JPS6057441B2 - Gas phase polymerization method of olefin - Google Patents

Gas phase polymerization method of olefin

Info

Publication number
JPS6057441B2
JPS6057441B2 JP53119133A JP11913378A JPS6057441B2 JP S6057441 B2 JPS6057441 B2 JP S6057441B2 JP 53119133 A JP53119133 A JP 53119133A JP 11913378 A JP11913378 A JP 11913378A JP S6057441 B2 JPS6057441 B2 JP S6057441B2
Authority
JP
Japan
Prior art keywords
gas phase
reactor
polymerization
olefin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53119133A
Other languages
Japanese (ja)
Other versions
JPS5545744A (en
Inventor
孝夫 酒井
憲俊 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP53119133A priority Critical patent/JPS6057441B2/en
Publication of JPS5545744A publication Critical patent/JPS5545744A/en
Publication of JPS6057441B2 publication Critical patent/JPS6057441B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔I〕発明の背景 技術分野 本発明は、ガス状態にあるオレフィンを固体のホモない
し共重合体に直接転化させるオレフィンの気相重合法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [I] BACKGROUND OF THE INVENTION Technical Field The present invention relates to a process for the gas phase polymerization of olefins, which involves the direct conversion of olefins in a gaseous state into solid homo- or copolymers.

さらに具体的には、本発明は、外部気相冷却系を有する
流動床反応器内でオレフィンの気相重合を行なう方法の
改良に関する。さらにまた具体的には、本発明は、この
外部気相冷却系の冷却条件下で液化する有機アルミニウ
ム化合物を共触媒とする触媒系を使用するオレフィンの
気相重合法の改良に関する。重合反応過程にある固体の
重合体を反応用単量体を含むガス沢合物の上昇気流によ
つて流動状態を維持するいわゆる流動床反応器中におい
てオレフィンを気相重合させることは公知である。
More specifically, the present invention relates to an improvement in the process of carrying out the gas phase polymerization of olefins in a fluidized bed reactor with an external gas phase cooling system. Still more specifically, the present invention relates to an improvement in the gas phase polymerization process of olefins using a catalyst system cocatalyzed by an organoaluminum compound that liquefies under the cooling conditions of this external gas phase cooling system. It is known to carry out gas phase polymerization of olefins in a so-called fluidized bed reactor, in which a solid polymer undergoing a polymerization reaction is maintained in a fluidized state by an upward flow of a gaseous mixture containing a reaction monomer. .

このような反応器においては、反応器内のガス混合物を
反応器外に抜出してからこれを反応器に再循環させる為
の外部気相循環系内に熱交換器を設置し、これによりガ
ス混合物を冷却して反応熱を除去するのが一般的な方法
である。ガス混合物の反応器への再循環は、反応器内に
流動床を維持するためにも必要である。ところで、一般
に、液状有機アルミニウム化合物を共触媒とするチーク
ラー触媒系を使用してオレフィンの気相重合を実施する
場合は、有機アルミニウム化合物を反応器内に過飽和状
態に存在さ・せて遷移金属を含む固体触媒に有機アルミ
ニウム化合物が十分必要量接触する機会を与えてやるこ
とが触媒性能を十分に発揮させる上で必要である。
In such reactors, a heat exchanger is installed in the external gas phase circulation system to draw the gas mixture inside the reactor out of the reactor and recirculate it back to the reactor. A common method is to cool the reaction heat to remove the reaction heat. Recirculation of the gas mixture to the reactor is also necessary to maintain a fluidized bed within the reactor. By the way, in general, when carrying out gas phase polymerization of olefins using a Zieckler catalyst system that uses a liquid organoaluminum compound as a cocatalyst, the organoaluminum compound is present in a supersaturated state in the reactor to react with transition metals. In order to fully exhibit the catalyst performance, it is necessary to provide an opportunity for a sufficient amount of the organoaluminum compound to come into contact with the solid catalyst contained therein.

換言すれば、有機アルミニウム化合物を反応器内に飽和
に達しない程の希薄なガス状に存在さ・せた場合は、触
媒の性能が十分に発揮されず特に活性の低下が顕著であ
る。このように、流動床反応器にてオレフィンの気相重
合をする場合は反応器内で有機アルミニウム化合物が過
飽和の状態で反応が実施されるのであり、しかしてこの
反応は反応器内を流動状態に維持するためおよび反応熱
の除去のため外部気相循環系を付設した流動床反応器内
で実施されるのである。
In other words, if the organoaluminum compound is present in the reactor in a gaseous state so dilute that it does not reach saturation, the performance of the catalyst will not be fully exhibited, and the activity will particularly decrease. In this way, when gas phase polymerization of olefins is carried out in a fluidized bed reactor, the reaction is carried out in a state in which the organoaluminum compound is supersaturated in the reactor. It is carried out in a fluidized bed reactor equipped with an external gas phase circulation system to maintain the temperature and remove the heat of reaction.

従つて、抜出気相中に過飽和で存在する有機アルミニウ
ム化合物もまた、この外部気相循環系に組込まれた熱交
換器での冷却条件に服する訳てある。問題の所在 有機アルミニウム化合物は一般に高沸点の液体てあつて
、上記の外部気相循環系での冷却条件に服せしめられる
とその少なくとも一部は凝縮液化して、冷却面たとえば
熱交換器伝熱面を濡らす。
The organoaluminum compounds present in supersaturation in the withdrawn gas phase are therefore also subject to cooling conditions in the heat exchanger integrated in this external gas phase circulation system. Location of the problem Organoaluminum compounds are generally liquids with a high boiling point, and when subjected to the cooling conditions in the external gas phase circulation system described above, at least a portion of them condenses and liquefies, causing heat transfer on cooling surfaces, such as heat exchangers. Wet the face.

