JPS6057297B2 - Distribution line reclosing method - Google Patents

Distribution line reclosing method

Info

Publication number
JPS6057297B2
JPS6057297B2 JP54103845A JP10384579A JPS6057297B2 JP S6057297 B2 JPS6057297 B2 JP S6057297B2 JP 54103845 A JP54103845 A JP 54103845A JP 10384579 A JP10384579 A JP 10384579A JP S6057297 B2 JPS6057297 B2 JP S6057297B2
Authority
JP
Japan
Prior art keywords
section
switch
node
switches
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54103845A
Other languages
Japanese (ja)
Other versions
JPS5629426A (en
Inventor
哲司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP54103845A priority Critical patent/JPS6057297B2/en
Publication of JPS5629426A publication Critical patent/JPS5629426A/en
Publication of JPS6057297B2 publication Critical patent/JPS6057297B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、分岐を有する配電系統における配電線再閉
路方式に関し、事故区間を避けて電源側健全区間に再送
電できるようにした配電線再閉路方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distribution line reclosing method in a power distribution system having branches, and more particularly to a distribution line reclosing method that avoids faulty sections and retransmits power to healthy sections on the power source side.

配電系統においては、いくつかの区分開閉器を設置し
、これら区分開閉器と再閉路リレーとを組合せることに
より、ある区間の事故発生時に全区間の停電を避けるよ
う、事故発生配電線を電源側健全区間と停電区間に分離
し、電源側健全区間に再送電を行なう。
In power distribution systems, several sectional switches are installed, and by combining these sectional switches and re-closing relays, when an accident occurs in a certain section, power is supplied to the distribution line where the fault occurred to avoid a power outage in the entire section. The line will be separated into a healthy section on the power side and a section with a power outage, and power will be retransmitted to the healthy section on the power source side.

なお、停電区間は事故区間と負荷側健全区間とに分けら
れ、負荷側健全区間には他の配電線から電力融通させる
。 従来の再閉路方式は、大きくには低速度再閉路方式
、高速度再閉路方式、高速度・低速度再閉路組合せ方式
に分けられるが、何れの方式においても再閉路に際して
区分開閉器自体に持つタイマーがタイムアップすること
で次区間への送電を行なうための投入動作をし、この投
入動作後一定時間以内に該開閉器以後の配電線が無電圧
となると該区分開閉器を開放ロックする。
Note that the power outage section is divided into an accident section and a healthy section on the load side, and power is provided to the healthy section on the load side from other distribution lines. Conventional reclosing methods can be broadly divided into low-speed reclosing methods, high-speed reclosing methods, and high-speed/low-speed reclosing combination methods, but in all methods, the sectional switch itself has a When the timer times up, a closing operation is performed to transmit power to the next section, and if the distribution line after the switch becomes non-voltage within a certain period of time after the closing operation, the section switch is opened and locked.

このため、分岐を有する配電系統では事故区間を一意に
検出するには運用上の問題があつた。これを第1図に示
す配電系統を例に説明する。理解を助けるために各区分
開閉器のタイマーを全て同一時限とする。 第1図は、
変電所側母線1からしや新製2を介した配電線側は負荷
区間A−Jを区分するために区分開閉器3〜12を設け
、負荷区間B、Gで分岐した配電系統を示す。13は配
電線側の事故発生でしや新製2のトリフ信号を出す保護
装置を示す。
For this reason, in distribution systems with branches, there are operational problems in uniquely detecting fault sections. This will be explained using the power distribution system shown in FIG. 1 as an example. To aid understanding, the timers for each section switch are all set to the same time. Figure 1 shows
On the distribution line side via the substation side bus 1 and Shinsei 2, section switches 3 to 12 are provided to separate the load sections A-J, and the distribution system is branched at load sections B and G. 13 shows a protection device that issues a trifle signal in the event of an accident on the distribution line side.

