JPH0110573Y2 - - Google Patents

Info

Publication number
JPH0110573Y2
JPH0110573Y2 JP1982012081U JP1208182U JPH0110573Y2 JP H0110573 Y2 JPH0110573 Y2 JP H0110573Y2 JP 1982012081 U JP1982012081 U JP 1982012081U JP 1208182 U JP1208182 U JP 1208182U JP H0110573 Y2 JPH0110573 Y2 JP H0110573Y2
Authority
JP
Japan
Prior art keywords
excitation
excitation current
current
circuit
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982012081U
Other languages
Japanese (ja)
Other versions
JPS58114722U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1208182U priority Critical patent/JPS58114722U/en
Publication of JPS58114722U publication Critical patent/JPS58114722U/en
Application granted granted Critical
Publication of JPH0110573Y2 publication Critical patent/JPH0110573Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、励磁コイルと、この励磁コイルに対
する励磁電流の流入方向を切換える励磁電流切換
手段と、励磁コイルに定電流を流す定電流手段
と、直流電圧電源とを有する電磁流量計の励磁回
路に関する。
[Detailed description of the invention] The invention includes an excitation coil, excitation current switching means for switching the direction of inflow of excitation current into the excitation coil, constant current means for passing a constant current through the excitation coil, and a DC voltage power supply. This article relates to an excitation circuit for an electromagnetic flowmeter.

電磁流量計は、一般に、導管内を流れる流体の
流量を測定するために導管を直角に横切る方向に
励磁コイルと電極とを配するとともに励磁コイル
と電極とを直交配置し、励磁コイルに励磁電流を
流すことによつて励磁コイルから磁力線を発生さ
せ、その磁力線を流体が直交方向に横切ることに
よつてフレミングの法則にもとずき電極に超電力
を発生させ、この発生した起電力が流量に比例す
ることを利用して流量を測定するようにしてい
る。ところで、導管の外側などに配設される励磁
コイルに対し、導管内を流れる流体が導管内に面
して配置された電極による電気分解作用からの
種々の不都合をなくすために、第1図に示すごと
き励磁回路によつて矩形状の交流励磁電流を流す
ようにしたものがある。即ち、第1図に示す従来
技術の電磁流量計の励磁回路は、励磁コイル1に
励磁電流切換回路2内の切換スイツチ3,3′,
4,4′を切換えて定電流回路5による定励磁電
流I0を交流的に流している。先ず、時刻t0〜t1
おいて、切換スイツチ3,3′を第2図1に示す
ように閉じさせると、励磁コイル1には、第2図
3に示すような励磁電極I0が符号からに向つ
て流れはじめる。ところが、励磁コイル1の過渡
特性によつて所定の励磁電流I0を励磁コイル1に
直ちに流すことはできず、時刻t0から遅れ時間
TD経過した時に所定の励磁電流I0が励磁コイル
1に流れるので、流量を測定するには、完全に励
磁電流I0が安定する時刻、即ち、時刻t0から遅れ
時間T1経過TD<T1した後でなければならず、結
局流量測定時間ΔTに至るまでには相当の遅れ時
間が必要になる。このため、流量をサンプリング
する周期が非常に長くなり、実用性に今一つ欠け
るところがある。なお、第2図2は、切換スイツ
チ4,4′が時刻t1〜t2において閉じるときのタ
イムチヤートであり、この場合、励磁コイル1に
は符号から符号に向つて励磁電流I0が流れ
る。
Generally, an electromagnetic flowmeter has an excitation coil and electrodes arranged perpendicularly across the conduit in order to measure the flow rate of fluid flowing inside the conduit, and the excitation coil and electrodes are arranged orthogonally, and an excitation current is applied to the excitation coil. By flowing , magnetic lines of force are generated from the excitation coil, and when the fluid crosses the magnetic lines of force in the orthogonal direction, superpower is generated at the electrodes based on Fleming's law, and this generated electromotive force increases the flow rate. The flow rate is measured using the fact that the flow rate is proportional to the flow rate. By the way, in order to eliminate various inconveniences caused by the electrolytic action of the fluid flowing inside the conduit due to the electrodes placed facing the inside of the conduit, the excitation coil placed outside the conduit is shown in Fig. 1. There is one in which a rectangular AC excitation current is caused to flow through an excitation circuit as shown. That is, the excitation circuit of the conventional electromagnetic flowmeter shown in FIG.
4 and 4' are switched to flow the constant excitation current I0 from the constant current circuit 5 in an alternating current manner. First, from time t 0 to t 1 , when the changeover switches 3 and 3' are closed as shown in FIG. 2, the excitation coil 1 has an excitation electrode I0 as shown in FIG. begins to flow towards. However, due to the transient characteristics of the excitation coil 1, the predetermined excitation current I0 cannot be immediately applied to the excitation coil 1, and there is a delay time from time t0.
A predetermined excitation current I 0 flows through the excitation coil 1 when TD has elapsed, so in order to measure the flow rate, the time when the excitation current I 0 is completely stabilized, that is, from time t 0 to the time when the delay time T 1 has elapsed TD < T 1 , and a considerable delay time is required until the flow rate measurement time ΔT is reached. For this reason, the period for sampling the flow rate becomes extremely long, and this method is somewhat lacking in practicality. Note that FIG. 2 is a time chart when the changeover switches 4, 4' are closed from time t1 to time t2 , and in this case, the exciting current I0 flows through the exciting coil 1 from the sign to the sign. .

