JPS6057076A - Electric current controller of electromagnet valve solenoid - Google Patents

Electric current controller of electromagnet valve solenoid

Info

Publication number
JPS6057076A
JPS6057076A JP16567483A JP16567483A JPS6057076A JP S6057076 A JPS6057076 A JP S6057076A JP 16567483 A JP16567483 A JP 16567483A JP 16567483 A JP16567483 A JP 16567483A JP S6057076 A JPS6057076 A JP S6057076A
Authority
JP
Japan
Prior art keywords
current
value
average value
transistor
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16567483A
Other languages
Japanese (ja)
Other versions
JPH0254469B2 (en
Inventor
Susumu Takagi
進 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP16567483A priority Critical patent/JPS6057076A/en
Publication of JPS6057076A publication Critical patent/JPS6057076A/en
Publication of JPH0254469B2 publication Critical patent/JPH0254469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To diminish hardware drastically in its quantity, by setting an electric current detecting resistor wich detects an ON-electric current, in a closed loop. CONSTITUTION:An arithmetic and logic unit 6, at first, reads a prescribed value E, calculates the first duty ratio D, and determines the first period of time of ON. Next, the arithmetic and logic unit 6 sets the output of a port 9 to 1, and makes a transistor 3 switch on. The electric current of an electromagnet valve solenoid 1 increases exponential-functionally, only for a period from when the transistor 3 is switched on until it is switched off next. When the transistor 3 is switched on, at each determined periodic time from this ON-time, and when the transistor 3 is switched off, the arithmetic and logic unit 6 reads the output values from AD transducer 8, and memorizes each value, for a while. After the first period of time of ON has passed, the arithmetic and logic unit 6 sets the output of the port 9 to 0, and makes the transistor 3 switch off.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、電磁弁ソレノイドの通電電流を制御して電磁
弁の開閉度を変化させる電磁弁ソレノイドの電流制御装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement in a current control device for a solenoid valve solenoid that controls the energizing current of the solenoid valve to change the degree of opening and closing of the solenoid valve.

従来技術と問題点 直流電流で制御を行なう従来の電磁弁は、通電状態で開
、非通電状態で閉の2モードしか採り得なかったが、近
年、電磁弁に機械的改良を加えること及び通電電流を規
定周波数で断続させることにより、電磁弁の開度な任意
に制御することが可能となり、内燃機関の空気流量の連
続的な制御に適用されるに至っている。しかし、電磁弁
ソレノイドは等偏向には第1図に示すようにインダクタ
ンスLと抵抗Rの直列回路であり、スイッチSWオン後
規定電流に達するまで時間がかかると共に、スイッチS
Wオフの瞬間には直前の電流を維持しようとする為スイ
ッチ部分に高電圧が発生しアークが飛ぶことがある。そ
こで、通常は第2図に示すように、逆起電力によるソレ
ノイド電流を逃がすダイオードDを電磁弁ソレノイドS
Nに並列に接続する。従って、電磁弁ソレノイドSNの
電流はスイッチオン時にスイッチSWを通してアース側
に流れる電流iIと、スイッチオフ時にダイオードDを
通して流れる電流i?の両方から成り、電磁弁の開度は
合成電流1. + i、で決定される。それ故、正しい
通電電流値を知るためには、オン電流1.。
Conventional technology and problems Conventional solenoid valves that are controlled by direct current can only operate in two modes: open when energized and closed when de-energized, but in recent years mechanical improvements have been made to solenoid valves and By intermittent current flow at a specified frequency, it becomes possible to arbitrarily control the opening of a solenoid valve, and it has come to be applied to continuous control of the air flow rate of an internal combustion engine. However, the solenoid valve solenoid has a series circuit of an inductance L and a resistance R for equal deflection as shown in Figure 1, and it takes time to reach the specified current after turning on the switch SW.
At the moment when W is turned off, high voltage is generated in the switch part to maintain the previous current, which may cause an arc to fly. Therefore, as shown in Figure 2, the diode D that releases the solenoid current due to the back electromotive force is normally connected to the solenoid valve solenoid S.
Connect in parallel with N. Therefore, the current of the solenoid valve solenoid SN is a current iI flowing through the switch SW to the ground side when the switch is on, and a current i? flowing through the diode D when the switch is off. The opening degree of the solenoid valve is determined by the combined current 1. + i, determined. Therefore, in order to know the correct current value, on-current 1. .

オフ電流12を検出しなければならない。Off-state current 12 must be detected.

