JPS6057897B2 - Catalyst regeneration method - Google Patents

Catalyst regeneration method

Info

Publication number
JPS6057897B2
JPS6057897B2 JP4783878A JP4783878A JPS6057897B2 JP S6057897 B2 JPS6057897 B2 JP S6057897B2 JP 4783878 A JP4783878 A JP 4783878A JP 4783878 A JP4783878 A JP 4783878A JP S6057897 B2 JPS6057897 B2 JP S6057897B2
Authority
JP
Japan
Prior art keywords
catalyst
arsenic
experiment
hydrogenation
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4783878A
Other languages
Japanese (ja)
Other versions
JPS54139898A (en
Inventor
彰一郎 森
亘弘 坂口
英之 高橋
喜三 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP4783878A priority Critical patent/JPS6057897B2/en
Publication of JPS54139898A publication Critical patent/JPS54139898A/en
Publication of JPS6057897B2 publication Critical patent/JPS6057897B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本願発明は石油留分中に含有される砒素によつて被毒
された白金又はパラジウム触媒の再生方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating platinum or palladium catalysts poisoned by arsenic contained in petroleum fractions.

本願発明者等は先に、微量の砒素を含有する石油留分
を原料とし種々の石油化学製品を製造する際、微量の砒
素が有害成分となる為これを除去する方法並に無害とす
る方法を発明した。
The inventors of the present application have previously proposed a method for removing arsenic and a method for rendering it harmless since trace amounts of arsenic become a harmful component when manufacturing various petrochemical products using petroleum fractions containing trace amounts of arsenic as raw materials. invented.

これらの発明は特願昭52−121001、特願昭52
−55511及び特願昭52−125103として特許
出願されている。 本願発明者はその後更に鋭意研究を
進めた結果、石油留分中に含有される砒素により被毒さ
れた白金又はパラジウム触媒が意外な程簡単な方法で再
活性化できることを見出し本願発明を完成した。 本願
発明の構成は本願特許請求の範囲第1項に 記載の通り
であり、その目的は石油留分中に含まれる砒素により被
毒された触媒を再生するにある。
These inventions were filed in Japanese Patent Application No. 52-121001,
-55511 and Japanese Patent Application No. 52-125103. As a result of further intensive research, the present inventor discovered that platinum or palladium catalysts poisoned by arsenic contained in petroleum fractions can be reactivated by a surprisingly simple method, and completed the present invention. . The structure of the present invention is as described in claim 1, and its purpose is to regenerate a catalyst that has been poisoned by arsenic contained in petroleum fractions.

又本願発明の効果は次に述べる通りである。即ち砒素を
含有する石油留分を原料として水垢、改質等の為パラジ
ウム又は白金触媒を使用するとこれらの触媒が被毒して
工程が円滑に進まなくなる。その際に本願発明を実施し
てこれらの触媒を再生すると、水垢(例えばPd触媒に
よるジオレフィンの水垢)や改質(例えば白金触媒によ
るナフテンよりアロマの製造)の工程を安定させること
ができる。その結果原料石油留分中に砒素が微量含まれ
ていても、必ずしもこれを除去しないですみ有利である
。 なお本願明細書に記載の石油留分とは石油、直留ナ
フサ、灯油、軽油、減圧留出物、常圧残渣油などの他エ
チレンプラントの熱分解装置で副生された熱分解ガソリ
ン、又コーカー及びビスブレーカーなどにより熱処理を
受けた炭化水素油、並びに接触分解装置で生成されたナ
フサ留分、リサイ1クル油など、更にはジュールオイル
、タールサンド、石炭からの合成石油など巾広い炭化水
素油を意味する。
Further, the effects of the present invention are as follows. That is, if a palladium or platinum catalyst is used for scaling, reforming, etc. using a petroleum fraction containing arsenic as a raw material, these catalysts will be poisoned and the process will not proceed smoothly. In this case, if the present invention is implemented to regenerate these catalysts, it is possible to stabilize the scale (for example, the scale of diolefins using a Pd catalyst) and the reforming process (for example, the production of aroma from naphthenes using a platinum catalyst). As a result, even if a trace amount of arsenic is contained in the raw petroleum fraction, it is advantageous that it does not necessarily have to be removed. The petroleum fractions described in this specification include petroleum, straight-run naphtha, kerosene, light oil, vacuum distillate, atmospheric residual oil, etc., as well as pyrolysis gasoline by-produced in the pyrolysis equipment of an ethylene plant, and A wide range of hydrocarbons, including hydrocarbon oils that have been heat-treated by cokers and visbreakers, naphtha fractions produced in catalytic crackers, recycled oil, etc., as well as Joule oil, tar sands, and synthetic petroleum from coal. means oil.

