JPS59217191A - Stationary reflector of gas cooled reactor - Google Patents

Stationary reflector of gas cooled reactor

Info

Publication number
JPS59217191A
JPS59217191A JP58093217A JP9321783A JPS59217191A JP S59217191 A JPS59217191 A JP S59217191A JP 58093217 A JP58093217 A JP 58093217A JP 9321783 A JP9321783 A JP 9321783A JP S59217191 A JPS59217191 A JP S59217191A
Authority
JP
Japan
Prior art keywords
gas
graphite
fixed reflector
core
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093217A
Other languages
Japanese (ja)
Inventor
創一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58093217A priority Critical patent/JPS59217191A/en
Publication of JPS59217191A publication Critical patent/JPS59217191A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明はガス冷却形原子炉における炉心部を取シ囲ん
で構築ちれた黒鉛ブロックの積層集合体としてなる固定
反射体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a fixed reflector that is a stacked assembly of graphite blocks constructed around the core of a gas-cooled nuclear reactor.

〔従来技術とその問題点〕[Prior art and its problems]

まず第1図によシ頭記ガス冷却形原子炉とじてのA温カ
ス炉の構成概要を述べる。図において、lは原子炉圧力
容器、2は燃料体および可動反射体の集合体として構成
されている炉心、3は高温プレナムブロック、4は炉床
断熱ブロック、5はプoツク3と4の間に形成された高
温プレナム、6は炉心支持板、7は炉心構造物を支える
ダイヤグリッド、8は一次冷却材としてのガスの人口バ
イブ、9は炉心支持板6および炉床断熱ブロック4を貫
通して高温プレナム5へ白妙て開口するよの配管された
ガス出口バイブ、10がこの考案の対象となる固定反射
体でめシ、この固定反射体10は周知のように炉心を取
囲んで側方よシ支持し:炉心からの放射綜をしやへいす
るためのものであり、多数の黒鉛ブロック11を上下お
よび周方向に積層して構成されている。なお図中コアバ
レル、炉心拘束機構、制御棒等は省略しである。
First, an outline of the configuration of the A-warm reactor, which is a gas-cooled nuclear reactor mentioned above, will be described with reference to FIG. In the figure, l is the reactor pressure vessel, 2 is the reactor core configured as an assembly of fuel bodies and movable reflectors, 3 is the high-temperature plenum block, 4 is the hearth insulation block, and 5 is the pumps 3 and 4. A high-temperature plenum is formed in between, 6 is a core support plate, 7 is a diagonal grid that supports the core structure, 8 is an artificial vibe for gas as a primary coolant, 9 is a core that penetrates the core support plate 6 and the hearth insulation block 4. A gas outlet vibrator 10 is a fixed reflector which is the subject of this invention.As is well known, this fixed reflector 10 surrounds the reactor core and is attached to the side. Directional support: This is for supporting the radiation from the core, and is made up of a large number of graphite blocks 11 stacked vertically and circumferentially. Note that the core barrel, core restraint mechanism, control rods, etc. are omitted in the figure.

上記高温ガス炉における運転時の冷却ガスの流れ経路は
次のごとくである。すなわち、冷却ガスは的外00℃で
入口バイブ8を通じて圧力容器1に入ル、炉心支持板4
の下面を冷却しながら周囲へ広がって固定反射体10と
圧力容器1との間を上昇し、各器内の上部で方向転換し
て炉心2へ流れ込む。ここで約1000℃まで燃料体と
の熱×換で!を温した後に高温プレナムに集貰シ、ここ
から出口バイブ9を通じて炉外へ流れ出る。1次かかる
ガス循環通流は炉外のガス送風機によって行われ、入口
バイブ8が高圧の吐出側、出口バイブ9が低圧の吸込側
となる。
The flow path of the cooling gas during operation in the high temperature gas furnace is as follows. That is, the cooling gas enters the pressure vessel 1 through the inlet vibrator 8 at a temperature of 00° C.
While cooling the lower surface of the reactor, it spreads out to the surroundings, rises between the fixed reflector 10 and the pressure vessel 1, changes direction at the upper part of each vessel, and flows into the reactor core 2. Here, heat is exchanged with the fuel body up to about 1000℃! After being heated, it is collected in a high-temperature plenum, from where it flows out of the furnace through an exit vibe 9. The primary gas circulation is carried out by a gas blower outside the furnace, with the inlet vibrator 8 serving as a high-pressure discharge side and the outlet vibrator 9 serving as a low-pressure suction side.