こうした配電系統において、区分開閉器3〜12が同一
機能のものとし、負荷区間Dで事故発生したとする。こ
の場合、従来の再閉路方式における区間開閉器の動作は
次のようになる。ます、事故発生でしや断機2を故障し
や断後に区分開閉器3〜12は開放される。次にしや新
製2の投入から一定時間後に区分開閉器3が投入される
。更に、一定時間後に区分開閉器4が投入され、次いて
区分開閉器5及び9が同時に投入される。その後、区分
開閉器6、10及び12が同時に投入される。この投入
と同時に、負荷区間Dに事故が継続しておれば、しや新
製2がしや断される。このとき、区分開閉器6、10、
12は一定時間電圧有りで投入して一定時間内に無電圧
というパターン認識により開放ロックされる。その後、
しや新製の再投入により負荷区間A、B、C、Gが電源
側健全区間として送電される。また、事故区間D及び負
荷側健全区間E,F,H,I,Jは停電区間となる。従
つて、事故区間は区間Dのみであるにも拘らず、区間D
,H,Jが事故区間と判定され、停電区間も正しくは区
間D,E,Fであるのにそれら区間に加えて区間H,I
,Jが停電区間となる。従つて、ある時刻においては、
1つの区分開閉器が投入となるように各区分開閉器の時
限を設定する必要がある。しかし、配電系統は系統構成
の変更が頻繁であり、その度に各区分開閉器の時限設定
を更新するのは系統の面的広がりもあつて、運用上大き
な問題となつている。
In such a power distribution system, it is assumed that the sectional switches 3 to 12 have the same function and that an accident occurs in the load section D. In this case, the operation of the section switch in the conventional reclosing method is as follows. When an accident occurs, the breaker 2 breaks down and the section switches 3 to 12 are opened after the breaker 2 is disconnected. Next, the section switch 3 is turned on after a certain period of time after the Shiya Shinsei 2 is turned on. Further, after a certain period of time, the section switch 4 is turned on, and then the section switches 5 and 9 are turned on at the same time. Thereafter, section switches 6, 10 and 12 are closed simultaneously. At the same time as this turning on, if the accident continues in the load section D, the Shinsei 2 will be cut off. At this time, the section switches 6, 10,
12 is turned on with voltage for a certain period of time and is locked open by pattern recognition of no voltage within a certain period of time. after that,
With the reinsertion of Shinsei, power is transmitted to load sections A, B, C, and G as healthy sections on the power source side. Furthermore, the accident section D and the load-side healthy sections E, F, H, I, and J are power outage sections. Therefore, even though the accident section is only section D, section D
, H, and J are determined to be accident sections, and the power outage sections are also correctly sections D, E, and F, but in addition to those sections, sections H, I
, J is the power outage section. Therefore, at a certain time,
It is necessary to set the time limit for each section switch so that one section switch is closed. However, the system configuration of power distribution systems frequently changes, and updating the time limit settings of each section switch each time is a major operational problem, partly because the system is spread out.

本発明は、配電線の分岐点ての複数の区分開閉器の投入
制御を各経路個別になし、ある経路に沿つた区分開閉器
の投入制御完了後に分岐点の他の経路に沿つた投入制御
をすることにより、正確な事故区間の判定を可能とした
配電線再閉路方式を提供することを目的とする。
The present invention performs closing control of a plurality of sectional switches at branch points of a distribution line individually for each route, and after completion of closing control of a sectional switch along a certain route, close control of a plurality of sectional switches at branch points along other routes is performed. The purpose of this study is to provide a distribution line reclosing method that enables accurate determination of fault sections.

本発明は区分開閉器を制御対象とする計算機を導入し、
計算機には配電系統の接続関係を記憶させておき、事故
発生後の再閉路に電源側から順次開閉器に投入指令を出
し、この投入制御が分岐点に至つた場合にはまず1つの
区分開閉器を選択して投入し、この投入した開閉器の経
路にある後続の開閉器を順次投入させるという経路に対
する投入制御を完了した後に分岐点に戻つて他の経路に
対する投入制御をする。
The present invention introduces a computer that controls a sectional switch,
The connection relationship of the power distribution system is stored in the computer, and when the circuit is reclosed after an accident, the power supply side sequentially issues closing commands to the switches, and when this closing control reaches a branching point, first one section is switched on and off. After completion of closing control for a route in which a switch is selected and closed, and subsequent switches in the route of the closed switch are closed in sequence, the system returns to the branch point and performs closing control for other routes.