第6図は、オン電流l、とオフ電流12の双方を検出し
て電磁弁の開度な入力情報に応じて制御する従来の電磁
弁ソレノイド電流制御装置の電気回路図であり、オン電
流11とオフ電流12の両方を検出する為、電流検出抵
抗融は電磁弁ソレノイドSNとスイッチング用トランジ
スタTR2の間で且つダイオードDと並列に接続する。
FIG. 6 is an electric circuit diagram of a conventional solenoid valve solenoid current control device that detects both the on-current l and the off-current 12 and controls the solenoid valve according to input information such as the opening degree of the solenoid valve. In order to detect both the current and the off-state current 12, a current detection resistor is connected between the solenoid valve solenoid SN and the switching transistor TR2 and in parallel with the diode D.

電流検出抵抗R8σ〕端子電圧はトランジスタTRt等
から成るカレントミラー回路により抵抗R2に発生する
ので、この抵抗R2の端子電圧をA/D変換器ADCで
ディジタル量に変換し、演算回路ARTにおいて、メー
ン電流’I+オフ電流i−の値及びその平均値をめ、平
均値カー指定値(直流電圧又はディジタル入力)よ1J
IJ′Xさければスイッチング用トランジスタTRsの
オン時間を長くし、太きければオン時間を短くして平均
電流の修正を行なうものである。なお、第S図にオイテ
、■は直流電源、RI、 Rsは抵抗、DI 、 D2
はダイオード、AMPは増幅器であり、この増幅器AM
Pの出力パルス即ちスイッチング用トランジスタTRz
の駆動パルスの繰返し周波数は、通常100七〜1KH
z程度であり、電磁弁の特性によ)J ?大定される固
定のものである。
Current detection resistor R8σ] terminal voltage is generated in resistor R2 by a current mirror circuit consisting of transistor TRt, etc., so the terminal voltage of resistor R2 is converted into a digital quantity by A/D converter ADC, and the main Calculate the value of current 'I + off-current i- and its average value, and calculate 1 J from the average car specified value (DC voltage or digital input).
If IJ'X is smaller, the on-time of the switching transistor TRs is lengthened, and if IJ'X is thicker, the on-time is shortened to correct the average current. In addition, in Fig. S, ■ is the DC power supply, RI, Rs are the resistances, DI, D2
is a diode, AMP is an amplifier, and this amplifier AM
The output pulse of P, that is, the switching transistor TRz
The repetition frequency of the driving pulse is usually 1007 to 1KH.
z, depending on the characteristics of the solenoid valve) J? It is a fixed thing that is determined.

ところで、第6図の従来装置では、オン電流’Isオフ
電流12の双方を検出する為に電流検出抵抗Rx以外に
、トランジスタTRs 9ダイオードDI 、 D2 
By the way, in the conventional device shown in FIG. 6, in order to detect both the on-current 'Is and the off-current 12, in addition to the current detection resistor Rx, the transistor TRs, 9 diodes DI, D2 are used.
.

抵抗R1〜Rj等の部品を必要とし、構成カー比較的複
雑になる割に精度良くオン電流11.オフ電流l、を検
出できない。これは、電流検出抵抗RXがフローティン
グな状態で使用されていること、トランジスタTR,の
ベース・エミッタ間電圧VBK及びダイオードD1の順
方向電圧降下v、1等のバラツキや温度特性の差により
誤差が生じること、抵抗R2の発生電圧はダイオードD
2の順方向電圧降下vv2より大きくとれないことに起
因している。
It requires components such as resistors R1 to Rj, and the on-current 11. The off-state current l cannot be detected. This is due to the fact that the current detection resistor RX is used in a floating state, variations in the base-emitter voltage VBK of the transistor TR, forward voltage drop v,1 of the diode D1, etc., and differences in temperature characteristics. The voltage generated by the resistor R2 is the voltage generated by the diode D.
This is due to the fact that the forward voltage drop vv2 cannot be greater than 2.

発明の目的 本発明はこのような従来の欠点を改善したものであり、
その目的は、従来装置と同等かそれ以上の制御精度を有
しながら、ハードウェア散を大幅に削減できる電磁弁ソ
レノイドの電流制御装置を提供することにある。
Purpose of the Invention The present invention improves these conventional drawbacks, and
The purpose is to provide a current control device for an electromagnetic valve solenoid that can significantly reduce hardware costs while having control accuracy equal to or higher than conventional devices.