又本願明細書に記載の砒素とは、砒素元素を一つの構
成元素とする化合物を意味するものである。
Furthermore, the term "arsenic" as used herein refers to a compound containing elemental arsenic as one of its constituent elements.

但し本願明細書に記載された次の文言、即ち砒素元素、
砒素化合物及び砒素濃度における砒素は勿論砒素自身を
意味し、砒素化合物を意味するものではない。石油留分
には微量の砒素が含有されているものが多い。
However, the following words stated in the specification of the present application, namely, elemental arsenic,
Arsenic in the arsenic compound and arsenic concentration, of course, means arsenic itself and does not mean an arsenic compound. Many petroleum distillates contain trace amounts of arsenic.

その形態は留分により差があるが、アルシン及び有機砒
素化合物などと考えられる。石油留分より種々の石油化
学原料或は石油化学製品を製造する工程において、この
微量の砒素はその含量にもよるが、触媒に対する触媒毒
として作用するとか、或は水蒸気熱分解する際のコーキ
ングを促進するなど、各種の工程に支障を及ぼす場合が
多い。例えは直留ナフサ又は灯軽油の熱分解副生ガソリ
ン(以下分解ガソリンと略称する)より芳香族化合物の
ベンゼン、トルエン及びキシレンを製造する工程におい
て、砒素は分解ガソリン中に含まれるジオレフインのオ
レフィンへの水添処理に使用するパラジウム触媒に対し
て触媒毒として作用し、その活性を急激に低下せしめる
如きである。一般に砒素は触媒に対して大きな毒性を有
し、特に水素化、脱水素等に用いられるPd,.Ptの
ような貴金属系触媒の活性を著しく低下せしめる。従つ
て従来特に貴金属系触媒を用いる処理プロセスにおいて
は前以て原料中の砒素を除去するか又は無毒化すること
が不可欠であつた。ところが既に述べた通り本願発明を
実施すれば、石油留分中に含有される砒素により被毒し
著しく活性を低下した触媒につき、容易にその活性を再
生することができるので、原料である石油留分中に含有
.される砒素を予め除去又は無毒化することは必ずしも
必要なくなつたのである。否むしろ一般にはこの本願発
明の方法を採用し、触媒の再生を繰返し工程を継続する
のが有利である。次に本願発明に類似する先行技術につ
いて述べ!る。
Its form varies depending on the fraction, but it is thought to be arsine and organic arsenic compounds. In the process of manufacturing various petrochemical raw materials or petrochemical products from petroleum fractions, this trace amount of arsenic may act as a catalyst poison, depending on its content, or may cause coking during steam pyrolysis. It often interferes with various processes, such as promoting. For example, in the process of producing aromatic compounds benzene, toluene, and xylene from direct-run naphtha or kerosene byproduct gasoline (hereinafter referred to as cracked gasoline), arsenic is converted to olefins of diolefins contained in cracked gasoline. It appears to act as a catalyst poison for the palladium catalyst used in the hydrogenation process, rapidly reducing its activity. Arsenic is generally highly toxic to catalysts, especially Pd, which is used for hydrogenation, dehydrogenation, etc. It significantly reduces the activity of noble metal catalysts such as Pt. Therefore, in the past, especially in treatment processes using noble metal catalysts, it has been essential to remove or detoxify the arsenic in the raw materials in advance. However, as already mentioned, if the present invention is carried out, it is possible to easily regenerate the activity of a catalyst that has been poisoned by arsenic contained in the petroleum fraction and whose activity has significantly decreased. Contained in minutes. It is no longer necessary to remove or detoxify the arsenic used in the process in advance. Rather, it is generally advantageous to adopt the method of the present invention and continue the process by repeating catalyst regeneration. Next, we will discuss prior art similar to the present invention! Ru.

