素及び窒素溶解度を示したグラフである。
Figure 1 is a diagram showing the relationship between carbonate (CO2 equivalent) in the coating material, crystal water content, and porosity generation rate; Figure 2 is a diagram schematically showing the test results in Figure 1; Figure 3 is a chart that summarizes the results of Figures 1 and 2 in terms of the amount of diffusible hydrogen in the weld metal and the number of pores generated. Figure 4 shows the generation of pores when the manganese content in the total weld metal is changed. Figure 5 is a graph showing the solubility of hydrogen and nitrogen in pure iron.

Claims (1)

【特許請求の範囲】 1 MgCO_38〜27重量%、TiO_2とZrO
_2のうち一方又は双方14〜35重量%、SiO_2
5〜30重量%と、タルク、マイカ、カオリン、白土及
びセリサイトのうち1種又は2種以上の合計0.4〜3
.0重量%とを、グラファイト、活性炭、ないしは炭素
を含有する合金鉄類よりなる炭素源を炭素量で0.14
〜0.85重量%、並びに該合金鉄も含めてマンガンを
含有する合金鉄よりなるマンガン源をMn量で1.9〜
6.2重量%とともに配合した組成の被覆剤を、水ガラ
スを用いて鋼心線のまわりに塗布して成る対プライマ耐
気孔性、低水素系、被覆アーク溶接棒。 2 MgCO_38〜27重量%、TiO_2とZrO
_2のうち一方又は双方14〜35重量%、SiO_2
5〜30重量%と、タルク、マイカ、カオリン、白土及
びセリサイトのうち1種又は2種以上の合計0.4〜3
.0重量%とを、グラファイト、活性炭、ないしは炭素
を含有する合金鉄類よりなる炭素源を炭素量で0.14
〜0.85重量%、並びに該合金鉄も含めてマンガンを
含有する合金鉄類よりなるマンガン源をMn量で1.9
〜6.2重量%さらにモリブデン及び/又はニッケル或
いはそれらを含有する合金をMo+(1/4.5)Ni
であらわされるモリブデン当量で3.0重量%以下とと
もに配合した組成の被覆剤を、水ガラスを用いて鋼心線
のまわりに塗布して成る対プライマ耐気孔性、低水素系
、被覆アーク溶接棒。 3 MgCO_38〜27重量%、TiO_2とZrO
_2のうち一方又は双方14〜35重量%、SiO_2
5〜30重量%と、タルク、マイカ、カオリン、白土及
びセリサイトのうち1種又は2種以上の合計0.4〜3
.0重量%とを、グラファイト、活性炭、ないしは炭素
を含有する合金鉄類よりなる炭素源を炭素量で0.14
〜0.85重量%、並びに該合金鉄も含めてマンガンを
含有する合金鉄類よりなるマンガン源をMn量で1.9
〜6.2重量%さらに、モリブデン及び/又はニッケル
或いはそれらを含有する合金をMo+(1+4.5)N
iであらわされるモリブデン当量で3.0重量%以下そ
して上記合金鉄類のうちのフェロ窒化マンガンは3重量
%以下とフェロ窒化クロム4重量%以下との何れか一方
とともに配合した組成の被覆剤を、水ガラスを用いて鋼
心線のまわりに塗布して成る対プライマ耐気孔性、低水
素系、被覆アーク溶接棒。
[Claims] 1 MgCO_38-27% by weight, TiO_2 and ZrO
14-35% by weight of one or both of _2, SiO_2
5 to 30% by weight, and a total of 0.4 to 3 of one or more of talc, mica, kaolin, clay, and sericite.
.. 0% by weight, and the carbon source made of graphite, activated carbon, or a ferroalloy containing carbon is 0.14% by weight.
~0.85% by weight, and a manganese source consisting of a ferroalloy containing manganese, including the ferroalloy, with an Mn amount of 1.9~
A primer pore-resistant, low hydrogen-based, coated arc welding rod made by applying a coating agent having a composition of 6.2% by weight around a steel core wire using water glass. 2 MgCO_38-27% by weight, TiO_2 and ZrO
14-35% by weight of one or both of _2, SiO_2
5 to 30% by weight, and a total of 0.4 to 3 of one or more of talc, mica, kaolin, clay, and sericite.
.. 0% by weight, and the carbon source made of graphite, activated carbon, or a ferroalloy containing carbon is 0.14% by weight.
~0.85% by weight, and a manganese source consisting of ferroalloys containing manganese, including the ferroalloy, with an Mn content of 1.9%.
~6.2% by weight of molybdenum and/or nickel or an alloy containing them in addition to Mo+(1/4.5)Ni
Primer pore-resistant, low hydrogen-based, coated arc welding rod made by applying a coating material containing a molybdenum equivalent of 3.0% by weight or less expressed around a steel core wire using water glass. . 3 MgCO_38-27% by weight, TiO_2 and ZrO
14-35% by weight of one or both of _2, SiO_2
5 to 30% by weight, and a total of 0.4 to 3 of one or more of talc, mica, kaolin, clay, and sericite.
.. 0% by weight, and the carbon source made of graphite, activated carbon, or a ferroalloy containing carbon is 0.14% by weight.
~0.85% by weight, and a manganese source consisting of ferroalloys containing manganese, including the ferroalloy, with an Mn content of 1.9%.
~6.2% by weight Furthermore, molybdenum and/or nickel or alloys containing them are added to Mo+(1+4.5)N
A coating material having a composition in which the molybdenum equivalent represented by i is 3.0% by weight or less, and ferromanganese of the above-mentioned ferroalloys is blended with 3% by weight or less and 4% by weight or less of ferrochromium nitride. A porosity-resistant, low-hydrogen, coated arc welding rod made by applying water glass around a steel core wire.
JP53113087A 1978-09-14 1978-09-14 Primer-resistant, low hydrogen-based coated arc welding rod Expired JPS6057954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53113087A JPS6057954B2 (en) 1978-09-14 1978-09-14 Primer-resistant, low hydrogen-based coated arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53113087A JPS6057954B2 (en) 1978-09-14 1978-09-14 Primer-resistant, low hydrogen-based coated arc welding rod

