JPS6057236A - Method for measuring reflection density in biochemical analysis - Google Patents
Method for measuring reflection density in biochemical analysisInfo
- Publication number
- JPS6057236A JPS6057236A JP16632783A JP16632783A JPS6057236A JP S6057236 A JPS6057236 A JP S6057236A JP 16632783 A JP16632783 A JP 16632783A JP 16632783 A JP16632783 A JP 16632783A JP S6057236 A JPS6057236 A JP S6057236A
- Authority
- JP
- Japan
- Prior art keywords
- measuring
- light
- output
- circuit
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
- G01N21/474—Details of optical heads therefor, e.g. using optical fibres
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は測定素子に測光光線を照射し、これより反射
する反射光の反射濃度を測定することによって液体試料
の成分等の分析を行う生化学分析における反射濃度測定
方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a method for analyzing the components of a liquid sample by irradiating a measuring element with a photometric beam and measuring the reflection density of the reflected light. This invention relates to a method for measuring reflection density in chemical analysis.
一般に、血液、血清等の液体試料について。 Generally for liquid samples such as blood and serum.
当該液体試料における特定の成分の含有の有無あるいは
その含を量等を知るべき場合が多く。In many cases, it is necessary to know whether or not a particular component is contained in the liquid sample, or the amount of that component.
このために反応試薬による化学分析が行われる。For this purpose, chemical analysis using reaction reagents is performed.
液体試料の化学分析法としては、乾式法と湿式法とがあ
るが、このうち乾式法は、特定の試薬が含浸された薄板
をマウント間に挟み込んでなる液体試料の測定素子を用
い、この測定素子に分析すべき液体試料を滴下して供給
し、これを反応用恒温槽内に置いて液体試料と試薬とを
反応せしめ、その反応の進行状態または結果を。There are two methods for chemical analysis of liquid samples: the dry method and the wet method. Of these, the dry method uses a liquid sample measurement element consisting of a thin plate impregnated with a specific reagent sandwiched between mounts. A liquid sample to be analyzed is supplied dropwise to the element, placed in a thermostatic chamber for reaction, and the liquid sample and reagent are allowed to react, and the progress or results of the reaction are monitored.
例えば反応による色の濃度変化を光学式濃度測定器によ
り測定する手段、その他の手段により測定検出する方法
であり、液体試料を実際上固体として取り扱うことがで
きる点で非常に便利である。For example, this method is a method of measuring and detecting a change in color density due to a reaction using an optical density meter or other means, and is very convenient in that a liquid sample can actually be treated as a solid.
しかしながら、多数の検体を個々に測定素子に滴下し1
反応による色の濃度変化を光学式濃度測定器により測定
することは困難かつ面倒であり、従って、最近では複数
個の測定素子を同一円上の等配位置に係止したディスク
を用い。However, when a large number of samples are individually dropped onto the measuring element,
It is difficult and troublesome to measure color density changes due to reactions using an optical density meter, so recently a disk in which a plurality of measuring elements are fixed at equidistant positions on the same circle is used.
該ディスクを一定角度づつ回転できる如く設置し、順次
測定素子の測定面に所望する波長の測先光線を照射し、
該測定素子の測定面からの反射光を電気信号に変換して
反射濃度を測定するようにした生化学分析装置が開発さ
れてきたが。The disk is installed so that it can be rotated at a constant angle, and the measuring surface of the measuring element is sequentially irradiated with a measuring beam of a desired wavelength.
A biochemical analyzer has been developed that measures reflected concentration by converting reflected light from the measurement surface of the measurement element into an electrical signal.
従来の場合は反射濃度の測定を1回のサンプリングによ
り行っていたため、光学系や電気系の不安定要素を除去
しきれず、測定値の誤差が大きく、測定精度が低く、信
頼性、再現性の悪いものであった。In the past, reflection density was measured by one sampling, which made it impossible to remove unstable elements in the optical and electrical systems, resulting in large errors in measured values, low measurement accuracy, and poor reliability and reproducibility. It was bad.
この発明は上記の点に鑑み、測定素子の測定面に測光光
線を照射し、その反射濃度を測定するに際し、同一点で
の多点サンプリングを行い。In view of the above points, the present invention performs multi-point sampling at the same point when irradiating a photometric light beam onto the measurement surface of a measurement element and measuring its reflection density.