東独乙特許第120589号「汽、Pd触媒の活性化法
」は塩素(Cl。)と空気の混合ガスに更に乾燥塩化水
素(HCl)を混合したガスを用いて300〜350℃
、30〜7吟処理することを特徴とするPtlPd/ア
ルミナ又はアルミナ・シリカ触媒の活性一化あるいは再
活性化法て、本願発明と類似した点、特に酸化性ガスを
使用して触媒を再活性化する点で類似しているが、本願
発明の常温から250℃の温度範囲て酸化処理すること
により再活性化させることを特徴とする技術とは異なり
、又これを示唆するものでもない。又所謂デコーキング
は触媒の再生にしばしば行われる工程であるが、これは
長時間使用した触媒上に約400℃以上で空気と水蒸気
を通じて触媒上の炭素又はタール状物質を除去する工程
であつて、本願発明の方法と温度の点で明らかな差があ
り本願発明を示唆するものでもない。
East German Patent No. 120589 "Activation method for steam and Pd catalyst" uses a gas mixture of chlorine (Cl.) and air and dry hydrogen chloride (HCl) at 300 to 350°C.
The method for activating or reactivating a PtlPd/alumina or alumina-silica catalyst, which is characterized by a 30-7 treatment, is similar to the present invention, in particular, the method uses an oxidizing gas to reactivate the catalyst. However, it is different from the technology of the present invention, which is characterized in that it is reactivated by oxidation treatment at a temperature range from room temperature to 250°C, and does not suggest this. Also, so-called decoking is a process that is often performed to regenerate catalysts, and this is a process in which carbon or tar-like substances on a catalyst that has been used for a long time are removed by passing air and steam at a temperature of about 400°C or higher. However, there is a clear difference in temperature from the method of the present invention, and this does not imply the present invention.

本願発明の方法において酸化の手段としては酸・素を含
むガス体例えば空気を使用する方法が用いられるこの方
法につき以下説明する。
In the method of the present invention, a gas containing oxygen and oxygen, such as air, is used as the oxidation means.This method will be explained below.

砒素を含有する分解ガソリンをPd/Al2O3触媒(
例えば日本エンゲルハルト社製PGC触媒)とジオレフ
インの水添反応条件下にて接触させる。
The cracked gasoline containing arsenic is treated with a Pd/Al2O3 catalyst (
For example, PGC catalyst manufactured by Nippon Engelhard Co., Ltd.) is brought into contact with diolefin under hydrogenation reaction conditions.