一方、反応器より抜出されたこのガス混合物中には微量
ながら反応器より逃散した活性な微粉が含まれており、
この活性微粉が上記の濡れた伝熱面に付着し、これが伝
熱面上で凝縮有機アルミニウム化合物と共に異常反応を
開始して、熱交換器の伝熱効率の低下および場合により
閉塞をひき起すに到る。〔旧発明の概要 要旨 本発明は上記の問題に解決を与えることを目的,とし、
反応ガス中に易凝縮性不活性ガスを存在させてこれを外
部気相循環系ての冷却面上で凝縮させてその洗滌効果を
利用することによつてこの目的を達成しようとするもの
てある。
On the other hand, this gas mixture extracted from the reactor contains a small amount of active fine powder that escaped from the reactor.
This activated fine powder adheres to the wet heat transfer surface and starts an abnormal reaction with the condensed organoaluminum compound on the heat transfer surface, leading to a decrease in the heat transfer efficiency of the heat exchanger and possibly clogging. Ru. [Summary of the old invention The purpose of the present invention is to provide a solution to the above problem,
This objective is achieved by making use of the cleaning effect of an easily condensable inert gas present in the reaction gas and condensing it on the cooling surface of an external gas phase circulation system. .

この凝縮生成物は、その一部または全部を気化させて反
応器へ!再循環させる。従つて、本発明によるオレフィ
ンの気相重合法は、冷却帯域を有する外部気相循環系が
付設された流動床反応帯域内で、該冷却帯域の冷却条件
下て液化する有機アル,ミニウム化合物を共触媒とす5
る触媒系を使用してオレフィンの気相重合を行なうに当
り、下記の要件を充足させること、を特徴とするもので
ある。
Part or all of this condensed product is vaporized and sent to the reactor! Recirculate. Therefore, the gas phase polymerization method for olefins according to the present invention involves producing an organic aluminum compound which liquefies under the cooling conditions of the cooling zone in a fluidized bed reaction zone equipped with an external gas phase circulation system having a cooling zone. Co-catalyst and 5
The present invention is characterized by satisfying the following requirements when carrying out gas phase polymerization of olefins using a catalyst system according to the present invention.

(4)反応帯域内に、重合用オレフィンより炭素数が1
〜4大きい不活性炭化水素を気相状態で共4存させるこ
と。
(4) The number of carbon atoms in the reaction zone is 1 from the olefin for polymerization.
〜4 Large inert hydrocarbons coexist in the gas phase.

(B)反応帯域内の気相をこの外部気相循環系の冷却帯
域で冷却する際に、この不活性炭化水素をこの有機アル
ミニウム化合物と共に液化させること。
(B) liquefying the inert hydrocarbon together with the organoaluminum compound as the gas phase in the reaction zone is cooled in the cooling zone of the external gas phase circulation system.

(C)この冷却帯域での液化生成物の一部または全部を
、気化させてから反応帯域に再循環させること。
(C) Part or all of the liquefied product in this cooling zone is vaporized and recycled to the reaction zone.

効果 特定の易凝縮性不活性炭化水素を有機アルミニウム化合
物と共に外部気相循環系て凝縮させることにより前記の
問題が解決される。
Effect The aforementioned problems are solved by condensing certain easily condensable inert hydrocarbons together with organoaluminum compounds in an external gas phase circulation system.

また、本発明ては外部気相循環系での凝縮生成フ物の一
部または全部を昇温気化させて反応器へ戻すが、この凝
縮物中には有機アルミニウム化合物が含まれているので
あるから、この有機アルミニウム化合物共触媒は反応器
に循環されることになる。
Furthermore, in the present invention, part or all of the condensed product in the external gas phase circulation system is vaporized at elevated temperature and returned to the reactor, but this condensate contains organoaluminum compounds. This organoaluminum compound cocatalyst will then be recycled to the reactor.

一方、本発明では固体触媒成分はこの循環有・機アルミ
ニウム化合物と別に反応器に供給することができる。こ
のような有機アルミニウム化合物共触媒の反応系への導
入態様は外部気相循環系を有する流動床反応器を使用す
るオレフィン重合において不可欠とされていた複雑な液
状有機アルミニウム化合物と固体触媒成分との合体化(
乾燥粒状固体触媒系の形成)を不要とするものてあると
共に、このような共触媒の反応系への導入態様(反応に
必要な全量ではないかも知れないとしても)で連続気相
重合が実施可能であるということは思いがけなかつたこ
とといえよう。〔■〕発明の詳細な説明 本発明によるオレフィンの気相重合法は、冷却帯域を有
する外部気相循環系が付設された流動床反応帯域内でオ
レフィンの気相重合を行なうに当つて、三条件の同時充
足を要件とするものてある。
On the other hand, in the present invention, the solid catalyst component can be supplied to the reactor separately from the circulating organic/organoaluminum compound. This method of introducing an organoaluminum compound cocatalyst into the reaction system is a method of introducing a complex liquid organoaluminum compound and a solid catalyst component, which is essential in olefin polymerization using a fluidized bed reactor with an external gas phase circulation system. Merging (
The continuous gas phase polymerization can be carried out in such a manner that such a cocatalyst is introduced into the reaction system (although it may not be in the entire amount required for the reaction). The fact that it was possible was an unexpected feat. [■] Detailed Description of the Invention The method for gas phase polymerization of olefins according to the present invention comprises three steps in performing gas phase polymerization of olefins in a fluidized bed reaction zone equipped with an external gas phase circulation system having a cooling zone. There are some that require simultaneous fulfillment of conditions.

1特定の不活性炭化水素の使用 本発明では、反応帯域ないし反応器内に、重合用オレフ
ィンより炭素数が1〜4大きい不活性炭化水素を気相状
態て存在させる。
1. Use of a specific inert hydrocarbon In the present invention, an inert hydrocarbon having 1 to 4 more carbon atoms than the olefin for polymerization is present in a gas phase in the reaction zone or reactor.