その平均値をとることにより、光学系や電気系の不安定
要素例えばセンサーノイズを有効に除去して測定誤差を
大幅に削減し、高精度、高信頼性、高再現性を実現でき
る如くした生化学分析における反射濃度測定方法を提供
することを目的とする。By taking the average value, unstable elements in the optical and electrical systems, such as sensor noise, can be effectively removed and measurement errors can be significantly reduced. The purpose of this invention is to provide a method for measuring reflection density in chemical analysis.
〔実施例〕
次に、この発明を添付図面に示す実施例にもとづいて説
明する。[Embodiments] Next, the present invention will be described based on embodiments shown in the accompanying drawings.
第1図は本発明に係る測定方法を実現するシステムの構
成例を示すものである。FIG. 1 shows an example of the configuration of a system that implements the measurement method according to the present invention.
図において、1は測光光線2を発する光源である。測光
光線2の光路上には測光光線2を集光させる集光レンズ
3.測光光線2の照射径を一定にするための筒形スリッ
ト4.測光光線2の光路を変更させるミラー5がそれぞ
れ設置され、ミラー5によって変更された測光光線2へ
の光路上には、血液等の試料により反応した測定素子6
が配置されている。In the figure, 1 is a light source that emits a photometric light beam 2. On the optical path of the photometric light beam 2, there is a condenser lens 3 for condensing the photometric light beam 2. Cylindrical slit 4 for making the irradiation diameter of the photometric light beam 2 constant. Mirrors 5 for changing the optical path of the photometric beam 2 are installed, and on the optical path of the photometric beam 2 changed by the mirror 5, there is a measuring element 6 that has reacted with a sample such as blood.
is located.
さらに、集光レンズ3と筒形スリット4との間には45
°に傾斜した透明ガラス7と、シャッター羽8が設置さ
れている。透明ガラス7は測光光線2の光量変動を把握
するために測光光線2の一部をレファレンス光として分
岐させるものであり、シャッター羽8は測定素子6に対
して照射する測光光線2を開閉するだめのものであって
、ロータリーソレノイド9によって光路上に進退自在と
なるよう回転駆動される。Furthermore, between the condenser lens 3 and the cylindrical slit 4, 45
A transparent glass 7 tilted at an angle of 70° and shutter blades 8 are installed. The transparent glass 7 is used to branch a part of the photometric light beam 2 as reference light in order to understand the fluctuation in the light intensity of the photometric light beam 2, and the shutter blade 8 is used to open and close the photometric light beam 2 irradiating the measurement element 6. It is rotationally driven by a rotary solenoid 9 so that it can move forward and backward on the optical path.
前記測定素子6の照射点周辺には、照射によって生じた
反射光2aを受光する複数個の受光器10−が配設され
、該受光器10−−一−−には受光した光を第一受光素
子20へ伝送する光ファイバー11−が接続されている
。これと同様に前記透明ガラス7によって分岐した一部
のレファレンス光2bの光路上には受光器12が配設さ
れ、該受光器12には受光したレファレンス光を第二受
光素子21へ伝送する光ファイバー13が接続されてい
る。なお、前記反射光2aを受光素子にてダイレクトに
受け、光ファイバー11゜13を省略するように構成し
てもよい。A plurality of light receivers 10- for receiving the reflected light 2a generated by the irradiation are arranged around the irradiation point of the measurement element 6, and the light receivers 10--1-- receive the received light in a first direction. An optical fiber 11- for transmission to the light receiving element 20 is connected. Similarly, a light receiver 12 is disposed on the optical path of a part of the reference light 2b branched by the transparent glass 7, and the light receiver 12 has an optical fiber that transmits the received reference light to the second light receiving element 21. 13 are connected. Note that the reflected light 2a may be directly received by a light receiving element, and the optical fibers 11 and 13 may be omitted.
前記第一受光素子20及び第二受光素子21は素子反射
光2a及びレファレンス光2bを各光量に対応する大き
さの電気信号(電流値)に変換するものであり、フォト
ダイオード等の光電素子によって構成されている。The first light-receiving element 20 and the second light-receiving element 21 convert the element reflected light 2a and the reference light 2b into electric signals (current values) of a magnitude corresponding to each light amount, and are converted by a photoelectric element such as a photodiode. It is configured.