発明の構成 第4図は本発明の構成説明図である。電磁弁ソレノイド
SNと直流電源Vとの閉ループ回路内にスイッチング素
子SWが挿入され、このスイッチング素子SWのオン中
に電磁弁ソレノイドSNを流れるオン電流i、を検出す
る電流検出抵抗CSがその一端を接地されて閉ループ内
に設けられている。電流検出抵抗CSの検出値はA/D
変換器ADにおいてディジタル量に変換され、オン電流
平均値算出手段MS1はその値からオン電流i1の平均
値を算出し、オフ電流平均値推定手段MStはその値か
らスイッチング素子のオフ中にダイオードDを通して電
磁弁ソレノイドSNに流れるオフ電流12の平均値を推
定する。また、平均値算出手段MSsはオン電流平均値
とオフ電流推定平均値とからオン電流11とオフ電流i
、の合計値の平均値をめ、デユーティ比算出手段DTは
その平均値と外部から入力された指定値とからスイッチ
ング素子の駆動パルスのデユーティ比を算出し、駆動回
路AMPを介してスイッチング素子SWを駆動する。
Structure of the Invention FIG. 4 is an explanatory diagram of the structure of the present invention. A switching element SW is inserted into a closed loop circuit between the solenoid valve solenoid SN and the DC power supply V, and a current detection resistor CS is connected to one end of the switching element SW to detect the on-current i flowing through the solenoid valve solenoid SN while the switching element SW is on. Grounded and placed in a closed loop. The detected value of the current detection resistor CS is A/D
It is converted into a digital quantity by the converter AD, and the on-current average value calculating means MS1 calculates the average value of the on-current i1 from the value, and the off-current average value estimating means MSt calculates the value of the diode D while the switching element is off from that value. The average value of the off-state current 12 flowing through the electromagnetic valve solenoid SN is estimated. Further, the average value calculation means MSs calculates the on-current 11 and the off-current i from the on-current average value and the estimated average off-current value.
, the duty ratio calculating means DT calculates the duty ratio of the driving pulse of the switching element from the average value and the designated value input from the outside, and calculates the duty ratio of the driving pulse of the switching element via the driving circuit AMP. to drive.

発明の実施例 第5図は本発明の電流制御装置の11−ドウエア構成の
一例を示す要部ブロック図であり、1は電磁弁ソレノイ
ド、2は直流電源、6はスイッチング素子たとえばトラ
ンジスタ、4は電流検出抵抗、5はダイオード、6はマ
イクロコンピュータカ)ら成る演算回路、7はトランジ
スタ乙の駆動回路、8はA/D変換器である。演算回路
6の出力ポート9が1”になると、駆動回路7の出力に
よりトランジスタ3がオンし、直流電源2から電磁弁ソ
レノイド1.トランジスタ3.電流検出抵抗4に電流(
オン電流) ilが流れ、演算回路6の出力ポート9が
“0”になるとトランジスタ6がオフし、ダイオード5
を介して電磁弁ソレノイド1に電流(オフ電流) t2
が流れる。演算回路6は、トランジスタ6のオン期間中
、電流検出抵抗4の端子電圧vXヲデイジタル値に変換
するA/D変換器8の出力を入力ボート10を介して読
取っており、この入力データをオン電流11の値として
め、且つめたオン電流1.の値からオフ電流12の値を
推定し、合成電流14+i2の平均値を算出する。そし
て、この算出した平均値と外部より入力された指定値E
とを比較し、平均値が指定値Eより小さければ、出カポ
−19から出力する次回の駆動パルスのデユーティ比(
オン期間/(オン期間+オフ期間))を大きくし、平均
値が指定値Eより大きければ次回の駆動パルスのデユー
ティ比を小さくする。
Embodiment of the Invention FIG. 5 is a block diagram showing an example of the 11-ware configuration of the current control device of the present invention, in which 1 is a solenoid valve solenoid, 2 is a DC power source, 6 is a switching element such as a transistor, and 4 is a A current detection resistor, 5 a diode, 6 an arithmetic circuit consisting of a microcomputer, 7 a drive circuit for transistor B, and 8 an A/D converter. When the output port 9 of the arithmetic circuit 6 becomes 1'', the transistor 3 is turned on by the output of the drive circuit 7, and current (
When on-current) il flows and the output port 9 of the arithmetic circuit 6 becomes "0", the transistor 6 turns off and the diode 5
Current (off current) to solenoid valve solenoid 1 via t2
flows. During the ON period of the transistor 6, the arithmetic circuit 6 reads the output of the A/D converter 8 which converts the terminal voltage vX of the current detection resistor 4 into a digital value via the input port 10, and uses this input data as the ON current. The on-state current 1. The value of the off-state current 12 is estimated from the value of , and the average value of the composite current 14+i2 is calculated. Then, this calculated average value and the specified value E inputted from the outside are
If the average value is smaller than the specified value E, the duty ratio (
On period/(On period + Off period)) is increased, and if the average value is greater than the designated value E, the duty ratio of the next drive pulse is decreased.