このような投入制御を分岐点毎に各経路に順次施し、事
故区間に属する開閉器の投入でしや断器が無電圧開放し
た場合には該しや断器を再投入して上記と同様の投入制
御をし、この制御では事故区間に属する開閉器が開放ロ
ックされていることから、正しく事故区間を判定する再
閉路を可能にする。本発明による再閉路方式の具体例を
第1図の配電系統で説明すると、事故発生後のしや断器
2の.投入に次いで区分開閉器3,4を順次投入する。
Such closing control is applied sequentially to each route at each branch point, and if the switch that belongs to the fault section is closed and the switch is opened without voltage, the switch is reclosed and the same procedure as above is performed. Since the switch belonging to the accident section is opened and locked in this control, it is possible to reclose the circuit to correctly determine the accident section. A specific example of the reclosing method according to the present invention will be explained using the power distribution system shown in FIG. 1. After closing, section switches 3 and 4 are closed in sequence.

開閉器4の投入後は負荷区間Bが分岐点であるので、そ
の一方の経路を構成する開閉器5を投入する。この開閉
器5の投入に次いで開閉器6,7,8を投入する制御手
順になるが、開閉器6の投入−時に負荷区間Dの事故が
継続していればしや断器2がしや断されると共に開閉器
6が開放ロックされる。この後、区問2の再投入及び開
閉器3,4の再投入を順次施し、負荷区間Bの分岐点で
は開閉器5を投入する。その後、開閉器6が開放ロック
されていることが判明しているため、分岐点に戻つて他
方の経路を構成する開閉器9を投入させる。この開閉器
9の投入後、負荷区間Gが分岐点であるから、その一方
の開閉器10を投入し、次いて開閉器11の投入でその
経路の制御を終了し、次には負荷区間Gの他方の経路を
構成する開閉器12を投入し再閉路制御を完了する。こ
の結果、事故区間Dのみを避けた再閉路がなされ、停電
区間D,E,Fのみとなる。上記の本発明の再閉路方式
における計算機のフローチャートを第2図に示す。
After the switch 4 is closed, the load section B is a branch point, so the switch 5 that constitutes one of the routes is closed. The control procedure is to close switches 6, 7, and 8 after closing switch 5, but if the fault in load section D continues when switch 6 is closed, then At the same time, the switch 6 is opened and locked. Thereafter, section 2 is re-closed and switches 3 and 4 are re-closed in sequence, and at the branch point of load section B, switch 5 is closed. Thereafter, since the switch 6 is found to be locked open, the operator returns to the branch point and closes the switch 9 constituting the other route. After the switch 9 is closed, the load section G is a branch point, so one of the switches 10 is closed, and then the switch 11 is closed to complete the control of that route, and then the load section G is closed. The switch 12 constituting the other path is turned on to complete the re-closing control. As a result, the circuit is reclosed avoiding only the accident section D, leaving only the power outage sections D, E, and F. FIG. 2 shows a flowchart of the computer in the above-mentioned reclosing method of the present invention.

なお、計算機が配電系統の構成を認識するために、配電
線をツリー(Tree)系統で表現し、その際のしや断
器2、区分開閉器3〜12はブランチとなり、負荷区間
がノードになる。第3図は第1図に対応するツリー系統
を示す。第2図のフローチャートに従つて再閉路制御を
説明すると、ステップS1にて制御対象配電系統のしや
断器が閉じたか否かを判定し、しや断器が閉じた後に再
閉路制御経路のノード番号Nを設定する(ステップS2
)。
In addition, in order for the computer to recognize the configuration of the distribution system, the distribution line is expressed as a tree system, and in this case, the line breakers 2 and sectional switches 3 to 12 become branches, and the load sections are connected to nodes. Become. FIG. 3 shows a tree system corresponding to FIG. To explain the reclosing control according to the flowchart in Fig. 2, in step S1 it is determined whether or not the breaker of the distribution system to be controlled is closed, and after the breaker is closed, the reclosing control path is changed. Set node number N (step S2
).

設定したノードN及び後続のノードを順次探索する(ス
テップS3)。ノードの順次探索において、該ノードが
サン(SON)を持たないリーフノード(LeafNO
de)か否かを判定する(ステップS4)。ここで、サ
ンとはノードPからノードQへ向かうブランチがある場
合にノードQをノードPのサンと称し、第3図ではノー
ドAのサンはノードB,ノードBのサンはノードCとノ
ードGになる。リーフノードでない場合には分岐ノード
か否かを判定する(ステップS5)。
The set node N and subsequent nodes are sequentially searched (step S3). In the sequential search of nodes, if the node has a leaf node (LeafNO) that does not have a SON
de) or not (step S4). Here, when there is a branch going from node P to node Q, node Q is called the sun of node P, and in FIG. 3, the sun of node A is node B, and the sun of node B is node C and node G. become. If it is not a leaf node, it is determined whether it is a branch node (step S5).