水添反応条件はPd/Al2O3触媒の場合は50〜2
00℃、30〜70kgICTiG,.100〜300
e−H2le−01Lの範囲程度である。触媒活性は分
解ガソリンの水添処理に伴い低下するが、触媒活性の低
下度は分解ガソリンに含有される砒素の量に依存する。
このようにして活性の低下した触媒から含有される油を
パージした後、該触媒を常温から250℃の温度範囲に
て空気と接触させる。空気との接触時間及び供給速度は
任意であるが接触が少ないと充分砒素が酸化されす、又
多すぎると時間的に無駄になる。又酸化処理温度は低す
ぎると酸化反応速度が遅く、高すぎると付着カーボンの
燃焼反応による局部過熱がおこり、Pdが凝集したり、
加熱熱源の為の高価な設備を要したり(例えば加熱炉)
、その他反応器を耐高温性にする必要を生じたりしてコ
ストを高め好ましくない。
The hydrogenation reaction conditions are 50 to 2 in the case of Pd/Al2O3 catalyst.
00℃, 30-70kgICTiG,. 100-300
It is about the range of e-H2le-01L. Catalytic activity decreases with hydrogenation treatment of cracked gasoline, and the degree of decrease in catalyst activity depends on the amount of arsenic contained in cracked gasoline.
After purging the oil contained in the catalyst whose activity has decreased in this way, the catalyst is brought into contact with air at a temperature ranging from room temperature to 250°C. The contact time and supply rate with air are arbitrary, but if the contact is too small, arsenic will be sufficiently oxidized, and if the contact is too large, time will be wasted. In addition, if the oxidation treatment temperature is too low, the oxidation reaction rate will be slow; if it is too high, local overheating will occur due to the combustion reaction of the attached carbon, causing Pd to aggregate,
Requires expensive equipment for heating heat source (e.g. heating furnace)
In addition, it becomes necessary to make the reactor resistant to high temperatures, which increases the cost, which is undesirable.

更に100〜250℃の水蒸気が入手できる場合は、水
蒸気中に空気を混合させた再生ガスを用いれば他に再生
処理のための特殊な設備、工夫を要せず極めて容易な方
法て再生処理が可能となる。
Furthermore, if steam at a temperature of 100 to 250°C is available, regeneration gas, which is a mixture of steam and air, can be used to perform regeneration processing in an extremely easy way without requiring special equipment or ingenuity. It becomes possible.

このようにして酸化再生された触媒の活性はほぼ新触媒
のレベルにまで回復する。再生前後の触媒中の砒素元素
含有量は殆ど同じレベルである。以下実施例をあげて本
願発明を具体的に説明する。実施例1 有機砒素化合物で被毒された触媒に対する酸化処理によ
る再生効果をみる目的で次の一連の実験を行つた。
The activity of the catalyst thus oxidized and regenerated is recovered to almost the level of the new catalyst. The arsenic element content in the catalyst before and after regeneration is almost at the same level. The present invention will be specifically explained below with reference to Examples. Example 1 The following series of experiments were conducted for the purpose of examining the regeneration effect of oxidation treatment on a catalyst poisoned with an organic arsenic compound.

実験1(比較例) 500m1のフラスコにシクロヘキサン150TnLと
2●6−ジメチルオクタトリエン゛一エーー〜一在一゛
−(以下単に DMOTと略記する。
Experiment 1 (comparative example) In a 500 ml flask, 150 TnL of cyclohexane and 2*6-dimethyloctatriene 1-1-1-1-(hereinafter simply abbreviated as DMOT) were added.

)2m1を仕込み、更にPd触媒(PdO.3wt%、
γ−Al2O3)0.4yを添加し、鴇気流中、常圧、
70℃の条件下で10紛間攪拌しながらDMOTの水素
化反応を行つた。反応終了後水素化処理油中のDMOT
の量を測定しDMOTの減少率を求めた。なお減少率は
次式により定義される。CO:反応前のDMOT濃度 C:反応後のDMOT濃度 実験2(比較例) 500mtのフラスコにトルエン150mLを仕込み、
さらにトリフエニルアルシン(Asφ3)をトルエン溶
液中の砒素元素濃度が3.5重量Ppmとなるように添
加し、次にPd触媒(実験1と同じもの)0.4yを加
え、水素気流中70℃で2時間攪拌しながら触媒の被毒
処理を行つた。
) 2ml, and then Pd catalyst (PdO.3wt%,
γ-Al2O3) 0.4y was added, and the mixture was heated in a stream of air at normal pressure.
The hydrogenation reaction of DMOT was carried out under conditions of 70° C. and stirring for 10 minutes. DMOT in hydrotreated oil after reaction completion
The amount of DMOT was measured and the reduction rate of DMOT was determined. Note that the reduction rate is defined by the following formula. CO: DMOT concentration before reaction C: DMOT concentration after reaction Experiment 2 (comparative example) 150 mL of toluene was charged into a 500 mt flask.
Furthermore, triphenylarsine (Asφ3) was added so that the arsenic element concentration in the toluene solution was 3.5 weight Ppm, and then 0.4y of Pd catalyst (same as in Experiment 1) was added, and the mixture was heated at 70°C in a hydrogen stream. The catalyst was poisoned while stirring for 2 hours.