第6図は演算回路6の動作フローチャートであり、81
〜S15は各ステップを示す。
FIG. 6 is an operation flowchart of the arithmetic circuit 6, and 81
~S15 indicates each step.

演算回路6は、図示しない手段により起動されると、先
ず指定値Eを読取る(Sl)。この指定値Eは電磁弁の
開度な外部より指定する為のもので、本実施例ではディ
ジタル量で与えられる。次に、演算回路6は指定値Eに
係数kを乗じて第1回目のデユーティ比りを算出しくS
2)、予め設定された本電磁弁固定の周期(トランジス
タ6の駆動周期)Tにそのデユーティ比りを乗すること
により第1回目のオン時間1.を決定する(S3)。尚
、上記係数には指定値Eからデユーティ比DQ求める係
数であり、予め標準的な値が演算回路6内のメモリ等に
設定されている。
When the arithmetic circuit 6 is activated by means not shown, it first reads the designated value E (Sl). This specified value E is for externally specifying the opening degree of the solenoid valve, and is given as a digital amount in this embodiment. Next, the arithmetic circuit 6 calculates the first duty ratio by multiplying the designated value E by the coefficient k.
2) The first on-time 1. is determined by multiplying the preset fixed period (driving period of the transistor 6) of the solenoid valve by its duty ratio T. is determined (S3). Incidentally, the above coefficient is a coefficient for calculating the duty ratio DQ from the specified value E, and a standard value is set in advance in a memory or the like in the arithmetic circuit 6.

次に、演算回路6は出力ポート9を1′にしてトランジ
スタ3をオンする(S4)。$7図は電磁弁ソレノイド
1に流れる電流の一例を、縦軸に電流値、横軸に最初に
トランジスタ3をオンした時刻t。からの経過時間をと
って図示したものであり、電磁弁ソレノイド1の電流は
トランジスタ3がオンした時(to)から次にトランジ
スタ3がオフするまでの時間t、だけ指数関数的に増大
する。演算回路6は、トランジスタ3をオンした時点(
1,)と、この時点から所定の周期1s毎と、トランジ
スタ6をオフする時点(tn)とにおいて、A/D変換
器8の出力値を読取っており(85〜89)、読取った
各値を内部のメモリ等のアドレスM。−Mnに一時記憶
する。例えば第7図では、時刻tO+ tOからt3経
過毎の7時刻及びトランジスタ3がオフするtt(tn
)の819時点の電流値i。−i7.inの値がサンプ
リングされる。なお、サンプリング周期は短いほど検出
精度は高まる。
Next, the arithmetic circuit 6 sets the output port 9 to 1' and turns on the transistor 3 (S4). Figure 7 shows an example of the current flowing through the solenoid valve solenoid 1, with the vertical axis representing the current value and the horizontal axis representing the time t when the transistor 3 was first turned on. The current of the electromagnetic valve solenoid 1 increases exponentially by the time t from when the transistor 3 is turned on (to) until the next time the transistor 3 is turned off. The arithmetic circuit 6 calculates when the transistor 3 is turned on (
1, ), and from this point on, the output value of the A/D converter 8 is read at every predetermined period of 1 s and at the time (tn) when the transistor 6 is turned off (85 to 89), and each read value is Address M of internal memory, etc. - Temporarily stored in Mn. For example, in FIG. 7, from time tO+ tO to 7 times every t3 elapses and tt(tn
) current value i at time 819. -i7. The value of in is sampled. Note that the shorter the sampling period, the higher the detection accuracy.

次に、第1回目のオン期間t1が経過すると、演算回路
6は、出力ポート9を10”にしてトランジスタ6をオ
フにする(810)。これにより電磁弁ソレノイド10
通電電流は、トランジスタ6がオフした時点(t、)か
ら次にトランジスタ6がオンするまでの時間(’r t
t)だけ指数関数的に減少する。
Next, when the first ON period t1 has elapsed, the arithmetic circuit 6 sets the output port 9 to 10'' and turns off the transistor 6 (810).
The conduction current is determined by the time ('r t
t) decreases exponentially.