30ば第一受光素子20で生じた第一電気信号を電圧値
V meaに変換する電流−電圧変換器。30, a current-voltage converter that converts the first electrical signal generated by the first light receiving element 20 into a voltage value V mea;
31は第二受光素子21で生じた第二電気信号を電圧値
V refに変換する電流−電圧変換器である。31 is a current-voltage converter that converts the second electric signal generated by the second light receiving element 21 into a voltage value V ref.
40は測定素子反射光2aの光量に対応した電圧V m
eaとレファレンス光2bの光量に対応した電圧V r
efとを差動増幅することにより。40 is a voltage V m corresponding to the amount of light reflected from the measuring element 2a.
ea and the voltage V r corresponding to the light intensity of the reference light 2b
By differentially amplifying ef.
測光光線2の光源変動に基づく測定素子反射光2aの光
量変動を補償する補償回路である。該補償回路40は対
数変換器から成り、入力電圧Vmea 、Vrefと出
力電圧VXとはVx =K]og (Vref /Vm
ea ) K一定数なる関係式で表される。This is a compensation circuit that compensates for variations in the light amount of the measuring element reflected light 2a based on variations in the light source of the photometric light beam 2. The compensation circuit 40 consists of a logarithmic converter, and the input voltages Vmea, Vref and the output voltage VX are expressed as Vx = K]og (Vref /Vm
ea) It is expressed by a relational expression where K is a constant number.
50はスイッチング回路、60はA/D変換器である。50 is a switching circuit, and 60 is an A/D converter.
スイッチング回路50はA/D変換器60の入力端子5
0aと、補償回路40の出力端子50b、一定基準電圧
VHに設定された基準電圧発生回路51の端子50c及
び前記基準電圧Vl+よりも小なる値の基準電圧VLに
設定された端子50dとを順次切換え得るようになって
いる。このスイッチング回路50zよアナログスイッチ
によって構成され、各端子の切換えは選択信号発生器5
2からの信号によって行われる。The switching circuit 50 is connected to the input terminal 5 of the A/D converter 60.
0a, the output terminal 50b of the compensation circuit 40, the terminal 50c of the reference voltage generation circuit 51 set to a constant reference voltage VH, and the terminal 50d set to a reference voltage VL smaller than the reference voltage Vl+, in sequence. It is possible to switch. This switching circuit 50z is composed of analog switches, and each terminal is switched by a selection signal generator 5.
This is done by a signal from 2.
前記A/D変換器60は前記スイッチング回路50の切
換えに応じて、補償回路40の出力Vx、基準電圧Vl
l、VLをそれぞれ入力してサンプリングし、各値に対
応したデジタル変換値を出力するものである。このサン
プリングはサンプリングパルス発生器61から送出され
るパルス信号によって行われ、−回の照射によって複数
のサンプリングを指令できるようにしている。The A/D converter 60 adjusts the output Vx of the compensation circuit 40 and the reference voltage Vl according to the switching of the switching circuit 50.
It inputs and samples l and VL, and outputs a digital conversion value corresponding to each value. This sampling is performed by a pulse signal sent from the sampling pulse generator 61, and a plurality of samplings can be commanded by -times of irradiation.
70は基準電圧値Vl(、VLと前記補償回路40の出
力VxをA/D変換器60に入力して得られる各変換出
力値から、補償回路40の出力が正しいデジタル変換値
となるように演算する演算回路である。該演算回路70
はA/D変換器60における誤差を補正するためのもの
である。即ぢ、A/D変換器60への入力電圧をVA、
デジタル変換後の出力電圧をVDとすると
VD = a VA +b −−一−−−− ■なる関
係式が成立する。ここでa、bは経時変化等によって変
化する係数である。70 is a reference voltage value Vl (, VL and the output Vx of the compensation circuit 40 are inputted to the A/D converter 60 and each conversion output value is obtained, so that the output of the compensation circuit 40 becomes a correct digital conversion value. This is an arithmetic circuit that performs calculations.The arithmetic circuit 70
is for correcting errors in the A/D converter 60. Immediately, the input voltage to the A/D converter 60 is VA,
Letting the output voltage after digital conversion be VD, the following relational expression holds true: VD = a VA + b - - - - - - (2). Here, a and b are coefficients that change due to changes over time and the like.
従ってA/D変換器60の入力電圧がVx。Therefore, the input voltage of the A/D converter 60 is Vx.