また、前記サンプリング周期に短くするための
技術が、、例えば、特開昭53−20956号公報に開示
されている。この公報に記載の従来の励磁回路で
は、励磁コイルに供給する電圧を過渡的に高める
ことにより、サンプリング周期を短くするように
している。
Further, a technique for shortening the sampling period is disclosed in, for example, Japanese Patent Laid-Open No. 53-20956. In the conventional excitation circuit described in this publication, the sampling period is shortened by transiently increasing the voltage supplied to the excitation coil.

しかしながら、この公報に記載の励磁回路で
は、励磁用の電源を、高出力用と低出力用との2
種類設けなければならず、さらに、励磁電流の過
渡期間と定常期間とに対応させて前記2種類の電
源を切換える必要があるが、励磁電流は、0.5〜
1A程度と比較的大きいので、前記2種類の電源
を切換えるための素子は、発熱などの影響を考慮
して構成しなければならず、このため、構成が複
雑になるとともに、コストが高くつくなどの難点
がある。しかも、この励磁回路では、励磁電流の
立ち上がりを早くするには、かなり大きな高出力
用の電源が必要になるなどの欠点もある。
However, in the excitation circuit described in this publication, there are two power sources for excitation, one for high output and one for low output.
It is necessary to provide different types of power supplies, and it is also necessary to switch between the two types of power supplies according to the transient period and steady period of the excitation current.
Since it is relatively large at about 1A, the elements for switching between the two types of power supplies must be configured taking into consideration the effects of heat generation, etc., which makes the configuration complicated and increases the cost. There is a drawback. Moreover, this excitation circuit has the disadvantage that a fairly large, high-output power supply is required to increase the rise of the excitation current quickly.

本考案の目的は、上述の欠点を除去し、流量の
サンプリング周期の短縮を図りえるとともに、そ
のための回路構成が非常に簡単に済む、したがつ
て製造原価の低減に優れた電磁流量計の励磁回路
を提供することである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, shorten the flow rate sampling period, and provide an excitation electromagnetic flowmeter that has a very simple circuit configuration and is therefore excellent at reducing manufacturing costs. The purpose is to provide circuits.