演算回路6は、第1回目のオフ期間(T−t□)が経過
すると(sll)、トランジスタ60オン直前のA/D
変換器8の値を読取り(812) 、内部のメモリ等の
アドレスMxに一時記憶する。
When the first off period (T-t□) has elapsed (sll), the arithmetic circuit 6 turns on the A/D immediately before the transistor 60 turns on.
The value of the converter 8 is read (812) and temporarily stored at address Mx in an internal memory or the like.

演算回路6は、以上の処理に請求めた電流値に基づき、
ステップ814において次回のオン期間(tz)?:算
出するものであり、この算出は例えば第8因に示すよう
なフローで実行される。即ち、第8図において、820
〜834は各ステップを示し、演算回路6は、ステップ
S2Dにおいて、前回のオン期間t1の中間の時刻(t
z2)における電流値をめる。これは、io〜1フのザ
ンプリング値の内t〆2に最も近い時刻の電流値で代表
させることができる。
Based on the current value requested for the above processing, the arithmetic circuit 6 calculates
In step 814, the next on period (tz)? : is calculated, and this calculation is executed, for example, according to the flow shown in the eighth factor. That is, in FIG. 8, 820
to 834 indicate each step, and in step S2D, the arithmetic circuit 6 calculates the middle time (t
Calculate the current value at z2). This can be represented by the current value at the time closest to t〆2 among the sampled values from io to 1f.

次に、演算回路6はtV′2対応の電流値から、オン電
流i、の経路を判別する(S21)。これは、例えば第
9図に示すように、オン電流i、が実線20のように変
化する場合にはオフ電流12は実線21のように変化し
、オン電流i、が破線22のように変化する場合にはオ
フ電流12は破線26のように変化し、オン電流11が
一点鎖線24のように変化する場合にはオフ電流i大は
一点鎖線25のように変化するので、t/2対応の電流
値からオン電流1.が上記3個の経路のいずれに最も近
いかをマツプ等により判別し、この結果よりオフ電流l
意の変化を推測するものである。そして、オフ電流i!
が破線23の経路に近い場合は後述の比例定数Pとして
aを設定しく822*523)、オフ電流12が実線2
1の経路に近い場合は比例定数Pとしてbを設定しく8
24,825)、オフ電流12が一点鎖線25の経路に
近い場合は比例定数PとしてCを設定する(826,5
27)。
Next, the arithmetic circuit 6 determines the path of the on-current i from the current value corresponding to tV'2 (S21). For example, as shown in FIG. 9, when the on-current i changes as shown by the solid line 20, the off-current 12 changes as shown in the solid line 21, and the on-current i changes as shown in the broken line 22. When the off-state current 12 changes as shown by the dashed line 26, and when the on-state current 11 changes as shown in the dashed-dotted line 24, the off-current i large changes as shown in the dashed-dotted line 25, so it corresponds to t/2. From the current value, on-current 1. Use a map etc. to determine which of the three paths above
This is to infer a change in intention. And off-state current i!
If it is close to the path of the broken line 23, set a as the proportionality constant P, which will be described later (822*523), and the off-state current 12 is close to the path of the solid line 2.
If the path is close to 1, set b as the proportionality constant P.8
24, 825), if the off-state current 12 is close to the path of the dashed dotted line 25, C is set as the proportionality constant P (826, 5
27).

次に、演算回路6は、次式によってオフ電流l之の平均
値i OFFを算出する(828)。
Next, the arithmetic circuit 6 calculates the average value i OFF of the off-state current l using the following equation (828).

1opr = (in−ix) Xp+ i、 +++
 (1)ただし、lnはトランジスタ3オフ直前の電流
値、iXはトランジスタ3オン再開時の電流値である。
1opr = (in-ix) Xp+ i, +++
(1) Here, ln is the current value immediately before the transistor 3 is turned off, and iX is the current value when the transistor 3 is turned on again.

