JPS6056289A - Support structure of reactor core structure - Google Patents

Support structure of reactor core structure

Info

Publication number
JPS6056289A
JPS6056289A JP58164687A JP16468783A JPS6056289A JP S6056289 A JPS6056289 A JP S6056289A JP 58164687 A JP58164687 A JP 58164687A JP 16468783 A JP16468783 A JP 16468783A JP S6056289 A JPS6056289 A JP S6056289A
Authority
JP
Japan
Prior art keywords
core
support plate
reactor
core support
core structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58164687A
Other languages
Japanese (ja)
Inventor
三木 俊也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58164687A priority Critical patent/JPS6056289A/en
Publication of JPS6056289A publication Critical patent/JPS6056289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明はガス冷却型原子炉を対象とする炉心構造物の
支持Wi造に関する〇 〔従来技術とその問題点〕 ます、第1図に頭記高温ガス炉の炉心構造物支持構造を
示す。図において、1は燃料体および可動反射体からな
る炉心、2は高温プレナム部、3は固定反射体、4 i
d、炉床断熱部であり、これ等の組立体としてなる炉心
構造物5は炉心支持板6を介して原子炉圧力容器7の底
部に支えられたダイヤグリッド8に担持されている。な
お9は圧力容器7および炉床断熱部4を貫通して高温プ
レナム部3に開口して配管された一次冷却材の出口管、
10は入口管、11は炉心構造物5の外周を取巻く炉心
拘束機1’f、12はコアバレルである。ここで前記の
炉心構造物5を構成している各要素1〜4はそれぞれ黒
鉛等で作られたセラミックブロックの積層集合体として
なり、炉の組立に際して炉心支持板6の上に積層構築さ
れる。これに対して炉心支持板6はクロムモリブテン鋼
で作られた金属製の板であり、その形状は平担な円板で
ある。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a support structure for a core structure for a gas-cooled nuclear reactor. This figure shows the core structure support structure of the high temperature gas reactor. In the figure, 1 is a core consisting of a fuel body and a movable reflector, 2 is a high-temperature plenum, 3 is a fixed reflector, and 4 i
d, a hearth insulation part, and a core structure 5 which is an assembly of these parts is supported on a diagrid 8 supported on the bottom of a reactor pressure vessel 7 via a core support plate 6. Note that 9 is a primary coolant outlet pipe that penetrates the pressure vessel 7 and the hearth insulation part 4 and opens into the high-temperature plenum part 3;
10 is an inlet pipe, 11 is a core restraint machine 1'f surrounding the outer periphery of the core structure 5, and 12 is a core barrel. Here, each of the elements 1 to 4 constituting the core structure 5 is a laminated assembly of ceramic blocks made of graphite or the like, and is laminated and constructed on the core support plate 6 when assembling the reactor. . On the other hand, the core support plate 6 is a metal plate made of chromium molybdenum steel, and its shape is a flat disk.

上記構成で、炉の運転時には400℃程度の低温の一次
冷却ガスが矢印Aのように入口も10から圧力容器7へ
加圧導入され、固定反射体3の外周域を上方に向けて流
れた後に、炉内上部で方向を反転して炉心の各ガスチャ
ンネル内を流下する。
With the above configuration, during operation of the furnace, primary cooling gas at a low temperature of about 400° C. is introduced under pressure into the pressure vessel 7 from the inlet 10 as shown by arrow A, and flows upward through the outer peripheral area of the fixed reflector 3. It then reverses direction at the top of the reactor and flows down into each gas channel of the reactor core.

ここで燃料体との熱交換で約1000℃まで昇温したガ
スは高温プレナム部2で合流し、ここから出口管9を通
じて炉外へ流れ出る。
Here, the gases heated to about 1000° C. by heat exchange with the fuel body join together in the high-temperature plenum portion 2, and from there flow out of the furnace through the outlet pipe 9.