次にトリフエニルアルシンートルエン溶液をフラスコよ
り完全に抜出した後、シクロヘキサン150mt..D
M0T2m1を仕込み、実験1と同様の水素化反応を行
つた。
Next, after completely removing the triphenylarsine-toluene solution from the flask, 150 mt of cyclohexane was removed. .. D
2ml of M0T was charged and the same hydrogenation reaction as in Experiment 1 was performed.

反応終了後DMOTの減少率を求めた。実験3(実施例
) 実験2と同じ方法て触媒の被毒処理を行つた後、トリフ
エニルアルシンートルエン溶液を完全に抜出し、100
′Cに加熱された空気を60分間フラスコ中に吹込むこ
とにより被毒触媒の酸化処理を行つた。
After the reaction was completed, the rate of decrease in DMOT was determined. Experiment 3 (Example) After poisoning the catalyst in the same manner as in Experiment 2, the triphenylarsine-toluene solution was completely extracted and 100%
The poisoned catalyst was oxidized by blowing air heated to 'C into the flask for 60 minutes.

次に実験1、実験2と同じようにシクロヘキサン150
m1、DMOT2mlを仕込み水素化反応を行いDMO
Tの減少率を求めた。引続き上述した実験方法において
、被毒触媒の酸化処理温度のみを150′Cl2OO℃
、250℃と変えた一連の実験を行つた。
Next, as in Experiments 1 and 2, cyclohexane 150
ml, 2ml of DMOT was charged, hydrogenation reaction was carried out, and DMO
The rate of decrease in T was determined. Continuing with the above-mentioned experimental method, only the oxidation treatment temperature of the poisoned catalyst was changed to 150'Cl2OO℃.
, 250°C was carried out.

すべての実験が終了後各実験に使用した触媒の砒素元素
濃度を測定し、その結果と各実験で求められたDMOT
の減少率をまとめて表−1に示す。
After all experiments were completed, the arsenic concentration of the catalyst used in each experiment was measured, and the results and DMOT obtained in each experiment were measured.
The reduction rates are summarized in Table 1.

以上の結果は砒素で被毒された触媒は100〜150℃
の比較的低温下での空気による酸化処理により活性が著
しく回復することを示している。
The above results show that the temperature of the catalyst poisoned with arsenic is 100 to 150℃.
It has been shown that the activity is significantly recovered by oxidation treatment with air at a relatively low temperature.

又触媒上の砒素元素は酸化処理を行つても殆ど減少して
いない。実施例2 エチレンプラントより製出した砒素を含まない熱分解ガ
ソリンを用いてパラジウム触媒による連続水素化実験を
行い、この実験の過程でモデル的に原料分解ガソリン中
に有機砒素化合物を添加することにより触媒に対する砒
素の挙動を確認した。
Furthermore, the arsenic element on the catalyst hardly decreases even after the oxidation treatment. Example 2 A continuous hydrogenation experiment using a palladium catalyst was conducted using arsenic-free pyrolyzed gasoline produced from an ethylene plant, and during the course of this experiment, an organic arsenic compound was added to the raw cracked gasoline as a model. The behavior of arsenic on catalysts was confirmed.