Vll、VLである場合のデジタル変換後の出力値VD
x、VDL、VDLは
VDx= a Vx + b −−−一−−−■V1翔
= a Vll + b −−−−−−−■■口Lし
a Vl、+ b −−−−−■となる。第2図の実線
はこの状態を示しているものである。上記■、■、■式
より係数a、bを消去し、■にに関する式をもとめれば
の基準電圧値であり、 VDII、 VDL、VDxは
デジタル変換後の出力値であるから0式中には経時変化
等による誤差要因は含まれない、従って。Output value VD after digital conversion when Vll and VL
x, VDL, VDL is VDx = a Vx + b ---1---■V1 sho = a Vll + b ----------■■mouth L
a Vl, + b -----■. The solid line in FIG. 2 shows this state. If you delete coefficients a and b from the above formulas ■, ■, and ■ and find the formula related to ■, it is the reference voltage value, and VDII, VDL, and VDx are the output values after digital conversion, so in formula 0, does not include error factors due to changes over time, etc.
上記0式に各値を代入して計算すれば、正しいVxのデ
ジタル変換値がめられる。前記演算回1i!&70は上
記0式の計算を実行するものであり、第2図の破線はこ
の計算の結果を示しているものである。By substituting each value into the above equation 0 and calculating, the correct digital conversion value of Vx can be found. Said calculation time 1i! &70 executes the calculation of the above equation 0, and the broken line in FIG. 2 shows the result of this calculation.
前記デジタル変換値はシャッター羽8を開放中、多数回
求められ、演算回路70でその平均値を測定値として表
示するようにしている。これにより受光素子のノイズ(
サーマルノイズ及びジョンソンノイズ)等による影響で
測定値がハラツクごとを除去し、測定精度を向上させる
ようにしている。The digital conversion value is obtained many times while the shutter blade 8 is open, and the arithmetic circuit 70 displays the average value as a measured value. This causes noise (
The measurement accuracy is improved by removing irregularities in the measured values due to the effects of thermal noise, Johnson noise, etc.
以上のシステム構成を参照して、この発明に係る生化学
分析における反射濃度測定方法を説明すると。The reflection density measurement method in biochemical analysis according to the present invention will be explained with reference to the above system configuration.
まず、シャッター羽8にて測光光線2の光路を遮断した
状態で光源1を点灯する。First, the light source 1 is turned on while the optical path of the photometric light beam 2 is blocked by the shutter blade 8.
次に、測定素子6を照射位置にセントしたときの信号に
よりロータリーソレノイド9を駆動し、シャッター羽8
を光路から退去させ、測光光線2を測定素子6に照射さ
せる。この測定素子6からの反射光2aは受光器10−
で受光され、光ファイバー11−を介して第一受光素子
20へ伝送される。一方、測光光線2の一部はレファレ
ンス光として透明ガラス7で分岐されて受光器12より
光ファイバー13を介して第二受光素子21へ伝送され
る。Next, the rotary solenoid 9 is driven by the signal when the measuring element 6 is placed at the irradiation position, and the shutter blade 8
is removed from the optical path, and the measuring element 6 is irradiated with the photometric light beam 2. The reflected light 2a from this measuring element 6 is transmitted to a light receiver 10-
The received light is transmitted to the first light receiving element 20 via the optical fiber 11-. On the other hand, a part of the photometric light beam 2 is branched as a reference light by the transparent glass 7 and transmitted from the light receiver 12 to the second light receiving element 21 via the optical fiber 13.
第一受光素子20は反射光2aの光量に対応した第一電
気信号を出力し、第二受光素子21はレファレンス光2
bに対応した第二電気信号を出力する。この第一、第二
電気信号は電流−電圧変換器30.31によって、それ
ぞれ電圧Vmea 、Vrefに変換される。The first light receiving element 20 outputs a first electrical signal corresponding to the amount of reflected light 2a, and the second light receiving element 21 outputs a first electric signal corresponding to the amount of reflected light 2a.
A second electrical signal corresponding to b is output. The first and second electrical signals are converted into voltages Vmea and Vref, respectively, by current-voltage converters 30.31.