本考案の電磁流量計の励磁回路では、上述の目
的を達成するために、励磁コイルへの励磁電流の
流入方向を励磁電流切換えタイミングに応答して
切換える励磁電流切換手段と、前記励磁電流切換
手段への励磁電流流入側に設けられた単一の励磁
電流供給用直流電源と、前記励磁電流切換手段か
らの励磁電流流出側に設けられた定電流手段とを
具備し、前記定電流手段は、前記励磁電流切換手
段の励磁電流流出側に励磁電流入力部が接続され
た定電流トランジスタと、前記定電流トランジス
タの励磁電流出力部が接続された定電流抵抗と、
充放電コンデンサ、充電/電圧分割抵抗および励
磁電流切換えタイミングに応答して開閉する応答
スイツチを含み、かつ、これらが互いに直列に接
接された微分回路と、互いに直列に接続された基
準電源と電圧分割抵抗とを含み、かつ、その電圧
分割抵抗が、前記充放電コンデンサに並列に接続
されている直列回路と、設定電圧が入力される設
定電圧入力部および前記定電流トランジスタの入
力部に接続された出力部を具備し、かつ、前記設
定電圧入力部が前記微分回路の充放電コンデンサ
と前記直列回路の電圧分割抵抗との接続部に接続
されているコントロールアンプとを備えている。
In order to achieve the above-mentioned object, the excitation circuit of the electromagnetic flowmeter of the present invention includes an excitation current switching means that switches the direction of inflow of excitation current into the excitation coil in response to excitation current switching timing, and the excitation current switching means. A single DC power supply for supplying excitation current provided on an excitation current inflow side to the excitation current switching means, and a constant current means provided on an excitation current outflow side from the excitation current switching means, the constant current means comprising: a constant current transistor to which an excitation current input section is connected to an excitation current outflow side of the excitation current switching means; a constant current resistor to which an excitation current output section of the constant current transistor is connected;
A differentiation circuit that includes a charging/discharging capacitor, a charging/voltage dividing resistor, and a response switch that opens and closes in response to excitation current switching timing, and these are connected in series, and a reference power supply and voltage that are connected in series to each other. the voltage dividing resistor is connected to a series circuit connected in parallel to the charge/discharge capacitor, a set voltage input section into which a set voltage is input, and an input section of the constant current transistor. and a control amplifier in which the set voltage input part is connected to a connection part between a charging/discharging capacitor of the differentiating circuit and a voltage dividing resistor of the series circuit.

上記構成によれば、励磁電流の切換えタイミン
グに対応して定電流手段のコントロールアンプの
設定電圧が過渡的に高められることになり、これ
によつて、励磁コイルに流れる励磁電流が、早期
に所期の値にまで増加することになる。しかも、
特開昭53−20956号公報に記載されている従来の
励磁回路のように、励磁用電源の切換えといつた
高い電圧の切換えが必要ないために、その分構成
が簡素化されることになる。
According to the above configuration, the set voltage of the control amplifier of the constant current means is transiently increased in response to the switching timing of the excitation current, so that the excitation current flowing through the excitation coil is quickly adjusted to the desired value. This will result in an increase to the period value. Moreover,
Unlike the conventional excitation circuit described in JP-A No. 53-20956, there is no need to switch the excitation power source or high voltage, so the configuration is simplified accordingly. .

次に、本考案の前記構成を実施例により具体的
に説明する。
Next, the above configuration of the present invention will be specifically explained using examples.

第3図は、本考案の一実施例の電気回路図であ
り、第4図はその回路の動作説明に供するタイム
チヤートである。本実施例の励磁回路は、励磁コ
イルLと励磁電流切換回路ESCと定電流回路CS
と励磁電流供給用直流電源としての第1の直流電
圧電源E1とタイミング回路TCと単安定マルチバ
イブレータMMVとを含んで構成される。
FIG. 3 is an electric circuit diagram of one embodiment of the present invention, and FIG. 4 is a time chart for explaining the operation of the circuit. The excitation circuit of this embodiment consists of an excitation coil L, an excitation current switching circuit ESC, and a constant current circuit CS.
, a first DC voltage power supply E1 as a DC power supply for supplying excitation current, a timing circuit TC, and a monostable multivibrator MMV.