実験に使用した熱分解ガソリンの性状はジエン値(DV
)16.臭素価30、ベンゼン35重量%、トルエン2
鍾量%、C8芳香族20.5重量%、全硫黄含有量14
5重量Ppml砒素は検出されす、であり、水素化処理
条件は下記の通りであつた。
The properties of the pyrolysis gasoline used in the experiment were determined by the diene value (DV
)16. Bromine number 30, benzene 35% by weight, toluene 2
Weight%, C8 aromatics 20.5% by weight, total sulfur content 14
5 Ppml arsenic was detected, and the hydrogenation conditions were as follows.

なおジエン値はマレイン酸法により求めた。以下同様。Note that the diene value was determined by the maleic acid method. Same below.

反応器:流通式高圧反応器(SUS製) 触媒:パラジウム触媒(PdO.3重量%γ−Al2O
3)ノ反応温度:90℃ 反応圧力ニ50kgIcd−G(H2気流中)LHS■
:3Hr1触媒の活性は運転開始当初は若干低下する傾
向がみられたが、約5日目以降はほぼ一定レベルに安定
した。
Reactor: Flow-type high-pressure reactor (made of SUS) Catalyst: Palladium catalyst (PdO.3% by weight γ-Al2O
3) Reaction temperature: 90°C Reaction pressure: 50 kg Icd-G (in H2 gas flow) LHS■
The activity of the :3Hr1 catalyst tended to decrease slightly at the beginning of operation, but after about the 5th day it stabilized at an almost constant level.

運転開始10日後から原料分解ガソリン中に砒素元素濃
度で5重量Ppmに相当するMφ3を連続的に添加し5
日間運転を行つた。Asφ3添加直前の水添処理油のジ
エン値が2.1であつたものが、Asφ,添加後の経時
的な触媒活性の低下により添加後5日目には水添処理油
のジエン値は8.0まで上昇した。次に反応器の運転を
停止し触媒に付着した油分を除去する目的て水蒸気を2
時間、常圧、120℃の条件でフィードした。
From 10 days after the start of operation, Mφ3 corresponding to an arsenic element concentration of 5 weight Ppm was continuously added to the raw cracked gasoline.
I drove for a day. The diene value of the hydrogenated oil immediately before the addition of Asφ3 was 2.1, but due to the decrease in catalytic activity over time after the addition of Asφ, the diene value of the hydrogenated oil decreased to 8 on the 5th day after the addition. It rose to .0. Next, the operation of the reactor was stopped and steam was pumped in for 2 hours to remove oil adhering to the catalyst.
The feed was carried out under conditions of time, normal pressure, and 120°C.

引続き空気を130℃で、3時間フィードし触媒の酸化
処理を行た。その後再度熱分解ガソリンをフィードし、
元の運転状態に復帰させた。
Subsequently, air was fed at 130° C. for 3 hours to oxidize the catalyst. Then feed pyrolysis gasoline again,
It was returned to its original operating condition.

運転再開後の水添油のジエン値は2.4であり、その後
の運転においてもジエン値の大きな変化は認められなか
つた。以上の実験結果は砒素て被毒された触媒は空気に
よる酸化処理により、その処理温度が比較的低温であつ
ても再生が充分可能であることを示す。
The diene value of the hydrogenated oil after restarting the operation was 2.4, and no significant change in the diene value was observed during subsequent operations. The above experimental results indicate that a catalyst poisoned by arsenic can be sufficiently regenerated by oxidation treatment with air even if the treatment temperature is relatively low.