電圧変換された信号Vmea 、 Vrefは対数変換
器からなる補償回路40に入力されて対数変換され、そ
の結果、補償回路40は
Vx = K log (Vref / Vmea )
なる出力Vxを生じる。The voltage-converted signals Vmea and Vref are input to a compensation circuit 40 consisting of a logarithmic converter and are logarithmically converted, and as a result, the compensation circuit 40 calculates Vx = K log (Vref / Vmea).
produces an output Vx.
この式から明らかな如く、測定素子6に照射する測光光
線2が変動しても、測光光線2の一部を分岐して得たレ
ファレンス光も同一割合で変動するため、Vref /
Vmeaによって相殺され、出力Vxは液体試料の違
いに基づく反射濃度の差異を要因として変化するだけで
あり、照射光の光量変動による誤差を除去することがで
きる。As is clear from this equation, even if the photometric light beam 2 irradiating the measuring element 6 changes, the reference light obtained by branching a part of the photometric light beam 2 also changes at the same rate, so Vref /
This is canceled out by Vmea, and the output Vx changes only due to differences in reflection density due to differences in liquid samples, and errors due to variations in the amount of irradiated light can be eliminated.
しかして、補償回路40からの出力Vx及び基準電圧発
生回路51からの電圧VH,VLはスイッチング回路5
0のスイッチの切換えに応じて選択的にA/D変換器6
0に入力され、該A/D変換器60はデジタル変換し、
その変換値を演算回路70に伝送する。このA/D変換
器60の変換値にはA/D変換器自身による誤る。Therefore, the output Vx from the compensation circuit 40 and the voltages VH and VL from the reference voltage generation circuit 51 are transferred to the switching circuit 5.
A/D converter 6 selectively according to the switching of the switch 0
0, the A/D converter 60 converts it into digital,
The converted value is transmitted to the arithmetic circuit 70. The converted value of this A/D converter 60 contains an error due to the A/D converter itself.
か(して得られた変換値Vxは測光光線の光量変動に基
づく誤差及びA/D変換器60による誤差を含むことな
く、測定素子6試薬に反応した成分に応じて変化する関
数となる。The conversion value Vx obtained in this manner does not include errors due to fluctuations in the light intensity of the photometric light beam or errors caused by the A/D converter 60, and is a function that changes depending on the component reacting with the reagent of the measuring element 6.
そして、前記シャンク−羽8を開放した状態にて上記測
定素子6の同一点でのサンプリングを多数回行い、それ
の平均値をめて受光素子のノイズによる測定誤差を除去
する。Then, with the shank vane 8 open, sampling is performed at the same point on the measuring element 6 many times, and the average value is calculated to eliminate measurement errors due to noise in the light receiving element.
なお、上記実施例において、演算回路70゜選択信号発
生回路52.サンプリングパルス発生器61等における
動作はマイクロコンピュータによって行わせることもで
きる。In the above embodiment, the arithmetic circuit 70.degree. selection signal generation circuit 52. The operations of the sampling pulse generator 61 and the like can also be performed by a microcomputer.
この発明は以上の如く、測定素子の測定面に測光光線を
照射し、その反射濃度を測定するに際し、同一点での多
点サンプリングを行い、その平均値をとることを特徴と
しているから、その測定値がセンサーノイズ等による影
響がなく。As described above, this invention is characterized by performing multi-point sampling at the same point and taking the average value when measuring the reflected density by irradiating the measurement surface of the measurement element with a photometric light beam. Measured values are not affected by sensor noise, etc.
従って、システム全体としての測定誤差を大幅に削減し
た高精度の測定値が得られ、信頼性。Therefore, highly accurate measurement values with significantly reduced measurement errors for the entire system can be obtained, ensuring reliability.
再現性が格段に向上するという優れた効果を奏するもの
である。This has the excellent effect of significantly improving reproducibility.
図はこの発明の実施例を示し、第1図はシステムの構成
を示すブロック図、第2図はデジタル変換後の値と、補
正後の値を示すグラフである。
1−光源 2・−光束
3・−集光レンズ 4−筒形スリット
5− 反射ミラー 6−・測定素子
7−・透明ガラス 8−・シャッター羽9−・ロータリ
ーソレノイド 10.12−受光器11.13・−・−
光ファイバー 20.21−受光素子30.31−・−
電流一電圧変換器 40・・−補償回路50− スイッ
チング回路 60−・A/D変換器70−・演算回路
特許出願人 小西六写真工業株式会社The figures show an embodiment of the present invention, FIG. 1 is a block diagram showing the configuration of the system, and FIG. 2 is a graph showing values after digital conversion and values after correction. 1 - Light source 2 - Luminous flux 3 - Condensing lens 4 - Cylindrical slit 5 - Reflection mirror 6 - Measuring element 7 - Transparent glass 8 - Shutter blade 9 - Rotary solenoid 10.12 - Light receiver 11. 13・−・−
Optical fiber 20.21-light receiving element 30.31-・-
Current-to-voltage converter 40 - Compensation circuit 50 - Switching circuit 60 - A/D converter 70 - Arithmetic circuit Patent applicant Konishiroku Photo Industry Co., Ltd.