励磁電流切換回路ESCは、第1,第4の切換ス
イツチA,B′の直列構成部と第2、第3の切換
スイツチA′,Bの直列構成部とを並列に接続構
成してなるとともに、第1、第3の切換スイツチ
A,Bの共通接続部たる励磁電流流入部I1と、第
2、第4の切換スイツチA′,B′の共通接続部た
る励磁電流流出部I2と、第1、第4の切換スイツ
チA,B′の共通接続部たる励磁コイルに対する
励磁電流流入/流出部I3と、第2、第3の切換ス
イツチA′,Bの共通接続部たる励磁コイルに対
する励磁電流流入/流出部I4とを有している。定
電流回路CSは、コントロールアンプCAと、コン
トロールアンプCAの出力部にベース電流制限抵
抗R1を介してベースを接続されるNPN形定電流
トランジスタQと、定電流トランジスタQのエミ
ツタに接続される定電流抵抗R5と、コントロー
ルアンプCAの設定電圧入力部IN1に接続される
微分回路DC、放電抵抗R2、電圧分割抵抗R3等と
を含み、励磁電流切換回路ESCからの励磁電流I0
の流入部I5とその励磁電流I0の流出部I6とを有す
るとともに、定電流トランジスタQのコレクタを
その流入部I5に接続し、かつそのエミツタを定電
流抵抗R5を介してその流出部I6に接続される。微
分回路DCは、充放電コンデンサCとを充電/電
圧分割抵抗R4と後述する単安定マルチバイブレ
ータMMVの出力パルスに応答して開閉をコント
ロールされる第1の応答スイツチS1とを直列に接
続して構成され、また微分回路DCの充放電コン
デンサCに並列に、放電抵抗R2と、第1の応答
スイツチS1と同様なコントロールをされる〔但
し、第1の応答スイツチS1とは開閉方向が逆であ
る。〕第2の応答スイツチS2との直列回路が挿入
される。微分回路DCの放電/電圧分割抵抗R4
並列に、電圧分割抵抗R3と基準電源としての第
2の直流電圧電源E2との直列回路が挿入される。
The excitation current switching circuit ESC is configured by connecting in parallel a series component of the first and fourth changeover switches A and B' and a series component of the second and third changeover switches A' and B. , an excitation current inflow portion I 1 which is a common connection portion of the first and third changeover switches A and B, and an excitation current outflow portion I 2 which is a common connection portion of the second and fourth changeover switches A′ and B′. , an excitation current inflow/outflow part I3 to the excitation coil which is a common connection part of the first and fourth changeover switches A and B', and an excitation coil which is a common connection part of the second and third changeover switches A' and B. It has an excitation current inflow/outflow part I4 for. The constant current circuit CS includes a control amplifier CA, an NPN type constant current transistor Q whose base is connected to the output section of the control amplifier CA via a base current limiting resistor R1 , and an emitter of the constant current transistor Q. It includes a constant current resistor R5 , a differentiating circuit DC connected to the setting voltage input section IN1 of the control amplifier CA, a discharge resistor R2 , a voltage dividing resistor R3, etc., and an excitation current I from the excitation current switching circuit ESC. 0
The collector of the constant current transistor Q is connected to the inflow part I5 , and the emitter thereof is connected to the inflow part I5 through the constant current resistor R5 . Connected to the outlet I 6 . The differential circuit DC connects in series a charging/discharging capacitor C, a charging/voltage dividing resistor R 4 , and a first response switch S 1 whose opening/closing is controlled in response to the output pulse of a monostable multivibrator MMV, which will be described later. The discharging resistor R 2 is connected in parallel to the charging/discharging capacitor C of the differential circuit DC, and is controlled in the same way as the first response switch S 1 [However, the first response switch S 1 is The opening and closing directions are reversed. ] A series circuit with a second responsive switch S 2 is inserted. A series circuit of a voltage dividing resistor R 3 and a second DC voltage power source E 2 as a reference power source is inserted in parallel with the discharge/voltage dividing resistor R 4 of the differentiating circuit DC.

タイミング回路TCは、励磁電流切換回路ESC
の励磁電流切換タイミング動作に応答して所定の
タイミング信号を単安定マルチバイブレータ
MMVに送出して単安定マルチバイブレータ
MMVをトリガする。トリガされた単安定マルチ
バイブレータMMVは、定電流回路CSの第1、
第2の応答スイツチS1,S2を開閉させるパルス出
力をこれら両スイツチS1,S2に送出する。
Timing circuit TC is excitation current switching circuit ESC
The monostable multivibrator outputs a predetermined timing signal in response to the excitation current switching timing operation of the monostable multivibrator.
Monostable multivibrator by sending to MMV
Trigger MMV. The triggered monostable multivibrator MMV is the first of the constant current circuit CS,
Pulse outputs are sent to both switches S 1 and S 2 to open and close the second response switches S 1 and S 2 .

動作を説明する。 Explain the operation.