(1)式から判るように比例定数Pは、平均値l。7F
と1xとの差分な、inとlxとの差分よりめる為の定
数であり、この定数はオフ電流l冨の変化状態により異
なるので、上述の如くオフ電流l、の変化に応じた定数
a、b、eを設定するものである。尚、以上はオン電流
、オフ電流の経路を6個設定したが、経路判別の検出点
(t〆2に相当)の数を増することにより、より多くの
オン、オフ電流の経路を仮定し、近似誤差を小さくする
ことが可能である。
As can be seen from equation (1), the proportionality constant P is the average value l. 7F
This constant is calculated from the difference between in and lx, which is the difference between , b, and e. Although six paths for on-current and off-current are set above, more paths for on- and off-current can be assumed by increasing the number of detection points for path discrimination (corresponding to t〆2). , it is possible to reduce the approximation error.

次に、演算回路6は、オン電流i、の平均値l。Mを次
式によって算出する(829)。
Next, the arithmetic circuit 6 calculates the average value l of the on-current i. M is calculated using the following formula (829).

次に、次式によって前回のオン電流ijとオフ電流12
0合計値の平均電流1mを算出する(S?)0)。
Next, the previous on-current ij and off-current 12 are calculated using the following formula.
0 Calculate the average current 1 m of the total value (S?) 0).

1oNX t+ tovl、(’r−t)tm−−−−
f3) ただし、tは前回のオン期間、Tはトランジスタ6の駆
動パルスの周期である。
1oNX t+ tovl, ('r-t)tm----
f3) Here, t is the previous on period, and T is the period of the drive pulse of the transistor 6.

次に演算回路6は、指定値Eを読取ってその値を更新し
く831) 、次式によって指定値Eに対する理論平均
値1eを算出する(532)。
Next, the arithmetic circuit 6 reads the designated value E, updates the value (831), and calculates the theoretical average value 1e for the designated value E using the following equation (532).

ie =E X g −−−(4) 理論平均値leとは、電磁弁ソレノイド1の平均電流が
この値1゜と一致すればEで指定された開度となるとき
の平均値をいい、gはEとieとの比例定数である。
ie = E g is a proportionality constant between E and ie.

次に、演算回路6は、前回の平均値1mと理論平均値1
eと差分Δiを △I= im−1e−−−(5) なる式でめ(S3+) 、次いで、今回のオン期間t!
を次式によって算出する(S54)。
Next, the arithmetic circuit 6 calculates the previous average value 1m and the theoretical average value 1m.
e and the difference Δi are expressed as ΔI=im−1e−−−(5) (S3+), and then the current on period t!
is calculated by the following formula (S54).

ここで、qは実測によってめた補正係数である。Here, q is a correction coefficient determined by actual measurement.

即ち、前回の平均電流imが指定値Eに基づき算出した
理論平均値1eより大きゆればΔiは正となって、次回
のオン期間t2は短縮され、小さければ△iは負の値に
なるので次回のオン期間t、は増大されることになる。
That is, if the previous average current im is larger than the theoretical average value 1e calculated based on the designated value E, Δi becomes positive and the next on-period t2 is shortened, and if it is smaller, Δi becomes a negative value. The next on-period t, will be increased.

さて、演算回路6は、以上のような処理にて次回のオン
期間を算出すると、トランジスタ60オン再開時の電流
値izを次回のオン期間算出に使用するlo値としてア
ドレスMOに記憶した後(S15)、ステップs6へ復
帰する。従って、ステップs6〜815の処理が繰り返
される。
Now, when the arithmetic circuit 6 calculates the next on-period using the above process, it stores the current value iz when the transistor 60 is turned on again in the address MO as the lo value used for calculating the next on-period. S15), the process returns to step s6. Therefore, the processes of steps s6 to 815 are repeated.

なお、オフ電流i、の経路は例えば第9図に示すように
、三角形u、V、W内を通る為、多少の誤差が許容でき
るなら、オフ電流12の平均値i。FFをオン電流の経
路に拘らず、次式によって算出するようにしても良い。
Note that the path of the off-state current i passes through the triangles u, V, and W, as shown in FIG. 9, for example, so if some error is acceptable, the average value of the off-state current 12 is i. The FF may be calculated by the following equation regardless of the path of the on-current.