このような炭化水素は一般に飽和炭化水素てあり、脂肪
族てあることがふつうである。具体的には、たとえば、
プロパン、ブタン、ペンタン、ヘキサン、シクロヘキサ
ン、ヘプタン等があり、重合用オレフィンの種類に応じ
て、外部気相循環系での冷却帯域ての条件て凝縮可能て
あるものを適宜選べはよい。不活性炭化水素の使用量は
、不活性炭化水素の炭素数によつてその使用量が異なり
、炭素数が大きい場合は比較的少量を、また炭素数が小
さい楊合は比較的多量用いる。一般に重合用オレフィン
に対し1〜70、好ましくは2〜50モル%程度が適当
である。このような不活性炭化水素は、重合用オレフィ
ンより炭素数が1〜4大きいものが気相状態で反応系で
重合用オレフィンと共存すべきである。
Such hydrocarbons are generally saturated hydrocarbons and are usually aliphatic. Specifically, for example,
There are propane, butane, pentane, hexane, cyclohexane, heptane, etc., and depending on the type of olefin for polymerization, one can be selected as appropriate if it can be condensed under the conditions of the cooling zone in the external gas phase circulation system. The amount of inert hydrocarbon used varies depending on the number of carbon atoms in the inert hydrocarbon, and when the number of carbon atoms is large, a relatively small amount is used, and when the number of carbon atoms is small, a relatively large amount is used. Generally, it is appropriate to use 1 to 70% by mole, preferably 2 to 50% by mole of the olefin for polymerization. Such inert hydrocarbons, which have 1 to 4 more carbon atoms than the olefin for polymerization, should coexist with the olefin for polymerization in the gas phase in the reaction system.

すなわち、反応器内の流動状態を良好に維持する為には
反応器内を実質的に乾燥状態に維持することが必要であ
るところより(湿潤状態においた場合は、粒子の凝集及
び反応器壁への粒子の付着が生ずる懸念がある)、不活
性炭化水素としては沸点が重合用オレフィンのそれに比
較的近いものを選ぶ必要があつて、従つて重合用オレフ
ィンより炭素数が5より大きいものは好ましくなく、一
方重合用オレフィンと同一の炭素数をもつた不活性炭化
水素を使用した場合は反応器より抜出される重合体に同
伴されてくる若干量の未反応重合用オレフィンの回収工
程で未反応重合用オレフィンと該不活性炭化水素との分
離が容易でなくなる点からその使用は好ましくないから
である。2外部気相循環系での凝縮 本発明によれば、反応器の外部に設置された熱交換器て
通常循環ガスを重合温度より10℃程度低い温度に冷却
して、有機アルミニウム化合物を上記不活性炭化水素と
ともに液化回収する。
In other words, in order to maintain a good flow state inside the reactor, it is necessary to keep the inside of the reactor in a substantially dry state (if kept in a wet state, particle agglomeration and reactor wall It is necessary to select an inert hydrocarbon whose boiling point is relatively close to that of the olefin for polymerization. On the other hand, if an inert hydrocarbon having the same carbon number as the olefin for polymerization is used, a small amount of unreacted olefin for polymerization accompanying the polymer extracted from the reactor may be unreacted in the recovery process. This is because it is not preferable to use it because separation of the olefin for reaction polymerization and the inert hydrocarbon becomes difficult. 2. Condensation in an External Gas Phase Circulation System According to the present invention, a heat exchanger installed outside the reactor cools the circulating gas to a temperature approximately 10°C lower than the polymerization temperature, thereby converting the organoaluminum compound into It is liquefied and recovered together with activated hydrocarbons.

不活性炭化水素を使用しない場合は前記のように熱交換
器が異常重合体により閉塞されるのであるが、驚くべき
ことに不活性炭化水素をも該熱交換器で凝縮させるとこ
の問題が全く生じない、ということが見い出されたので
ある。
If inert hydrocarbons are not used, the heat exchanger will be clogged with the abnormal polymer as described above, but surprisingly, if inert hydrocarbons are also condensed in the heat exchanger, this problem is completely eliminated. It was discovered that this does not occur.

このような好ましい現象が生じる理由は明確ではないが
、多分、凝縮液化した不活性炭化水素が熱交換器伝熱面
を絶えず洗浄すると同時に、凝縮した液状有機アルミニ
ウム化合物を不活性炭化水素液で希釈することにより高
濃度有機アルミニウム化合物存在化てのオレフィンの異
常反応を防止しているものと推定される。
The reason for this favorable phenomenon is not clear, but it is probably because the condensed liquefied inert hydrocarbon constantly cleans the heat exchanger heat transfer surfaces, while at the same time diluting the condensed liquid organoaluminum compound with the inert hydrocarbon liquid. It is presumed that this prevents abnormal reactions of olefins in the presence of high-concentration organoaluminum compounds.

3凝縮生成物の気化再循環 このようにして外部気相循環系の冷却帯域で回収された
液化生成物(有機アルミニウム化合物と不活性炭化水素
とから主としてなる混合物)の一部または全量を、昇温
気化させて反応器に再循環させる。
3. Vaporization recirculation of condensed product Part or all of the liquefied product (mixture mainly consisting of organoaluminum compounds and inert hydrocarbons) thus recovered in the cooling zone of the external gas phase circulation system is recycled to the Warm up and recirculate to the reactor.