ところで、先記のように炉心構造物5は熱膨張率の小さ
な黒鉛等のセラミック系拐料で作られているのに対し、
炉心支持板6は熱膨張率の大きい金属板である。このた
めに炉の運転時に炉内温度が上昇すると、第2図のよう
に炉心支持板6は全体的に矢印Pで示すように放射方向
へ大きく熱膨張するが、一方では炉心構造物5の熱膨張
遇は極めて小さい。このだめに炉心支持板6の上にセ4
築されている炉心構造物の構成要素である固定反射体等
のセラミックブロックは、炉心支持板6の熱膨張に引き
ずられて個々に放射方向へずれ、結果として第2図に示
すように各セラミックブロック相互の接合面の間に隙間
gが発生することになる。
By the way, as mentioned above, the core structure 5 is made of a ceramic material such as graphite with a small coefficient of thermal expansion.
The core support plate 6 is a metal plate with a large coefficient of thermal expansion. For this reason, when the temperature inside the reactor increases during operation of the reactor, the core support plate 6 as a whole undergoes large thermal expansion in the radial direction as shown by arrows P as shown in FIG. Thermal expansion is extremely small. At this point, set 4 on top of the core support plate 6.
The ceramic blocks such as fixed reflectors, which are the components of the core structure being built, are dragged by the thermal expansion of the core support plate 6 and are individually displaced in the radial direction, resulting in each ceramic block being moved in the radial direction as shown in FIG. A gap g will be generated between the joint surfaces of the blocks.

しかもこの隙間Iが拡大すると、矢印へ′で示すごとく
一次冷却ガスの一部は炉心外周域の途中から正規の経路
を通らずに前記の隙間Iを通じて高温プレナム部の方へ
低温の1まバイパスするようになシ、この結果燃料チャ
ンネルを流れる炉の有効ガス流量が減少する。しかも有
効ガス流量が減少すると、燃料体が異常に昇温しで破損
のおそれがある。このために従来では第1図で述べたよ
うに炉心拘束機構11を備え、外周側から炉心構造物5
を締付けてセラミックブロックの集合化を図る手段を講
じている。
Furthermore, as this gap I expands, a part of the primary cooling gas bypasses the normal path from the middle of the outer periphery of the core to the high-temperature plenum through the above-mentioned gap I, as shown by the arrow ′. This results in a reduction in the effective furnace gas flow rate through the fuel channel. Moreover, if the effective gas flow rate decreases, the fuel body may become abnormally heated and may be damaged. For this purpose, in the past, a core restraint mechanism 11 was provided as described in FIG. 1, and the core structure 5 was
Measures are taken to aggregate the ceramic blocks by tightening them.

ところで上記の炉心拘束機構11に課ぜられる締付力は
、炉心構造物5と炉心支持板6との間に働く摩擦力より
も犬であることが必幾条件となるが、この力d、実剣・
の仙としては弁筒に犬であること妙1ら、炉心拘束機構
にはこの鍋大々荷重に耐えるたけの強度と高い長期に亘
る信頼性が婁□求される。し、かしながら高温および炉
の運転、停止によるヒートザイクルも加わる苛酷なイミ
件下で長期間その健全性を保証することは難がしく、こ
の問題8’j決が大きな訴願と4っていZ)0〔発明の
目的〕 この発明はl: fteO点にがんがみなされたもので
あシ、炉心拘束機構を必要としないが、ないしは炉心拘
束PA構の荷重負荷を軽減しつつ、炉心支持板の熱膨張
に対抗して巧みに炉心(11j造物の集合化が図れるよ
うにした炉心構造物の支持構造を提供することを目的と
する。
By the way, the tightening force imposed on the core restraint mechanism 11 described above must be greater than the frictional force acting between the core structure 5 and the core support plate 6, but this force d, Actual sword/
The core restraint mechanism is required to be strong enough to withstand the large load of this pot and to have high long-term reliability, such as the fact that the valve cylinder has a large diameter. However, it is difficult to guarantee long-term integrity under harsh industrial conditions, including high temperatures and heat cycles due to furnace operation and shutdown, and the 8'j decision on this issue is a major appeal. Z) 0 [Object of the Invention] This invention is based on the assumption that cancer is present at the l: fteO point, and does not require a core restraint mechanism, or can reduce the load on the core restraint PA structure while It is an object of the present invention to provide a support structure for a core structure in which core structures can be skillfully aggregated against the thermal expansion of a support plate.