時刻t10において、励磁電流切換回路ESCの第
1、第2の切換スイツチA,A′を不図示のスイ
ツチ駆動手段で閉じさせる。そうすると、励磁コ
イルLには符号から符号に向う励磁電流I0
第4図5に示すような変化をしながら流れはじめ
る。ここで、第4図1のハイレベル部分〔時刻
t10〜t20の間〕は、第1、第2の切換スイツチA,
A′が閉じている期間を示し、第4図2のハイレ
ベル部分〔時刻t20〜t30の間〕は第3、第4の切
換スイツチB,B′が閉じている期間を示す。と
ころで、時刻t10においては、タイミング回路TC
から単安定マルチバイブレータMMVにトリガパ
ルスが送出され、これによつて第4図3に示すよ
うに単安定マルチバイブレータMMVは矩形状の
パルス出力を発生し、このため、定電流回路CS
の第1、第2の応答スイツチS1,S2は図示の開閉
位置と反対の開閉位置、即ち、第1の応答スイツ
チS1は閉じる一方、第2の応答スイツチS2は開
く。したがつて、微分回路DCの充放電コンデン
サCには過渡電流が第2の直流電圧電源E2から
流入し、このため充電/電圧分割抵抗R4には、
第4図4に示すごとき微分パルス電圧が現われ
る。その結果、コントロールアンプCAの設定電
圧入力部IN1には、通常時の設定電圧es、即ち、
第2の直流電圧電源E2の直流電圧を電圧分割抵
抗R3と充電/電圧分割抵抗R4とで分圧してなる
電圧よりも大きい過渡的設定電圧es′が印加され
ることになる。これによつてコントロールアンプ
CSは、その過渡的設定電圧es′に対応して大きな
励磁電流I0が定電流抵抗R5に流れるように回路動
作をする。その結果、励磁電流I0に位相進みが生
じ励磁コイルLには、第4図5の時刻t10から遅
れ時間TD後に所定の励磁電流I0が流れはじめる。
At time t10 , the first and second changeover switches A and A' of the excitation current changeover circuit ESC are closed by switch driving means (not shown). Then, an excitation current I 0 starting from the sign to the sign begins to flow through the excitation coil L while changing as shown in FIG. 4 and 5. Here, the high level part of Fig. 4 1 [time
t10 to t20 ], the first and second changeover switches A,
A' indicates the period when it is closed, and the high level portion in FIG . By the way, at time t10 , the timing circuit TC
A trigger pulse is sent to the monostable multivibrator MMV from , which causes the monostable multivibrator MMV to generate a rectangular pulse output as shown in Fig. 4. Therefore, the constant current circuit CS
The first and second responsive switches S 1 and S 2 are in an open and closed position opposite to that shown, ie, the first responsive switch S 1 is closed while the second responsive switch S 2 is open. Therefore, a transient current flows into the charging/discharging capacitor C of the differentiating circuit DC from the second DC voltage source E 2 , so that the charging/voltage dividing resistor R 4 receives:
4 A differential pulse voltage as shown in FIG. 4 appears. As a result, the set voltage input section IN 1 of the control amplifier CA receives the normal set voltage e s , that is,
A transient set voltage e s ' that is larger than the voltage obtained by dividing the DC voltage of the second DC voltage power source E 2 by the voltage dividing resistor R 3 and the charging/voltage dividing resistor R 4 is applied. This will control the amplifier
CS operates as a circuit so that a large excitation current I 0 flows through the constant current resistor R 5 in response to the transient set voltage e s ′. As a result, a phase advance occurs in the excitation current I 0 and a predetermined excitation current I 0 begins to flow through the excitation coil L after a delay time T D from time t 10 in FIG. 4 .

本実施例による前記遅れ時間TDは、従来技術
による遅れ時間TDよりも短かいので、本実施例
では、流量測定のためサンプリング周期を必然的
に短縮させることが可能になる。
Since the delay time T D according to the present embodiment is shorter than the delay time T D according to the prior art, the present embodiment naturally makes it possible to shorten the sampling period for flow rate measurement.