この液化生成物を反応器に直接供給した場合は、反応器
壁の供給口付近はこの液化混合物により湿潤な状態にな
り、そこに反応器内の活性な粒子が付着してついには供
給口が重合体により閉塞されてしまうこと、その結果、
反応器内の有機アルミニウム化合物の濃度が低下して触
媒の性能が低下すること、ならびにこれを防止すべく該
液化生成物を昇温気化させて反応器に供給したところ、
上記の供給口の閉塞は完全に解消されるということ、が
見出されたからである。
If this liquefied product is fed directly to the reactor, the area around the feed port on the wall of the reactor will be wetted by the liquefied mixture, and the active particles in the reactor will adhere to it, eventually blocking the feed port. being occluded by polymers, resulting in
The concentration of the organoaluminum compound in the reactor decreases and the performance of the catalyst decreases, and in order to prevent this, the liquefied product was vaporized at an elevated temperature and supplied to the reactor.
This is because it has been found that the above-mentioned blockage of the supply port can be completely eliminated.

4 オレフィンの気相重合 上記三条件を同時充足させることを除けは、本発明によ
るオレフィンの気相重合法は冷却帯域を有する外部気相
循環系が付設された流動床反応帯域内て所謂チグラー型
触媒を使用してオレフィンを気相で重合すなわちオレフ
ィンのホモ重合またはオレフィン同志またはその他の少
量の共重合性単量体との共重合を行なわせる方法と本質
的には異ならない。
4 Gas phase polymerization of olefins Except for simultaneously satisfying the above three conditions, the gas phase polymerization method of olefins according to the present invention is carried out in a so-called Ziegler type reaction zone in a fluidized bed reaction zone equipped with an external gas phase circulation system having a cooling zone. This method is not essentially different from a method in which olefins are polymerized in the gas phase using a catalyst, that is, olefin homopolymerization or copolymerization with olefins or other small amounts of copolymerizable monomers.

触媒系は周期律表第■〜■族の遷移金属、特にチタンの
化合物、特にハロゲン化合物が一般的に使用可能てあり
、またそれらの化合物を各種の担体上に担持したもの、
特にノ和ゲン化マグネシウムを主体とする担体に担持し
たもの、は特に高活性であつてよく使用される。
As catalyst systems, compounds of transition metals of Groups I to II of the periodic table, especially titanium, and especially halogen compounds can generally be used, and those compounds supported on various carriers,
In particular, those supported on a carrier mainly composed of magnesium hydroxide have particularly high activity and are often used.

共触媒としては一般式AlR.X3−m(Rは水素また
は炭素数1〜10の炭化水素残基、Xはノ和ゲンまたは
炭素数1〜12のアルコキシ基、1〈mく3)を有し、
75℃、常圧で液状である有機アルミニウム化合物、た
とえばトリエチルアルミニウム、ジエチルアルミニウム
゛クロライド、エチルアルミニウムジクロライド、ジエ
チルアルミニウムエトキサイド等、好ましくはトリエチ
ルアルミニウムが使用される。また、重合触媒系の第三
成分として各種の電子供与性化合物を重合時に加えて、
触媒の性能向上を計ることも可能てある。重合用オレフ
ィンの代表的な群は、α−オレフィン(エチレンを包含
するものとする)である。
The cocatalyst has the general formula AlR. X3-m (R is hydrogen or a hydrocarbon residue having 1 to 10 carbon atoms, X is a nitrogen or an alkoxy group having 1 to 12 carbon atoms, 1<m>
Organic aluminum compounds which are liquid at 75° C. and normal pressure, such as triethylaluminum, diethylaluminium chloride, ethylaluminum dichloride, diethylaluminum ethoxide, etc., preferably triethylaluminum, are used. In addition, various electron-donating compounds can be added during polymerization as the third component of the polymerization catalyst system.
It is also possible to improve the performance of catalysts. A representative group of olefins for polymerization are alpha-olefins (which are intended to include ethylene).

炭素数8程度までのα−オレフィン、特にエチレン、プ
ロピレン、ブテンー1等、が適当である。jこれらのオ
レフィンは相互の混合物てあつてもよく、また少量の他
のエチレン性不飽和単量体、たとえばアクリル酸メチル
、メタクリル酸メチル等との混合物であつてもよい。5
気相重合装置 重合は、重合させようとするオレフィン及びオレフィン
類を含有するガス混合物の上昇気流で重合過程にある重
合体を流動状態に維持する、いわゆる流動床反応器中で
行われる。
α-olefins having up to about 8 carbon atoms, particularly ethylene, propylene, butene-1, etc., are suitable. j These olefins may be in mixtures with each other or with small amounts of other ethylenically unsaturated monomers, such as methyl acrylate, methyl methacrylate, etc. 5
Gas Phase Polymerization Apparatus Polymerization is carried out in so-called fluidized bed reactors in which the polymer being polymerized is maintained in a fluidized state by an updraft of a gas mixture containing the olefin to be polymerized and the olefins.

図面は、本発明の実施の為の装置の一例を示すものであ
る。
The drawings show an example of an apparatus for carrying out the invention.

反応器内の流動化は、外部気相循環系によつて反応器か
ら外部に抜出されてからブロワー6により反応器底部に
循環されるガスにより維持される。
Fluidization in the reactor is maintained by gas which is withdrawn to the outside from the reactor by means of an external gas phase circulation system and then circulated to the bottom of the reactor by means of a blower 6.