Claims (1)
測定するに際し、同一点での多点サンプリングを行い、
その平均値をとることを特徴とする生化学分析における
反射濃度測定方法。When irradiating the measurement surface of the measurement element with a photometric light beam and measuring its reflection density, multi-point sampling is performed at the same point.
A method for measuring reflection concentration in biochemical analysis, characterized by taking the average value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16632783A JPS6057236A (en) | 1983-09-09 | 1983-09-09 | Method for measuring reflection density in biochemical analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16632783A JPS6057236A (en) | 1983-09-09 | 1983-09-09 | Method for measuring reflection density in biochemical analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6057236A true JPS6057236A (en) | 1985-04-03 |
JPH0447781B2 JPH0447781B2 (en) | 1992-08-04 |
Family
ID=15829299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16632783A Granted JPS6057236A (en) | 1983-09-09 | 1983-09-09 | Method for measuring reflection density in biochemical analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6057236A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7142307B1 (en) * | 1991-03-01 | 2006-11-28 | Stark Edward W | Method and apparatus for optical interactance and transmittance measurements |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5567496U (en) * | 1978-10-31 | 1980-05-09 | ||
JPS55156843A (en) * | 1979-02-26 | 1980-12-06 | Technicon Instr | Analyzer |
-
1983
- 1983-09-09 JP JP16632783A patent/JPS6057236A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5567496U (en) * | 1978-10-31 | 1980-05-09 | ||
JPS55156843A (en) * | 1979-02-26 | 1980-12-06 | Technicon Instr | Analyzer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7142307B1 (en) * | 1991-03-01 | 2006-11-28 | Stark Edward W | Method and apparatus for optical interactance and transmittance measurements |
US7397566B2 (en) | 1991-03-01 | 2008-07-08 | Stark Edward W | Method and apparatus for optical interactance and transmittance measurements |
Also Published As
Publication number | Publication date |
---|---|
JPH0447781B2 (en) | 1992-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0107410B1 (en) | Method of photometric measurement | |
CA1127865A (en) | Method and device for analysis with color identification test paper | |
US3428401A (en) | Flame photometer | |
US5014216A (en) | Concentration determination with multiple wavelength flash photometers | |
EP0083761B1 (en) | Output control device for light detectors for photometers | |
JP2609616B2 (en) | Photometer and light measurement method | |
EP0420135B1 (en) | Spectrophotometric instrument with rapid scanning distortion correction | |
US4281897A (en) | Photometric system including a time-division optical attenuator | |
US4491730A (en) | Method and apparatus for feedback stabilized photometric detection in fluids | |
US3428796A (en) | Concentration computer with logarithmic computation of photometric apparatus readings | |
JPS6057236A (en) | Method for measuring reflection density in biochemical analysis | |
JPS6057237A (en) | Method for measuring reflection density in biochemical analysis | |
US4586026A (en) | Infrared gas analyzer using count quadrature sampling | |
US4417812A (en) | Circuit arrangement for determining the characteristics of liquids and/or gases, in particular the hemoglobin content of the blood | |
SU947651A1 (en) | Spectrophotometer | |
JPS59107223A (en) | Spectrochemical analyzer | |
JPS63159736A (en) | Concentration measuring method for uranium or plutonium | |
SU1081430A1 (en) | Calorimetric hexose analyzer | |
SU1114150A1 (en) | Double-channel gas analyzer | |
SU989332A1 (en) | Photometer | |
JPH0566987B2 (en) | ||
SU989334A1 (en) | Digital photometer | |
JPH0943056A (en) | Instrument for measuring intensity of light | |
SU905658A1 (en) | Two-channel spectral photometer | |
SU1182276A1 (en) | Multibeam photometer photon counter |