さらに、この実施例の励磁回路では、コントロ
ールアンプCAの設定電圧を、微分回路DCを用い
て過渡的に高めるようにしているので、特開昭53
−20956号公報に記載の従来の励磁回路のように、
2種類の電源を必要とすることもなく、この2種
類の比較的高い電圧電源の切換えを行うための複
雑な構成も必要でなくなる。さらに、本考案で
は、微分回路DCの定数を選択することにより、
容易に励磁電流の立ち上がりを早めることができ
る。
Furthermore, in the excitation circuit of this embodiment, the set voltage of the control amplifier CA is transiently increased using a differentiating circuit DC.
- Like the conventional excitation circuit described in Publication No. 20956,
There is no need for two types of power sources, and there is no need for a complicated configuration for switching between these two types of relatively high voltage power sources. Furthermore, in this invention, by selecting the constant of the differential circuit DC,
The rise of the excitation current can be easily accelerated.

なお、微分回路DCの充放電コンデンサCに充
電された電荷は、単安定マルチバイブレータ
MMVからのパルス出力がなくなり〔第4図の時
刻t10から時間TD経過した点〕、第1、第2の応答
スイツチS1,S2が図示の開閉位置に復帰したとき
に放電抵抗R2を介して放電し、これによつて微
分回路DCは次のサンプリングに対する準備を完
了する。
In addition, the charge charged in the charging/discharging capacitor C of the differential circuit DC is a monostable multivibrator.
When the pulse output from the MMV disappears [time T D has elapsed from time t 10 in Figure 4] and the first and second response switches S 1 and S 2 return to the open/close positions shown, the discharge resistor R 2 , which completes the differentiation circuit DC's preparation for the next sampling.

上述の実施例においては、微分回路DCに、充
放電コンデンサCを使用しているけれども、第1
の応答スイツチS1の開閉によつて電圧分割抵抗
R3に並列に他の電圧分割抵抗が挿入されるよう
にしてもよい。
In the above embodiment, although the charging/discharging capacitor C is used in the differentiating circuit DC, the first
voltage dividing resistor by opening and closing response switch S1
Another voltage dividing resistor may be inserted in parallel with R3 .

以上のように本考案によれば、定電流手段のコ
ントロールアンプの設定電圧入力部の設定電圧
を、励磁電流切換えタイミングに対応して過渡的
に高めるようにしているので、流量のサンプリン
グ周期を短縮させ得るとともに、そのための回路
構成が比較的簡単であつて、しかも、コストの低
減を図ることができる。
As described above, according to the present invention, the set voltage of the set voltage input section of the control amplifier of the constant current means is increased transiently in accordance with the excitation current switching timing, thereby shortening the sampling period of the flow rate. In addition, the circuit configuration for this purpose is relatively simple, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術の電気回路図、第2図は、
その回路動作の説明に供するタイムチヤート、第
3図は、本考案の一実施例の電気回路図、第4図
は、その回路動作の説明に供するタイムチヤート
である。 L……励磁コイル、ESC……励磁電流切換回
路、CS……定電流回路、E1……第1の直流電圧
電源、DC……微分回路、CA……コントロールア
ンプ、TC……タイミング回路、MMV……単安
定マルチバイブレータ。
Figure 1 is an electrical circuit diagram of the prior art, Figure 2 is:
FIG. 3 is an electric circuit diagram of an embodiment of the present invention, and FIG. 4 is a time chart for explaining the circuit operation. L...Exciting coil, ESC...Exciting current switching circuit, CS...Constant current circuit, E1 ...First DC voltage power supply, DC...Differentiating circuit, CA...Control amplifier, TC...Timing circuit, MMV...Monostable multivibrator.

Claims (1)