反応器内のガス流速は重合体及び循環ガスの物理的因子
に関係するが、一般的には空筒基準において+Cln/
秒から数+Cm/秒である。反応器内は温度20〜90
℃程度、圧力数気圧〜数十気圧(ゲージ)程度に保持さ
れる。好ましくは、温度50〜75℃程度、圧力10〜
35k91c71T−G程度である。反応器1の頂部よ
り抜き出されたガスはサイクロン3で大部分の微粉が除
去された後、反応熱除去の為のガス冷却器4に導びかれ
る。この冷却器内ではガス中の不活性炭化水素及び共触
媒である有機アルミニウム化合物が凝縮される。凝縮さ
れた液はポンプ5により昇圧され、不活性炭化水素加熱
器12により気化された後(たとえば、スチーム加熱に
よる)、循環口13より反応器に循環される。なお、こ
の凝縮液は、必要に応じ系外に抜き出しても良い。一方
、ガス冷却器4で冷却されたガスは、昇圧機6により昇
圧されて反応器の底部9に再循環される。
The gas flow rate in the reactor is related to the physical factors of the polymer and the circulating gas, but generally +Cln/
seconds to several + Cm/second. Temperature inside the reactor is 20-90
The temperature is maintained at a temperature of about 10°C and a pressure of several to several tens of atmospheres (gauge). Preferably, the temperature is about 50-75°C and the pressure is about 10-75°C.
It is about 35k91c71T-G. The gas extracted from the top of the reactor 1 is led to a gas cooler 4 for removing reaction heat after most of the fine powder is removed by a cyclone 3. In this cooler, inert hydrocarbons in the gas and an organoaluminum compound as a cocatalyst are condensed. The condensed liquid is pressurized by the pump 5, vaporized by the inert hydrocarbon heater 12 (for example, by steam heating), and then circulated to the reactor through the circulation port 13. Note that this condensed liquid may be extracted out of the system if necessary. On the other hand, the gas cooled by the gas cooler 4 is pressurized by the booster 6 and recirculated to the bottom 9 of the reactor.

触媒及ひ新鮮不活性炭化水素は供給口8により反応床側
部へ、オレフィン及ひ分子量制御剤である水素はガス供
給口10より外部気相循環ラ,インAへ、供給される。
また、ラインAのガス組成の分析は、分析計11により
行なわれる。各物質の供給位置については、触媒は反応
床側部より供給することは必須条件であるが、他のもの
については特に限定はない。また、各物質は混合され、
て一つの供給口より供給してもそれぞれ別々の供給口よ
り供給しても差つかえない。触媒は特殊な粉体供給機を
用いて供給する必要はなく、本発明で使用される不活性
炭化水素との懸濁状態で供給するかあるいは重合させよ
うとするオレフィンの・液化物の中で前もつて該オレフ
ィンを少量重合させて微量重合体とオレフィン液との懸
濁状態で供給することも可能である。なお、循環使用さ
れる有機アルミニウム化合物の外に、新鮮な有機アルミ
ニウム化合物を反応帯域に導入することができることは
いうまでもない。重合体生成物は、反応床2の高さが実
質的に一定になるようにガス整流板7の近傍より抜出口
14を経て抜き出される。
The catalyst and fresh inert hydrocarbons are fed to the side of the reaction bed through a feed port 8, and the olefin and hydrogen, which is a molecular weight control agent, are fed to the external gas phase circulation line A through a gas feed port 10.
Further, analysis of the gas composition of line A is performed by an analyzer 11. Regarding the supply position of each substance, it is an essential condition that the catalyst is supplied from the side of the reaction bed, but there are no particular limitations on other substances. Also, each substance is mixed,
It makes no difference whether they are supplied from one supply port or from separate supply ports. The catalyst does not need to be supplied using a special powder feeder, but can be supplied in suspension with the inert hydrocarbon used in the present invention or in the liquefied product of the olefin to be polymerized. It is also possible to previously polymerize a small amount of the olefin and supply it in the form of a suspension of the small amount of polymer and the olefin liquid. It goes without saying that in addition to the recycled organoaluminum compound, fresh organoaluminum compound can be introduced into the reaction zone. The polymer product is extracted from the vicinity of the gas baffle plate 7 via the extraction port 14 so that the height of the reaction bed 2 is substantially constant.

これらの反応器は、たとえば共重合体を製造するような
場合に、所望ならば多槽連続につないで使用することも
可能である。6実験例 )実施例1 固体触媒成分の製造 直径12wnのボール(SUS3托製)3(4)個を収
容した内径100wn1内容積800m1のポット(S
US3l6製)に窒素雰囲気下で無水塩化マグネシウム
20.0fと安息香酸エチル6.0m1とを採取した。
If desired, these reactors can be connected in series and used, for example, in the case of producing a copolymer. 6 Experimental Examples) Example 1 Production of Solid Catalyst Component A pot (S
20.0 f of anhydrous magnesium chloride and 6.0 ml of ethyl benzoate were collected in a tank (manufactured by US3l6) under a nitrogen atmosphere.

このポットを振動ミルにかけ、全振幅4.0wn1振動
数1200/分で2榊間処理して固体生成物aを得た。
一方、内容積200m1のフラスコに窒素雰囲気中三塩
化チタン(四塩化チタンを金属アルミニウムで還元して
得られたTiCl3・1I3AICI3の組成をもつ共
晶体)10.0V(チタン原子として50ミリモル(W
l.M)相当)、1・2−ジクロロエタン64Tntお
よび別途調製した三塩化ヨウ素の1・2−ジクロロエタ
ン溶液36m1(三塩化ヨウ素8.6TrLM含有)を
装入し、35℃〜40℃で3時間攪拌して、黒紫色の均
一な液bを得た。上記固体生成物AlO.Oyと上記溶
液41.3m1とをあらためて上記振動ミルポットに入
れ、窒素雰囲気中て引き続き坐時間粉砕処理した。
This pot was subjected to a vibration mill and processed for two cycles at a total amplitude of 4.0wn1 vibration frequency of 1200/min to obtain a solid product a.
On the other hand, titanium trichloride (eutectic with the composition TiCl3.1I3AICI3 obtained by reducing titanium tetrachloride with metal aluminum) was placed in a flask with an internal volume of 200 m1 in a nitrogen atmosphere at 10.0 V (50 mmol (W) as titanium atoms).
l. M) equivalent), 64 Tnt of 1,2-dichloroethane and 36 ml of a separately prepared solution of iodine trichloride in 1,2-dichloroethane (containing 8.6 TrLM of iodine trichloride) were charged, and the mixture was stirred at 35°C to 40°C for 3 hours. A black-purple uniform liquid b was obtained. The solid product AlO. Oy and 41.3 ml of the above solution were placed again in the above vibrating mill pot and subjected to sitting-time grinding in a nitrogen atmosphere.