Publications (2)

Publication Number Publication Date
JPS5540064A JPS5540064A (en) 1980-03-21
JPS6057954B2 true JPS6057954B2 (en) 1985-12-17

Family

ID=14603142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53113087A Expired JPS6057954B2 (en) 1978-09-14 1978-09-14 Primer-resistant, low hydrogen-based coated arc welding rod

Country Status (1)

Country Link
JP (1) JPS6057954B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178086A (en) * 1985-01-31 1986-08-09 Mitsuo Takaku Method for embedding treatment of waste
JPH0653271B2 (en) * 1988-09-16 1994-07-20 株式会社大林組 Embankment structure
JPH0622478Y2 (en) * 1988-10-26 1994-06-15 株式会社大林組 Waste disposal site
JP2581602B2 (en) * 1989-11-10 1997-02-12 株式会社間組 Waste treatment method
CN104831146A (en) * 2015-05-09 2015-08-12 安徽鼎恒再制造产业技术研究院有限公司 Ni-TiO2 nano welding layer and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020948A (en) * 1973-06-26 1975-03-05
JPS50102542A (en) * 1974-01-18 1975-08-13
JPS5138249A (en) * 1974-09-30 1976-03-30 Nippon Steel Corp TEISUISOKEIHIFUKUAAKUYOSETSUBO
JPS52120933A (en) * 1976-04-05 1977-10-11 Nippon Steel Corp Covered electrodes
JPS52131944A (en) * 1976-04-28 1977-11-05 Kobe Steel Ltd Covered electrodes
JPS5319295A (en) * 1976-08-06 1978-02-22 Saito Tetsukoushiyo Kk Packing device
JPS5337554A (en) * 1976-09-21 1978-04-06 Nippon Steel Corp Electrode covered with nitrogen rich* crrni austenite steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020948A (en) * 1973-06-26 1975-03-05
JPS50102542A (en) * 1974-01-18 1975-08-13
JPS5138249A (en) * 1974-09-30 1976-03-30 Nippon Steel Corp TEISUISOKEIHIFUKUAAKUYOSETSUBO
JPS52120933A (en) * 1976-04-05 1977-10-11 Nippon Steel Corp Covered electrodes
JPS52131944A (en) * 1976-04-28 1977-11-05 Kobe Steel Ltd Covered electrodes
JPS5319295A (en) * 1976-08-06 1978-02-22 Saito Tetsukoushiyo Kk Packing device
JPS5337554A (en) * 1976-09-21 1978-04-06 Nippon Steel Corp Electrode covered with nitrogen rich* crrni austenite steel

Also Published As

Publication number Publication date
JPS5540064A (en) 1980-03-21

Similar Documents

Publication Publication Date Title
US4723061A (en) Gas shielded, flux cored, welding electrode
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
US4366364A (en) Flux-cored wire for use in gas-shielded arc welding
US4343984A (en) Gas-shielded flux-cored wire electrodes for high impact weldments
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
WO2016175154A1 (en) Flux cored wire for gas-shielded arc welding and welding method
KR101088212B1 (en) Flux-cored wire for stainless steel electro gas arc welding
JP3934399B2 (en) Flux-cored wire for austenitic stainless steel welding that refines solidified crystal grains
JP2008264868A (en) Flux cored wire for gas shielded arc welding
EP0688630B1 (en) Flux-cored wire for gas shielded arc welding
JP3439019B2 (en) Flux-cored wire for gas shielded arc welding
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JPS6057954B2 (en) Primer-resistant, low hydrogen-based coated arc welding rod
JPS5950992A (en) Welding wire
JPH04224094A (en) Flux cored wire for gas shielded arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
US4439498A (en) Corrosion resistant stainless steel covered electrode
JP2004230456A (en) Wire including flux for gas shielded arc welding for corrosion-resistant steel
JP2005230912A (en) Arc welding flux cored wire superior in liquid metal embrittlement crack resistance, and arc welding method
JP3889903B2 (en) High corrosion resistant austenitic stainless steel flux cored wire
JP4841238B2 (en) Flux-cored wire for gas shielded arc welding
JPH0545360B2 (en)
CA1090214A (en) Corrosion resistant stainless steel covered electrode
US4003766A (en) Welding materials for aluminum-coated steel