【実用新案登録請求の範囲】 励磁コイルへの励磁電流の流入方向を励磁電流
切換えタイミングに応答して切換える励磁電流切
換手段と、 前記励磁電流切換手段への励磁電流流入側に設
けられた単一の励磁電流供給用直流電源と、 前記励磁電流切換手段からの励磁電流流出側に
設けられた定電流手段とを具備し、 前記定電流手段は、 前記励磁電流切換手段の励磁電流流出側に励磁
電流入力部が接続された定電流トランジスタと、 前記定電流トランジスタの励磁電流出力部が接
続された定電流抵抗と、 充放電コンデンサ、充電/電圧分割抵抗および
励磁電流切換えタイミングに応答して開閉する応
答スイツチを含み、かつ、これらが互いに直列に
接続された微分回路と、 互いに直列に接続された基準電源と電圧分割抵
抗とを含み、かつ、その電圧分割抵抗が、前記充
放電コンデンサに並列に接続されている直列回路
と、 設定電圧が入力される設定電圧入力部および前
記定電流トランジスタの入力部に接続された出力
部を具備し、かつ、前記設定電圧入力部が前記微
分回路の充放電コンデンサと前記直列回路の電圧
分割抵抗との接続部に接続されているコントロー
ルアンプとを備えたことを特徴とする電磁流量計
の励磁回路。
[Claims for Utility Model Registration] Exciting current switching means for switching the direction of inflow of excitation current into an excitation coil in response to excitation current switching timing; and a unit provided on the excitation current inflow side to the excitation current switching means. a DC power source for supplying excitation current, and a constant current means provided on the excitation current outflow side from the excitation current switching means, the constant current means providing excitation current on the excitation current outflow side of the excitation current switching means. a constant current transistor to which a current input section is connected; a constant current resistor to which an excitation current output section of the constant current transistor is connected; a charging/discharging capacitor, a charging/voltage dividing resistor, and opening/closing in response to excitation current switching timing. A differential circuit including a response switch and connected in series with each other; a reference power source and a voltage dividing resistor connected in series with each other; and the voltage dividing resistor is connected in parallel to the charging/discharging capacitor. a set voltage input section into which a set voltage is input, and an output section connected to the input section of the constant current transistor, and the set voltage input section is configured to charge and discharge the differentiating circuit. An excitation circuit for an electromagnetic flowmeter, comprising a control amplifier connected to a connection between a capacitor and a voltage dividing resistor of the series circuit.
JP1208182U 1982-01-30 1982-01-30 Excitation circuit of electromagnetic flowmeter Granted JPS58114722U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208182U JPS58114722U (en) 1982-01-30 1982-01-30 Excitation circuit of electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208182U JPS58114722U (en) 1982-01-30 1982-01-30 Excitation circuit of electromagnetic flowmeter

Publications (2)

Publication Number Publication Date
JPS58114722U JPS58114722U (en) 1983-08-05
JPH0110573Y2 true JPH0110573Y2 (en) 1989-03-27

Family

ID=30024669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208182U Granted JPS58114722U (en) 1982-01-30 1982-01-30 Excitation circuit of electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS58114722U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378765B2 (en) * 2000-12-26 2009-12-09 横河電機株式会社 Excitation circuit of electromagnetic flow meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320956A (en) * 1976-08-11 1978-02-25 Yamatake Honeywell Co Ltd Magnetizing circuits for electromagnetic flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320956A (en) * 1976-08-11 1978-02-25 Yamatake Honeywell Co Ltd Magnetizing circuits for electromagnetic flowmeter

Also Published As

Publication number Publication date
JPS58114722U (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4784000A (en) Magnetic flowmeter coil driver and method
EP0267283A1 (en) Brushless dc motor
CA1303675C (en) Current source for a variable load with an inductive component
JPS6042519Y2 (en) integral circuit
JPS59108418A (en) Signal generating circuit
JPH0110573Y2 (en)
WO2018225436A1 (en) Gate driving device
JP3043757B2 (en) Adjustment method of coil current flowing through coil assembly
JP2573300B2 (en) Electromagnet coil drive
JP4004931B2 (en) Excitation circuit of electromagnetic flow meter
JPH0129866Y2 (en)
US3699415A (en) Constant speed drive units for driving devices
US3924143A (en) Constant rise time controller for current pulse
GB1590286A (en) Electric motor control circuits
JPS5883592A (en) Driving circuit for motor
JP2002064944A (en) Method and apparatus for charging capacitor
SU1444104A1 (en) Apparatus for electric discharge alloying
JP2685874B2 (en) Electromagnet coil drive
JP2689578B2 (en) Relay drive
JPH061506Y2 (en) Power steering control device
JP2685873B2 (en) Electromagnet coil drive
JPH0726660Y2 (en) Electromagnetic flow meter
SU1522386A1 (en) Generator of magnetic scanning
JPS6049614A (en) Driving device for electromagnetic device
JPH0314206A (en) Coil driving device for electromagnet