得られたスラリーを水銀柱2Tr0nの減圧下に25゜
Cで乾燥して、固体生成物を得た。この固体は、黒色て
板状の粗い粒子であつた。この固体を振動ミルで更に2
時間粉砕した後、精製したn−ヘキサンで洗浄すること
により、微粉状の固体触媒成分cを得た。Ti担持率は
2.4踵量%であつた。重合 塔径300wrm1塔高150hなる反応部と直径60
0順、高さ900wr!nなる上方拡大部を有する流動
床反応器に、別途重合され十分乾燥されたポリプロピレ
ン粉末重合体8.5k9を供給し、装置内部をプロピレ
ンにより置換し、反応器内を10k9kイ・Gとした。
The resulting slurry was dried at 25° C. under a reduced pressure of 2 TrOn of mercury to obtain a solid product. This solid was black, plate-like, coarse particles. This solid is further processed in a vibrating mill for two more times.
After being pulverized for a period of time, it was washed with purified n-hexane to obtain a finely powdered solid catalyst component c. The Ti loading rate was 2.4% by weight. Polymerization column diameter 300wrm 1 column height 150h reaction section and diameter 60
0 order, height 900wr! A separately polymerized and sufficiently dried polypropylene powder polymer (8.5k9) was fed to a fluidized bed reactor having an upwardly expanding section n, and the inside of the apparatus was replaced with propylene to make the inside of the reactor 10k9k i·G.

次に昇圧機を駆動して、反応器内のポリプロピレン粉末
を流動状態に維持した。昇圧機の吐出流量は81d/時
であつた。次に反応器にトリエチルアルキルアルミニウ
ム6.72y(5n−ヘキサンに懸濁させた先に製造さ
れた固体触媒成分C9.7Oy(235mgチタン原子
相当)、更に総n−ヘキサン供給量が1.5リットルに
なるようにn−ヘキサンを供給して、反応を開始した。
反応中、反応器内を60゜Cに制御し、更に重合圧を1
0k91c這・Gになるよう消費量見合いでプロピレン
を供給して、3時間重合を継続した。重合中に反応熱除
去用ガス冷却器で凝縮されるn−ヘキサンの量は平均約
37k9/時であつた。この液化物を約60゜Cに昇温
して気化した後、反応器に循環した。生成ポリマーの重
量は重合前に予め投入したポリマーを差し引き、33.
9kgであつた。また、生成ポリマーの熱ヘプタン不溶
部の割合は、予め投入したポリマーの寄与を補正後96
.4重量%であつた。上記と全く同一条件て重合を11
回繰り返して、実施したが、ガス冷却器4及び不活性炭
化水素循環口13(図面参照)ての閉塞の兆候は全く認
められなかつた。
Next, the pressure booster was operated to maintain the polypropylene powder in the reactor in a fluid state. The discharge flow rate of the booster was 81 d/hour. Next, 6.72 y of triethylalkylaluminium (5 9.7 y of the previously produced solid catalyst component C suspended in n-hexane (equivalent to 235 mg titanium atoms)) was added to the reactor, and the total amount of n-hexane supplied was 1.5 liters. The reaction was started by supplying n-hexane such that
During the reaction, the inside of the reactor was controlled at 60°C, and the polymerization pressure was kept at 1
Polymerization was continued for 3 hours by supplying propylene in proportion to the amount consumed so that the concentration was 0k91c/G. The amount of n-hexane condensed in the reaction heat removal gas cooler during the polymerization was on average about 37 k9/h. This liquefied product was heated to about 60°C, vaporized, and then circulated to the reactor. The weight of the produced polymer is obtained by subtracting the polymer added in advance before polymerization, and 33.
It weighed 9 kg. In addition, the proportion of the heated heptane insoluble part of the produced polymer was 96% after correcting the contribution of the polymer added in advance.
.. It was 4% by weight. Polymerization was carried out under exactly the same conditions as above.
Although the test was repeated several times, no signs of clogging in the gas cooler 4 or the inert hydrocarbon circulation port 13 (see drawing) were observed.

念の為ガス冷却器及び不活性炭化水素循環口を開放点検
したところ、ポリマーの付着は認められなかつた。
As a precaution, the gas cooler and inert hydrocarbon circulation port were opened and inspected, and no polymer was found to be attached.

実施例2 触媒及ひ装置は実施例1と全く同様てある。Example 2 The catalyst and equipment were exactly the same as in Example 1.

流動床反応器に別途重合され十分乾燥されたポリプロピ
レン粉末重合体8.5kgを供給し、反応器内を10k
91c消・Gとした。更に、n−ブタンを供給し、反応
器内の圧力を15.5k91cTPt−Gとした。次に
昇圧機を駆動して、反応器内のポリプロピレン粉末を流
動状態に維持した。昇圧機の吐出流量は、実施例1と同
様81d/時てあつた。反応器にトリエチルアルキルア
ルミニウム6.72qとn−ヘキサンに懸濁させた実施
例1で製造した固体触媒成分C9.7Oy(235mg
チタン原子相当)を供給して、反応を開始した。反応中
反応器内を60℃に制御し、更に重合圧を15.5k9
1cd−Gになるよう消費量見合いでプロピレンを供給
して、3時間重合を継続した。
8.5 kg of separately polymerized and sufficiently dried polypropylene powder polymer was supplied to the fluidized bed reactor, and the inside of the reactor was heated to 10 kg.
It was set as 91c erase/G. Furthermore, n-butane was supplied, and the pressure inside the reactor was set to 15.5k91cTPt-G. Next, the pressure booster was operated to maintain the polypropylene powder in the reactor in a fluid state. The discharge flow rate of the booster was 81 d/hour as in Example 1. In a reactor, 6.72q of triethylalkylaluminium and 9.7Oy (235mg
(equivalent to titanium atoms) was supplied to start the reaction. During the reaction, the inside of the reactor was controlled at 60°C, and the polymerization pressure was further increased to 15.5k9.
Polymerization was continued for 3 hours by supplying propylene in proportion to the amount consumed so that the amount was 1 cd-G.