〔発明の要点〕[Key points of the invention]

上記目的を達成するために、この発Wノは炉心支持板を
炉の中心を頂点とするコーン形状となし前記炉心支持板
の頂点を下方に向けて前記ダイヤグリッド上に配置し、
前記炉心支持板上に前記炉心構造物を積層構築すること
により、炉心構造物の自重による炉心支持板の傾余[面
に沿って中心方向へ向う分力、つまシ炉心構造物を構成
する各要素のセラミックブロックを炉心の中心へ向けて
集合化させる力で熱膨張により放射方向へ伸びようとす
る炉心支持板との間に働く摩擦力を相殺し、炉心支持板
の熱膨張による各セラミックブロックの位置ずれを阻止
しようとするものである。
In order to achieve the above object, the core support plate is formed into a cone shape with the apex at the center of the reactor, and the core support plate is placed on the diagrid with the apex facing downward;
By stacking and constructing the core structures on the core support plate, the tilting force of the core support plate due to the core structure's own weight [component force directed toward the center along the surface, The force that gathers the ceramic blocks of the elements toward the center of the core cancels out the frictional force that acts between them and the core support plate, which tends to extend in the radial direction due to thermal expansion, and each ceramic block due to the thermal expansion of the core support plate The purpose is to prevent the positional shift of the

〔発明の実施例〕[Embodiments of the invention]

第3図、第4図はそれぞれ異なるこの発明の実施例を示
すものであり、各実施例において、第1図の従来構造と
異なる点は炉心支持板6が炉の中心を頂点とするコーン
形状となし前記炉心支持板の頂点を下方に向けて前記ダ
イヤグリッド上例配僅し、かつこの支持板6の上に私層
檜築される炉心構造物5の構成大索のうち、最下段のセ
ラミックブロックはその底面が前記LfC支持板傾剰角
θに合わせて傾斜面となるように作られている。ここで
第3図の実施例では、炉心構造物5のセラミックブロッ
クと金属製炉心支持板6との間の静止摩擦係数全μとし
て、支持板6の傾斜角θけθ〉tam=μ、つ寸勺両者
間の摩擦角よりも大きな角度に設定されている。
3 and 4 show different embodiments of the present invention, and in each embodiment, the difference from the conventional structure shown in FIG. 1 is that the core support plate 6 has a cone shape with the apex at the center of the reactor. The top of the core support plate 6 is placed on the diamond grid with the apex facing downward, and the lowest level of the main cables of the core structure 5 to be constructed on the support plate 6 is The ceramic block is made so that its bottom surface is inclined in accordance with the LfC support plate inclination angle θ. In the embodiment shown in FIG. 3, the total static friction coefficient μ between the ceramic block of the core structure 5 and the metal core support plate 6 is defined as the inclination angle θ of the support plate 6〉tam=μ, The angle is set to be larger than the friction angle between the two sides.

上記の構成によれば、炉心構造物5の自重により、その
構成少累である各セラミックブロックには炉心支持板6
の傾斜面に沿って炉心の中心に向う矢印Qの力が作用す
ることになる。この向心力Qの向きは、炉の運転時に生
じる炉心支持板6の熱膨張の方向(矢印P)と反対であ
り、かっこの熱膨張によって炉心構造物を矢印P方向へ
引きずろうとする摩擦力よりも太きい。しだがって炉心
構造物5の各セラミックブロックは炉心支持板6の熱膨
張に追従してその位置が第2図に示したようにずれるこ
とがなく、集合化状態を糾持する。
According to the above configuration, due to the weight of the core structure 5, each of the ceramic blocks, which are small in number, has a core support plate 6.
The force of arrow Q toward the center of the reactor core acts along the inclined surface of . The direction of this centripetal force Q is opposite to the direction of thermal expansion (arrow P) of the core support plate 6 that occurs during reactor operation, and is stronger than the frictional force that tries to drag the core structure in the direction of arrow P due to the thermal expansion of the brackets. It's also thick. Therefore, each ceramic block of the core structure 5 follows the thermal expansion of the core support plate 6, and its position does not shift as shown in FIG. 2, maintaining the aggregated state.