’0FF=(in−tX)xf+ 1X−−−(力ただ
し、fは近似係数で、0〜棒等の範囲で定められる。
'0FF= (in-t

発明の詳細 な説明したように、本発明に依れば、電磁弁ソレノイド
のオン電流のみす電流検出抵抗で検出し、オフ電流はオ
ン電流値から推定するようにしたので、電流検出に必要
なハードウェアは極めて僅かで済み、また、オフ電流を
検出しないことから電流検出抵抗の一端を接地できたの
でオン電流の検出精度が従来より向上する利点があり、
総合的な制御精度は従来と同等かそれ以上のものとする
ことができる。
As described in detail, according to the present invention, only the on-current of the solenoid valve solenoid is detected by the current detection resistor, and the off-current is estimated from the on-current value. It requires very little hardware, and since it does not detect off-current, one end of the current detection resistor can be grounded, which has the advantage of improving on-current detection accuracy compared to conventional methods.
The overall control accuracy can be made equal to or higher than that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は電磁弁ソレノイドの構成説明図、第
6図は従来の電磁弁ソレノイド電流制御装置の電気回路
図、第4図は本発明の構成説明図、第5図は本発明の電
流制御装置のハードウェア構成の一例を示す要部ブロッ
ク図、第6図及び第8図は演算回路の動作フローチャー
ト、第7図は電磁弁ソレノイドに流れる電流の波形例を
示す線図、第9図はオフ電流の推定原理説明図である。 1は電磁弁ソレノイド、2は直流電源、3はトランジス
タ、4は電流検出抵抗、5はダイオード、6は演算回路
である。 特許出願人 富士通テン株式会社 代理人 弁理士玉蟲久五部 外1名 第 1 図 第 2 図 第4因 第 5 図 第7図 第9図
1 and 2 are configuration explanatory diagrams of a solenoid valve solenoid, FIG. 6 is an electric circuit diagram of a conventional solenoid valve solenoid current control device, FIG. 4 is a configuration explanatory diagram of the present invention, and FIG. 5 is a diagram of the present invention. 6 and 8 are operational flowcharts of the arithmetic circuit, FIG. 7 is a diagram showing an example of the waveform of the current flowing through the solenoid valve solenoid, and FIG. FIG. 9 is a diagram explaining the principle of off-state current estimation. 1 is a solenoid valve solenoid, 2 is a DC power source, 3 is a transistor, 4 is a current detection resistor, 5 is a diode, and 6 is an arithmetic circuit. Patent Applicant Fujitsu Ten Ltd. Agent: Patent Attorney Tamamushi Go, one person outside the department Figure 1 Figure 2 Figure 4 Factor 5 Figure 7 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 電磁弁ソレノイドの通電電流の平均値が指定値に対応し
た値と一致するように電磁弁ソレノイドと直流電源との
閉ループ内に挿入したスイッチング素子の所定繰返し周
波数の駆動パルスのデユーティ比を制御する電磁弁ソレ
ノイドの電流制御装置において、前記スイッチング素子
のオン中に前記電磁弁ソレノイドを流れるオン電流を検
出する一端が接地された電流検出抵抗と、該電流検出抵
抗の検出値をディジタル量に変換するA/D変換器の出
力値を読取って前記オン電流の平均値を算出するオン′
電流平均値算出手段と、直前のオン電流値から前記スイ
ッチング素子のオフ中に前記電磁弁ソレノイドに該電磁
弁ソレノイドに並列に接続されたダイオードを通して流
れるオフ電流の平均゛ 値を推定するオフ電流平均値推
定手段と、該オフ電流の推定平均値と前記オン電流平均
値とからオン電流とオフ電流の合計の平均値をめる平均
値算出手段と、該平均値算出手段で算出された平均値と
前記指定値とから前記駆動パルスのデユーティ比を算出
するデユーティ比算出手段とを具備したことを特徴とす
る電磁弁ソレノイドの電流制御装置。
An electromagnetic valve that controls the duty ratio of a drive pulse with a predetermined repetition frequency of a switching element inserted in a closed loop between the solenoid valve solenoid and a DC power supply so that the average value of the energizing current of the solenoid valve solenoid matches the value corresponding to the specified value. In a current control device for a valve solenoid, a current detection resistor whose one end is grounded detects the on-current flowing through the electromagnetic valve solenoid while the switching element is on, and A that converts a detected value of the current detection resistor into a digital quantity. /On' which reads the output value of the D converter and calculates the average value of the on-state current.
current average value calculating means; and an off-current average for estimating an average value of an off-current flowing through a diode connected in parallel to the solenoid valve solenoid while the switching element is off from the immediately preceding on-current value. a value estimating means, an average value calculating means for calculating an average value of the sum of the on current and the off current from the estimated average value of the off current and the on current average value, and an average value calculated by the average value calculating means. and duty ratio calculation means for calculating a duty ratio of the drive pulse from the specified value and the specified value.
JP16567483A 1983-09-08 1983-09-08 Electric current controller of electromagnet valve solenoid Granted JPS6057076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16567483A JPS6057076A (en) 1983-09-08 1983-09-08 Electric current controller of electromagnet valve solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16567483A JPS6057076A (en) 1983-09-08 1983-09-08 Electric current controller of electromagnet valve solenoid