重合中に反応熱除去用ガス冷却器で凝縮されるn−ブタ
ンの量は平均約74k9/時であり、ここには微量のn
−ヘキサンも含まれていた。この液化物を約60゜Cに
昇温して気化した後、反応器に循環した。生成ポリマー
の重量は重量前に予め投入したポリマーを差し引き34
.3k9であつた。また、生成ポリマーの熱ヘプタン不
溶部の割合は予め投入したポリマーの寄与を補正後95
.踵量%であつた。上記と全く同一条件て重合をw回繰
り返し実施したが、ガス冷却器4及び不活性炭化水素循
環口13での閉塞の兆候は全く認められなかつた。
The amount of n-butane condensed in the reaction heat removal gas cooler during polymerization is on average about 74k9/h, including a trace amount of n-butane.
- Also contained hexane. This liquefied product was heated to about 60°C, vaporized, and then circulated to the reactor. The weight of the produced polymer is calculated by subtracting the polymer added in advance before the weight.
.. It was 3k9. In addition, the proportion of the heated heptane insoluble portion of the produced polymer is 95% after correcting the contribution of the polymer added in advance.
.. The heel volume was %. Polymerization was repeated w times under exactly the same conditions as above, but no signs of clogging in the gas cooler 4 or the inert hydrocarbon circulation port 13 were observed.

念の為開放点検したところポリマーの付着は認められな
かつた。比較例1 反応器内にn−ヘキサンを全く加えなかつたこと以外は
実施例1と全く同様てある。
When I opened it up and inspected it just to be sure, no polymer adhesion was found. Comparative Example 1 Completely the same as Example 1 except that no n-hexane was added to the reactor.

重合を開始してから2時間1吟経過したところでガス冷
却器の冷却水自動制御用弁の開度が全開になつても流動
床反応器内の温度を60゜Cに制御出来なくなつたので
、急濾反応を停止し、ガス冷却器を開放点検した。冷却
器の伝熱面にフィルム状にポリマーが付着していること
が判明した。
Two hours and one minute after the start of polymerization, the temperature inside the fluidized bed reactor could no longer be controlled to 60°C even though the automatic cooling water control valve of the gas cooler was fully opened. , the rapid filtration reaction was stopped, and the gas cooler was opened and inspected. It was found that a film of polymer was attached to the heat transfer surface of the cooler.

この付着ポリマーの熱ヘプタン不溶部の割合は48.鍾
量%であつた。比較例2不活性炭化水素加熱器12を常
温にしておいたこと以外は実施例1と同様である。
The proportion of hot heptane insoluble portion of this deposited polymer was 48. The weight was %. Comparative Example 2 Same as Example 1 except that the inert hydrocarbon heater 12 was kept at room temperature.

重合を開始してから1時間2吟経過したころからポンプ
5の吐出圧が徐々に上昇し始め、反応器への供給口が閉
塞し始めたことが判明した。更に4扮経過したところ、
当該ポンプの吐出圧が流量ゼロの状態のときの圧力を示
したのでポンプを停止し、重合を続けた。重合開始から
3時間経過したところて反応を停止し、装置を開放し、
点検したところ、ガス冷却器4へのポリマー付着はなか
つたが不活性炭化水素循環口13付近にポリマーが付着
して完全に供給口を閉塞していることが判明した。
It was found that the discharge pressure of the pump 5 began to gradually increase after 1 hour and 2 minutes had passed from the start of polymerization, and the supply port to the reactor began to become clogged. After 4 more episodes,
Since the discharge pressure of the pump showed the pressure when the flow rate was zero, the pump was stopped and polymerization was continued. After 3 hours from the start of polymerization, the reaction was stopped and the apparatus was opened.
Upon inspection, it was found that although there was no polymer attached to the gas cooler 4, polymer was attached near the inert hydrocarbon circulation port 13, completely blocking the supply port.

生成ポリマーの重量は重合前に予め投入したポリマーを
差し引き24.1k9であつた。
The weight of the produced polymer was 24.1k9 after subtracting the polymer charged in advance before polymerization.

生成ポリマーの熱ヘプタン不溶部の割合は予め投入した
ポリマーの寄与を補正後93.1重量%てあつた。また
、生成ポリマー中には粒子が凝集した粗大ポリマーが存
在していた。フ図面の簡単な説明 図面は、本発明を実施する装置の一例を模型的に示すも
のである。
The proportion of the hot heptane insoluble portion of the produced polymer was 93.1% by weight after correcting the contribution of the polymer introduced in advance. In addition, coarse polymer in which particles were aggregated was present in the produced polymer. BRIEF DESCRIPTION OF THE DRAWINGS The drawings schematically show an example of an apparatus for implementing the present invention.