かくしてセラミックブロック相互の接合面間の隙間が拡
張せず、−次冷却ガスのバイノくス流S増加を防止でき
ることになる。しかも炉心支持板6の傾斜角θを摩擦角
よりも大に設定した第3図の実施例では、炉心拘束機構
の省略が可能である。
In this way, the gap between the bonding surfaces of the ceramic blocks does not expand, and an increase in the binocular gas flow S of the secondary cooling gas can be prevented. Moreover, in the embodiment shown in FIG. 3 in which the inclination angle θ of the core support plate 6 is set larger than the friction angle, the core restraint mechanism can be omitted.

第4図の実施例は、先の実施例と比べて炉心支持板6の
傾斜角θが小であり、角度θico<θ〈tarrlμ
の範囲に定めるとともにこのコーン形状の支持板6に加
えて、炉心拘束機構11を併用したものである。この実
施例でも第3図の場合と同様に炉心支持板6の傾斜面に
沿って炉心構造物の自重による向心力Qが働く。したが
ってその分だけ炉心拘束機構11の荷重分担が軽減され
ることになり、その健全性保証に対する信頼性が向上す
る。またこの実施例は第3図のものと比べて支持板6の
傾斜角が小さい分たけ筒さ寸法が縄減されるので、炉内
スペースを節約できる。
In the embodiment of FIG. 4, the inclination angle θ of the core support plate 6 is smaller than that of the previous embodiment, and the angle θico<θ<tarrlμ
In addition to this cone-shaped support plate 6, a core restraint mechanism 11 is also used. In this embodiment, as in the case of FIG. 3, a centripetal force Q due to the weight of the core structure acts along the inclined surface of the core support plate 6. Therefore, the load sharing of the core restraint mechanism 11 is reduced by that amount, and the reliability of ensuring the integrity of the core restraint mechanism 11 is improved. Further, in this embodiment, since the inclination angle of the support plate 6 is smaller than that in FIG. 3, the cylindrical dimension is reduced, so that the space inside the furnace can be saved.

〔発明の効果〕〔Effect of the invention〕

上述のようにこの発明によれば、炉心支持板をその板面
が炉の中心に向けて下向き傾斜するコーン形状となし、
この炉心支持板上に炉心構造物を積層構築したことによ
り、炉心拘束機構の省略々いしは炉心拘束機構の分担荷
重を大幅に軽減させつつ、炉心支持鈑の熱膨張に対抗し
て炉心構造物の集合化を図ることができ、これによって
炉内構造の合理化、並ひに炉心拘束機構の健全性保証の
面で大きく寄Jiする炉心支持構造を得ることができる
As described above, according to the present invention, the core support plate is formed into a cone shape whose plate surface is inclined downward toward the center of the reactor,
By stacking the core structure on this core support plate, the core restraint mechanism can be omitted or the load shared by the core restraint mechanism can be significantly reduced. This makes it possible to rationalize the reactor internal structure and obtain a core support structure that greatly improves the integrity of the core restraint mechanism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来における高温ガス炉の炉内構造を示す縦断
面図、第2図は第1図における炉心支持板の熱膨張に追
従する炉心構造物の準動を示した部分平面図、第3図お
よび第4図はそれぞれ異なるこの発明の実がjH例を示
す炉心支持構造の構成断面図である。 1・・・・・炉心、2・・・・・・高温ブレナム部、3
・・・・・・固定反射体、4・・・・・炉床断熱部、5
・・・・炉心構造物、6・・・・ 炉心支り板、8・・
・・・ダイヤグリッド、11・・・・・炉心拘束機構、
P・・・・・炉心支持板の熱膨張方向、Q・・・・炉心
構造物の自重による向心A 才2図 才3図 !:1 δ
FIG. 1 is a vertical cross-sectional view showing the internal structure of a conventional high-temperature gas reactor, FIG. 2 is a partial plan view showing the quasi-motion of the core structure following the thermal expansion of the core support plate in FIG. 3 and 4 are structural cross-sectional views of core support structures showing different examples of the present invention. 1...Reactor core, 2...High temperature blenheim section, 3
... Fixed reflector, 4 ... Hearth insulation part, 5
...Core structure, 6... Core support plate, 8...
... Diagrid, 11... Core restraint mechanism,
P...Thermal expansion direction of the core support plate, Q...The centroid A due to the core structure's own weight Figure 2 Figure 3! :1 δ