又実験終了後、使用触媒中の砒素元素量を測定したが測
定値は50睡量Ppmであり、この量はトリフエニルア
ルシンを添加した熱分解ガソリン中の水素化処理前後の
砒素元素濃度差より求められた触媒吸着砒素元素量とほ
ぼ一致した。このことは触媒酸化再生処理及びその後の
運転においても触媒上の砒素元素が除去されていないこ
とを意味一する。実施例3 エチレンプラントより製出した砒素を含む熱分解ガソリ
ンを用いてPd触媒による触媒再生処理を織込んだ連続
水添反応運転を行い、砒素により.被毒された触媒の再
生処理効果を確認した。
After the experiment was completed, the amount of arsenic in the catalyst used was measured, and the measured value was 50 Ppm, which was calculated from the difference in arsenic concentration before and after hydrogenation in pyrolyzed gasoline to which triphenylarsine was added. This almost coincided with the calculated amount of arsenic adsorbed on the catalyst. This means that the arsenic element on the catalyst is not removed even during the catalyst oxidation regeneration treatment and subsequent operation. Example 3 Using pyrolyzed gasoline containing arsenic produced from an ethylene plant, a continuous hydrogenation reaction incorporating catalyst regeneration treatment using a Pd catalyst was carried out, and arsenic-containing pyrolysis was performed. The effectiveness of regeneration treatment for poisoned catalysts was confirmed.

実験に使用した熱分解ガソリンの性状は、ジエン値2へ
臭素価42、ベンゼン3鍾量%、トルエン2鍾量%、C
8芳香族18.5重量%、全硫黄含有量1団重量Ppm
l砒素元素含有量1.踵量Ppmであり.水素化連続処
理条件は次の通りてあつた。反応器:流通式高圧反応器
(SUS製) 触媒:パラジウム触媒(PdO.3重量%γ−Al2O
3)反応温度:90℃ 反応圧力ニ50k9kI−G(H2気流中)LHSV:
3Hr1運転開始からの触媒活性の経時的変化、触媒再
生の処理効果及び再生後の触媒活性の変化は原料熱分解
ガソリンのジエン値(DVO)と水添処理油のジエン値
(DV)から求められるジエン値の減少率〔(DVO−
DV)/DVO〕から判断した。
The properties of the pyrolysis gasoline used in the experiment were as follows: diene value 2, bromine number 42, benzene 3%, toluene 2%, C
8 aromatic 18.5% by weight, total sulfur content 1 group weight Ppm
l Arsenic element content 1. The heel amount is Ppm. The conditions for the continuous hydrogenation treatment were as follows. Reactor: Flow-type high-pressure reactor (made of SUS) Catalyst: Palladium catalyst (PdO.3% by weight γ-Al2O
3) Reaction temperature: 90℃ Reaction pressure 50k9kI-G (in H2 gas flow) LHSV:
Changes in catalyst activity over time from the start of 3Hr1 operation, treatment effects of catalyst regeneration, and changes in catalyst activity after regeneration are determined from the diene value (DVO) of the feedstock pyrolysis gasoline and the diene value (DV) of the hydrogenated oil. Decrease rate of diene value [(DVO-
DV)/DVO].

実験は次のスケジュールに従つて連続的に実施した。各
水添実験はすべて同一反応条件で行い、触媒再生処理は
水添実験を中断後、触媒に付着した油分を除去する目的
で水蒸気を2時間、常圧、120℃の条件でフィードし
、その後空気を約15V0L%含む水蒸気を用いて第1
回、第2回再生は常圧下、120℃の条件下で4時間実
施し、第3回再生は常圧下、400℃の条件下で7時間
実施した。第3回再生処理の条件は、触媒上に付着した
カーボン状物質の燃焼除去を目的として、一般に広く用
いられている触媒のデコーキング操作の条件に相当する
ものである。表−2に各回の水素実験で求められた各回
の運転開始から5日後、10日後、15日後、30日後
(第3、4回水添実験のみ5日後、10日後)それぞれ
DVO−D■におけるジエン値の
減少率( 。
The experiment was conducted continuously according to the following schedule. All hydrogenation experiments were conducted under the same reaction conditions, and for catalyst regeneration treatment, after the hydrogenation experiment was interrupted, steam was fed for 2 hours at normal pressure and 120°C to remove oil adhering to the catalyst. First, using water vapor containing about 15V0L% of air.
The second regeneration was carried out under normal pressure and 120°C for 4 hours, and the third regeneration was carried out under normal pressure and 400°C for 7 hours. The conditions for the third regeneration process correspond to the conditions for a catalyst decoking operation that is generally widely used for the purpose of burning off carbon-like substances adhering to the catalyst. Table 2 shows the data obtained from each hydrogen experiment 5 days, 10 days, 15 days, and 30 days after the start of each operation (5 days and 10 days after the 3rd and 4th hydrogenation experiments only).
Decrease rate of diene value in DVO-D■.