ここで、分岐ノードとは2個以上のサンを持つノードを
意味し、第3図ではノードB及びノードGが分岐ノード
になる。ステップS5の判定で分岐ノードであれば該分
岐ノード番号をスタックメモリに格納しておく(ステッ
プS6)。ステップS5,S6を経た後、処理対象ノー
ドと後続のノードとの間に位置するブランチの区分開閉
器投入指令を出す(ステップS7)。この投入指令が対
象とする区分開閉器が動作したか否かを判定し(ステッ
プS8)、区分開閉器が動作した場合に該開閉器の投入
で負荷区間が無電圧になつたか否かを判定し(ステップ
S9)、再閉路成攻であればステップS3に戻つてノー
ドNの次のノードN+1の探索をする。ステップS8に
て事故区間ノードに属する区分開閉器の投入で再閉路失
敗した場合、該区分開閉器は開放ロックされたことを記
憶する(ステップSlO)と共にスタックメモリ内容を
消去し(ステップSll)、ステップS1に戻つてしや
断器の再投入を待つ。しや断器の再投入で上記の如きス
テップS3〜S9のルーチンで開放ロックされた区分開
閉器の投入になると、そろ開閉器の投入動作がなされず
、ステップS8からステップSl2に進み、開放ロック
されていることを検知し、ステップSl3に進む。
Here, a branch node means a node having two or more sons, and in FIG. 3, node B and node G are branch nodes. If it is a branch node as determined in step S5, the branch node number is stored in the stack memory (step S6). After going through steps S5 and S6, a division switch closing command for a branch located between the processing target node and the subsequent node is issued (step S7). It is determined whether the section switch targeted by this closing command has operated (step S8), and if the section switch has operated, it is determined whether the load section has become voltage-free by closing the switch. (step S9), and if the reclosure is successful, the process returns to step S3 and searches for the next node N+1 after node N. If re-closing fails due to the closing of the section switch belonging to the accident section node in step S8, the section switch memorizes that it is locked open (step SIO) and erases the contents of the stack memory (step Sll); The process returns to step S1 and waits for the disconnector to be turned on again. When the section switch which was locked open in the routine of steps S3 to S9 as described above is turned on by re-turning the breaker, the switch is not closed and the process proceeds from step S8 to step Sl2, where the open lock is turned on. It is detected that this is the case, and the process proceeds to step Sl3.

ステップSl3ではステップS4の判定でのリーフノー
ドの場合又は開放ロックの場合にスタックメモリに分岐
ノードの番号が残つているか否かを判定し、分岐ノード
番号が格納されていれば該番号を読出し(ステップSl
4)ノードNとしてステップS3に戻り、該ノードN以
後の区分開閉器投入制御を続ける。
In step Sl3, in the case of a leaf node or an open lock in the determination of step S4, it is determined whether the branch node number remains in the stack memory, and if the branch node number is stored, the number is read out ( Step Sl
4) Return to step S3 as the node N, and continue the section switch closing control after the node N.

なお、上記の計算機による再閉路制御にしや断器の投入
制御もする場合には、ステップS1の前段にしや断器投
入処理ステップを設ける。
In addition, when the above-mentioned computer-based re-closing control also involves the closing control of the shingle breaker, a shingle breaker closing processing step is provided before step S1.

以上のとおり、本発明による再閉路方式は正確な事故区
間を判定する再閉路制御がてき、系統構成の変更時にも
配電系統の接続関係の情報を更新することで対処できる
効果がある。
As described above, the reclosing method according to the present invention provides reclosing control that accurately determines the fault section, and has the advantage of being able to cope with changes in the system configuration by updating information on connections in the power distribution system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配電系統を例示する系統図、第2図は本発明方
式による配電線再閉路制御を説明するためのフローチャ
ート、第3図は第1図の系統図に対応づけたノードとブ
ランチのツリー系統図である。 1・・・変電所側母線、2・・化や断器、3〜12・・
区分開閉器、13・・・保護装置、A−J・・・負荷区
間。
Fig. 1 is a system diagram illustrating a power distribution system, Fig. 2 is a flowchart for explaining distribution line reclosing control according to the method of the present invention, and Fig. 3 shows nodes and branches corresponding to the system diagram in Fig. 1. It is a tree system diagram. 1... Substation side busbar, 2... Switching and disconnection, 3-12...
Sectional switch, 13...protective device, A-J...load section.