Claims (1)

【特許請求の範囲】[Claims] 1)セラミックブロックの積層集合体として彦る炉心、
固定反則体、高温プレナム部、および炉床断熱部等を組
合わせて構成される炉心構造物を金属製の炉心支持板を
介してダイヤグリッド上に支持する原子炉構造物の支持
構造において、前記炉心支持板を炉の中心を頂点とする
コーン形状となし前記炉心支持板の頂点を下方に向けて
前記ダイヤリングリッド上に配置し、前記炉心支持板上
に前記炉心構造物を積層構築することを特徴とする原子
炉構造物の支持構造。
1) Reactor core as a stacked assembly of ceramic blocks,
In a support structure for a nuclear reactor structure in which a reactor core structure constituted by a combination of a fixed fouling body, a high-temperature plenum part, a hearth insulation part, etc. is supported on a diagrid via a metal core support plate, the above-mentioned The core support plate is formed into a cone shape with the apex at the center of the reactor, and the core support plate is placed on the dialing grid with the apex facing downward, and the core structure is laminated and constructed on the core support plate. A support structure for a nuclear reactor structure characterized by:
JP58164687A 1983-09-07 1983-09-07 Support structure of reactor core structure Pending JPS6056289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164687A JPS6056289A (en) 1983-09-07 1983-09-07 Support structure of reactor core structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164687A JPS6056289A (en) 1983-09-07 1983-09-07 Support structure of reactor core structure

Publications (1)

Publication Number Publication Date
JPS6056289A true JPS6056289A (en) 1985-04-01

Family

ID=15797943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164687A Pending JPS6056289A (en) 1983-09-07 1983-09-07 Support structure of reactor core structure

Country Status (1)

Country Link
JP (1) JPS6056289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095157A (en) * 2014-11-12 2016-05-26 イビデン株式会社 Reactor core structure material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095157A (en) * 2014-11-12 2016-05-26 イビデン株式会社 Reactor core structure material

Similar Documents

Publication Publication Date Title
US3124514A (en) koutz etal
US4289582A (en) Nuclear reactor collecting tank with thermal insulation
JPS6056289A (en) Support structure of reactor core structure
JPS58179730A (en) Supporter for catalyst layer of catalyst combustor
EP0186669B1 (en) Refractory choke for a high intensity combustor
JP2000256716A (en) Structure for holding refractory in furnace body
JPH0316569B2 (en)
US4849157A (en) Core barrel for a high-temperature nuclear reactor
JPH0131993Y2 (en)
JPS6168586A (en) Core support plate structure of high-temperature gas cooling type reactor
JPS59217191A (en) Stationary reflector of gas cooled reactor
JPH02233908A (en) Combustion chamber and its cooling method
JPS596174B2 (en) Fluidized bed high temperature rectifier
JPS5990092A (en) Supporting device for weight material fixed in high temperature gas
JPH05306405A (en) Furnace protecting wall provided with slow-cooling type stave cooler
JPH0119118Y2 (en)
JPS61228381A (en) High-temperature gas reactor
JP2660519B2 (en) Prevention method of leakage flow between high-temperature gas-cooled reactor high-temperature plenum blocks
JPS6046492A (en) Thermal shielding device for fast breeder reactor
JPH023196Y2 (en)
JPS61286788A (en) Fuel element for fast breeder reactor
JPH01318994A (en) Nuclear fuel element
JPS60225088A (en) Loop type fast breeder reactor
JPS6189905A (en) Ceramic double layer blade structure
JPS5985990A (en) Fuel body for high temperature gas reactor