Claims (1)

【特許請求の範囲】[Claims] 1 石油畄分の水添及び改貭反応において、石油畄分中
に含まれる砒素により被毒された白金、又はパラジウム
触媒を常温から250℃の温度範囲で、酸素を含むガス
で酸化処理することにより再活性化させることを特徴と
する白金又はパラジウム触媒の再生方法。
1. In the hydrogenation and conversion reaction of petroleum mills, platinum or palladium catalysts poisoned by arsenic contained in petroleum mills are oxidized with oxygen-containing gas at a temperature range from room temperature to 250°C. 1. A method for regenerating a platinum or palladium catalyst, which comprises reactivating a platinum or palladium catalyst.
JP4783878A 1978-04-24 1978-04-24 Catalyst regeneration method Expired JPS6057897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4783878A JPS6057897B2 (en) 1978-04-24 1978-04-24 Catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4783878A JPS6057897B2 (en) 1978-04-24 1978-04-24 Catalyst regeneration method

Publications (2)

Publication Number Publication Date
JPS54139898A JPS54139898A (en) 1979-10-30
JPS6057897B2 true JPS6057897B2 (en) 1985-12-17

Family

ID=12786500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4783878A Expired JPS6057897B2 (en) 1978-04-24 1978-04-24 Catalyst regeneration method

Country Status (1)

Country Link
JP (1) JPS6057897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106861774A (en) * 2017-03-14 2017-06-20 安徽海德石油化工有限公司 The method that the selection hydrogenation acetylene removal catalyst of carbon four is prepared using useless palladium-based catalyst

Also Published As

Publication number Publication date
JPS54139898A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
US5776849A (en) Regeneration of severely deactivated reforming catalysts
EP0071397B1 (en) Process for regenerating coked noble metal-containing catalysts
JPS6041114B2 (en) Selective hydrogenation method for gasoline
JPS583740B2 (en) iridium gun
AU765220B2 (en) Catalytic reforming catalyst activation
EP1210173A1 (en) Process for activating a reforming catalyst
US2560329A (en) Catalytic dehydrogenation of petroleum naphthenes
US2770578A (en) Saturating of a hydrocarbon fraction with hydrogen and then hydrodesulfurizing said fraction
US3113097A (en) Reactivation of catalysts
US2199838A (en) Catalyst regeneration
JPS6057897B2 (en) Catalyst regeneration method
Pieck et al. Recovering of the catalytic functions of naphtha reforming catalysts by partial coke burning
US4752595A (en) Catalyst pretreatment for regenerated noble metal on zeolite catalyst
GB1565754A (en) Selective hydrogenation
US3764558A (en) Constant low oxygen concentration gas regeneration of refining catalysts
EP1345693B1 (en) Regeneration method of heterogeneous catalysts and adsorbents
US8815201B2 (en) Process for regenerating a reforming catalyst
US3278419A (en) Platinum group hydroforming catalyst reactivation process
US2853435A (en) Rejuvenation of platinum catalysts after deactivation in a high temperature hydrocarbon conversion process
US20020098971A1 (en) Regeneration method of heterogeneous catalysts and adsorbents
US2321006A (en) Conversion of nonbenzenoid hydrocarbons to aromatics
RU2290996C1 (en) Method of regenerating catalytic systems of hydrogenation processes
US3661768A (en) Reforming with bimetallic reforming catalyst
JPS62744B2 (en)
US20050148456A1 (en) Off-site regeneration of reforming catalysts