Publications (2)

Publication Number Publication Date
JPS6057076A true JPS6057076A (en) 1985-04-02
JPH0254469B2 JPH0254469B2 (en) 1990-11-21

Family

ID=15816871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16567483A Granted JPS6057076A (en) 1983-09-08 1983-09-08 Electric current controller of electromagnet valve solenoid

Country Status (1)

Country Link
JP (1) JPS6057076A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175905A (en) * 1987-01-16 1988-07-20 Honda Motor Co Ltd Current detecting device for electromagnetic actuator driving circuit
JPH02261987A (en) * 1989-03-31 1990-10-24 Iseki & Co Ltd Proportional solenoid valve drive output correcting device
JPH0351589A (en) * 1989-07-17 1991-03-05 Kubota Corp Controller for hydraulic actuator
JPH0367502A (en) * 1989-08-04 1991-03-22 Iseki & Co Ltd Hydraulic going up and down-controlling device of ground working car
JP2011004103A (en) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd Current estimating method for solenoid, automatic-transmission control device, and brake control device
JP2012109659A (en) * 2010-11-15 2012-06-07 Denso Corp Load drive circuit
CN102753898A (en) * 2010-02-10 2012-10-24 三菱电机株式会社 Air-conditioning device
JP2013012902A (en) * 2011-06-29 2013-01-17 Denso Corp Load drive circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175905A (en) * 1987-01-16 1988-07-20 Honda Motor Co Ltd Current detecting device for electromagnetic actuator driving circuit
JPH02261987A (en) * 1989-03-31 1990-10-24 Iseki & Co Ltd Proportional solenoid valve drive output correcting device
JPH0351589A (en) * 1989-07-17 1991-03-05 Kubota Corp Controller for hydraulic actuator
JPH0367502A (en) * 1989-08-04 1991-03-22 Iseki & Co Ltd Hydraulic going up and down-controlling device of ground working car
JP2011004103A (en) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd Current estimating method for solenoid, automatic-transmission control device, and brake control device
CN102753898A (en) * 2010-02-10 2012-10-24 三菱电机株式会社 Air-conditioning device
JPWO2011099063A1 (en) * 2010-02-10 2013-06-13 三菱電機株式会社 Air conditioner
JP2012109659A (en) * 2010-11-15 2012-06-07 Denso Corp Load drive circuit
JP2013012902A (en) * 2011-06-29 2013-01-17 Denso Corp Load drive circuit

Also Published As

Publication number Publication date
JPH0254469B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
US4764840A (en) Dual limit solenoid driver control circuit
US5565765A (en) Current sensor operating according to the compensation theorem
JPS6057076A (en) Electric current controller of electromagnet valve solenoid
US5341286A (en) Current detecting method
WO2000045403A1 (en) System for control of an electromagnetic actuator
JPS6318761B2 (en)
US9777864B2 (en) Method and device for controlling a solenoid actuator
CN111061327A (en) Closed-loop control system and closed-loop control method of driving circuit
JP2000035352A (en) Adjusting method for coil current flowing in coil assembly
US10982785B2 (en) Circuit for controlling the current in inductive loads and control method therefor
US3678344A (en) Electromagnetic relay operation monitor
JP2000009248A (en) Solenoid valve drive unit
JP2020148719A (en) Current detector
JP2022034681A (en) Current detection device
WO1998003901A1 (en) Current control apparatus
JPH0129866Y2 (en)
US20230408311A1 (en) Magnetic Field Generator for a Magnetic-Inductive Flowmeter, Method of Operating the Same, Magnetic-Inductive Flowmeter and Method of Operating the Same
JP2582635B2 (en) Drive device for electromagnetic pump
JP2001351813A (en) Solenoid control device
KR100835195B1 (en) Location control apparatus of solenoid
JPH0110573Y2 (en)
JP2583284B2 (en) Electromagnetic flow meter
EP4290325A1 (en) System and method for error compensation in pulse-width modulated systems
JPS5824771A (en) Controller for flow rate of refrigerant
JPS61117603A (en) Solenoid valve driving device