1・・・・・・反応器、2・・・・・・反応帯、3・・
・・・サイクロン、4・・・・・・ガス冷却器、5・・
・・・・ポンプ、6・・・・・・昇圧器、7・・・・・
・ガス整流板、8・・・・・・触媒/不活性炭化水素供
給口、9・・・・・・循環ガス供給口、10・・オレフ
ィン/水素供給口、11・・・・・・ガス組成分析計、
12・・・・・・不活性炭化水素加熱器、13・・・・
・・不活性炭化水素循環口、14・・・・・・製品抜出
口、A・・・・・・外部気相循環ライン。
1...Reactor, 2...Reaction zone, 3...
...Cyclone, 4...Gas cooler, 5...
... Pump, 6 ... Booster, 7 ...
・Gas baffle plate, 8... Catalyst/inert hydrocarbon supply port, 9... Circulating gas supply port, 10... Olefin/hydrogen supply port, 11... Gas composition analyzer,
12... Inert hydrocarbon heater, 13...
...Inert hydrocarbon circulation port, 14...Product outlet, A...External gas phase circulation line.

Claims (1)

【特許請求の範囲】 1 冷却帯域を有する外部気相循環系が付設された流動
床反応帯域内で、該冷却帯域の冷却条件下で液化する有
機アルミニウム化合物を共触媒とする触媒系を使用して
オレフィンの気相重合を行なうに当り、下記の条件を充
足させることを特徴とする、オレフィンの気相重合法。 (A)反応帯域内に、重合用オレフィンより炭素数が1
〜4大きい不活性炭化水素を気相状態で共存させること
。(B)反応帯域内の気相をこの外部気相循環系の冷却
帯域で冷却する際に、この不活性炭化水素をこの有機ア
ルミニウム化合物と共に液化させること。 (C)この冷却帯域での液化生成物の一部または全部を
、気化させてから反応帯域に再循環させること。
[Claims] 1. In a fluidized bed reaction zone equipped with an external gas phase circulation system having a cooling zone, a catalyst system using an organoaluminum compound as a cocatalyst that liquefies under the cooling conditions of the cooling zone is used. A method for gas phase polymerization of olefins, which is characterized in that the following conditions are satisfied when performing gas phase polymerization of olefins. (A) The number of carbon atoms in the reaction zone is 1 from the olefin for polymerization.
~4 Large inert hydrocarbons coexist in the gas phase. (B) liquefying the inert hydrocarbon together with the organoaluminum compound as the gas phase in the reaction zone is cooled in the cooling zone of the external gas phase circulation system. (C) Part or all of the liquefied product in this cooling zone is vaporized and recycled to the reaction zone.
JP53119133A 1978-09-29 1978-09-29 Gas phase polymerization method of olefin Expired JPS6057441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53119133A JPS6057441B2 (en) 1978-09-29 1978-09-29 Gas phase polymerization method of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53119133A JPS6057441B2 (en) 1978-09-29 1978-09-29 Gas phase polymerization method of olefin

Publications (2)

Publication Number Publication Date
JPS5545744A JPS5545744A (en) 1980-03-31
JPS6057441B2 true JPS6057441B2 (en) 1985-12-14

Family

ID=14753746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53119133A Expired JPS6057441B2 (en) 1978-09-29 1978-09-29 Gas phase polymerization method of olefin

Country Status (1)

Country Link
JP (1) JPS6057441B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731905A (en) * 1980-08-05 1982-02-20 Mitsui Toatsu Chem Inc Polymerization of alpha-olefin
JPS5767612A (en) * 1980-10-15 1982-04-24 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer
US4543399A (en) * 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
US4588790A (en) * 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
DZ520A1 (en) * 1982-03-24 2004-09-13 Union Carbide Corp Improved process for increasing the space-time yield of an exothermic polymerization reaction in a fluidized bed.
JPS59123654U (en) * 1983-02-10 1984-08-20 日産自動車株式会社 Evaporated fuel control device for internal combustion engine
IL71357A (en) * 1983-03-29 1987-03-31 Union Carbide Corp Process for producing low density ethylene copolymers
JPH062775B2 (en) * 1984-06-20 1994-01-12 日本石油株式会社 Gas phase polymerization of olefin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507640A (en) * 1973-05-28 1975-01-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507640A (en) * 1973-05-28 1975-01-27

Also Published As

Publication number Publication date
JPS5545744A (en) 1980-03-31

Similar Documents

Publication Publication Date Title
JP3852957B2 (en) Method and apparatus for producing propylene homopolymers and copolymers
US5028670A (en) Process for the gas-phase polymerization of olefins in a fluidized-bed reactor
KR940004124B1 (en) Polymerisation of olefins using a ziegler-natta catalyst and two organometallic compounds
EP0050477B1 (en) Process for producing ethylene copolymer by gaseous phase polymerization
JP2002504955A (en) Method for producing polypropylene alloy
CA1140699A (en) Process for production of olefin polymer by gas-phase polymerization
EP3237459B1 (en) Process for transitioning between incompatible catalysts
JP3096310B2 (en) Method and apparatus for gas phase polymerization of α-olefin
TWI245049B (en) Polymerisation process
JP2002535455A (en) Polymerization method
JPS6412290B2 (en)
RU2730015C1 (en) Polymerization method involving unloading polyolefin particles from a gas-phase polymerization reactor
WO2003031486A1 (en) Process for the production of propylene copolymers
KR20170109548A (en) Method for converting between non-fusable catalysts
CZ722689A3 (en) Process of one or more alpha-olefins continuous polymerization
JPS6057441B2 (en) Gas phase polymerization method of olefin
JP2004537617A (en) Optimization of heat removal in gas-phase fluidized-bed process
JP3216928B2 (en) Drying method of gas phase polymerization reaction system
JPS62104810A (en) Production of olefin polymer
US5266276A (en) Apparatus for the gas-phase polymerization of olefins in a fluidized-bed reactor
JP2755699B2 (en) Apparatus and method for gas phase polymerization of olefins in a fluidized bed reactor by introducing an organometallic compound
JP3580001B2 (en) Method for producing propylene-olefin block copolymer
JPS5865710A (en) Production of polyolefin
JPS59131606A (en) Ethylene polymer catalytic manufacture
JPH04331219A (en) Production of propylene block copolymer