Claims (1)

【特許請求の範囲】[Claims] 1 分岐を有する配電系統に事故が発生した際に該事故
区間を避けて電源側健全区間に再送電を行なうために配
電系統に設置した区分開閉器群を選択して再閉路するも
のにおいて、上記区分開閉器群とその配電線で構成する
経路に沿つて区分開閉器を順次投入制御し、配電線にお
ける分岐点では1つの経路に沿つて区分開閉器の順次投
入制御をし、この経路の制御が完了後に上記分岐点に戻
つて他の経路に沿つた区分開閉器の投入制御をすること
を特徴とする配電線再閉路方式。
1. When an accident occurs in a distribution system with branches, the above-mentioned method is used to select and reclose a group of sectional switches installed in the distribution system in order to avoid the accident section and retransmit power to a healthy section on the power source side. The sectional switches are sequentially closed along a route consisting of a group of sectional switches and their distribution lines, and at branch points in the distribution line, the sectional switches are sequentially closed along one route, and this route is controlled. A distribution line re-closing method characterized in that after completion of the above-mentioned branching point, the distribution line re-closing method returns to the branch point and controls closing of the section switches along other routes.
JP54103845A 1979-08-14 1979-08-14 Distribution line reclosing method Expired JPS6057297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54103845A JPS6057297B2 (en) 1979-08-14 1979-08-14 Distribution line reclosing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54103845A JPS6057297B2 (en) 1979-08-14 1979-08-14 Distribution line reclosing method

Publications (2)

Publication Number Publication Date
JPS5629426A JPS5629426A (en) 1981-03-24
JPS6057297B2 true JPS6057297B2 (en) 1985-12-14

Family

ID=14364761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54103845A Expired JPS6057297B2 (en) 1979-08-14 1979-08-14 Distribution line reclosing method

Country Status (1)

Country Link
JP (1) JPS6057297B2 (en)

Also Published As

Publication number Publication date
JPS5629426A (en) 1981-03-24

Similar Documents

Publication Publication Date Title
Castro et al. Generalized algorithms for distribution feeder deployment and sectionalizing
CN110148930B (en) Method for fault location and automatic topology identification in power distribution network
JP3207388B2 (en) Power system protection control device, power system monitoring and control system, and storage medium storing program
US20040233598A1 (en) Distribution network monitoring and control system
CN101465560B (en) Method for rapidly switching power supply
CN106972635A (en) A kind of many interconnection tie interconnection switch dynamic identifying methods
US5574611A (en) Service interruption minimizing system for power distribution line
CN111030058A (en) Power distribution network partition protection method based on 5G communication
JP5112124B2 (en) Power distribution system operation device
CN111969568B (en) Method, system and storage medium for fault location, isolation and self-healing of direct-current power distribution network
JPS6057297B2 (en) Distribution line reclosing method
CN112736872B (en) Power distribution network protection control strategy optimization method based on real-time analysis of operation mode
Kovač Application of topology analysis results for fault location, isolation and service restoration
JPS6367417B2 (en)
US5784239A (en) Drive to last reclosure operation in a protective relaying system
JP2856517B2 (en) Automatic recovery equipment in the event of an electric station accident
US20240039269A1 (en) Protection device and method for monitoring an electrical energy supply grid
JPH05260660A (en) Temporary procedure preforming automatic recovery system
JPS63316626A (en) Method of editing record of consumer power interruption
JPH0236727A (en) High speed separation/recovery system of distribution line fault
SU920576A1 (en) Device for non-damaged phase selection
JPH0341010B2 (en)
JPS61214725A (en) Automatic bus restoring apparatus
JPH01144325A (en) Automatic bus switching control method for plant
Briscombe et al. Stanford University Palou Substation Modernization Project