ところで先述のように多数の黒鉛ブロック11を積層し
た集合体として構成されている固定反射体lOにおいて
、隣接し合う黒鉛ブロック相互間で突き合わせ面にすき
間が生じると、このすき間を通じて、高圧側の冷却ガス
の一部が炉心へ向う正規の紅路を通らずに途中から高温
プレナムの方へ向けてバイパスしてしまうことになる。
By the way, in the fixed reflector lO, which is constructed as an assembly of a large number of stacked graphite blocks 11, as described above, if a gap occurs between the abutting surfaces between adjacent graphite blocks, the high-pressure side will be cooled through this gap. Some of the gas ends up bypassing the hot plenum, instead of taking the normal route to the reactor core.

しかもこのバイパス流が生じると、圧力容器1へ導入さ
れた低温ガスの一部がショートサーキットして出口バイ
ブへ流入するために、炉心2内を正規に流れる冷却ガス
の有効流量が減少し、この結果熱の取出し効率を低下さ
せるのみならず、燃料体の除熱が十分に行われなくなる
ことから、燃料体が異常に昇温加熱して炉の破損を招く
恐れもある。
Moreover, when this bypass flow occurs, a part of the low-temperature gas introduced into the pressure vessel 1 short-circuits and flows into the exit vibe, reducing the effective flow rate of the cooling gas that normally flows within the core 2. As a result, not only does the heat extraction efficiency decrease, but also heat removal from the fuel body is not performed sufficiently, which may lead to abnormal heating of the fuel body and damage to the furnace.

かかる点から、従来では上述したバイパス流をできるだ
け抑制するために、第2図において固定反射体10を構
成している各黒鉛プOyり相互の左右および上下の接合
面12 、13の平面加工精度を高め、黒鉛ブロック間
をできるだけ密着させてすき間を抑え、その流路抵抗に
よってシールする方法を採用している。なお図中Aは内
周側、Bは外周側を表わしている。しかしながらこの方
法は欠配のような欠点がある。すなわち高温カス炉の運
転時には、固定反射体の内周面は約1000°Cの炉心
部に接して高温にさらされているのに対し、外周面は圧
力容器内の外周域と流れる約400℃のガス流と接して
いて比較的低温である。したがって黒鉛ブロックUは内
周側領域の熱膨張量が外周側領域のそれよシも大きくな
る。このために第3図に示すごとく、固定反射体の組立
状態では実線のように互に殆ど密着し合って並んでいる
黒鉛ブロック11は、炉の運転に伴う内外周相互間の熱
膨張差によって内周縁が先に接して拘束されるので、逆
に外周側領域ではブロック相互間が開いて点線で示すよ
うに変位してしまう。この結果、ブロック相互の接合面
12は十分に密着し得なくなってすき間が発生し、この
すき間にょシシール性能が大幅に低下して冷却ガスのバ
イパス流量が増加することになる。
From this point of view, conventionally, in order to suppress the above-mentioned bypass flow as much as possible, the plane machining accuracy of the left and right and upper and lower joint surfaces 12 and 13 of each graphite plate constituting the fixed reflector 10 as shown in FIG. The method used is to increase the flow resistance of the graphite blocks, minimize gaps between the graphite blocks, and create a seal using the flow resistance. Note that in the figure, A represents the inner peripheral side, and B represents the outer peripheral side. However, this method has drawbacks such as defects. In other words, during operation of a high-temperature waste reactor, the inner circumferential surface of the fixed reflector is exposed to a high temperature of about 1000°C in contact with the reactor core, while the outer circumferential surface is exposed to a high temperature of about 400°C flowing with the outer circumferential area inside the pressure vessel. It is in contact with the gas flow and is relatively low temperature. Therefore, in the graphite block U, the amount of thermal expansion in the inner circumferential region is greater than that in the outer circumferential region. For this reason, as shown in FIG. 3, when the fixed reflector is assembled, the graphite blocks 11, which are lined up in close contact with each other as shown by the solid line, are affected by the difference in thermal expansion between the inner and outer circumferences as the furnace is operated. Since the inner peripheral edge contacts and is restrained first, on the other hand, in the outer peripheral region, the blocks are opened and displaced as shown by the dotted lines. As a result, the joint surfaces 12 of the blocks cannot be brought into sufficient contact with each other, resulting in a gap, which significantly reduces the sealing performance and increases the bypass flow rate of the cooling gas.

〔発明の目的〕[Purpose of the invention]

この発明は上記の次点を除去し、固定反射体の機能を損
うことなしに冷却ガスのバイパス流れに対する安定した
シール性能が得られるようにした固定反射体を提供する
ことを目的とする。
It is an object of the present invention to provide a fixed reflector that eliminates the above-mentioned disadvantages and provides stable sealing performance against the bypass flow of cooling gas without impairing the function of the fixed reflector.

〔発明の要点〕[Key points of the invention]

上記の目的を達成するために、この発明は周方向に沿っ
て隣接し合う各黒鉛ブロックの左右端面の内周側領域に
、炉運転時にお杖る黒鉛ブロックの内外温度差による熱
膨張差分に見合った切欠きテーパ面を形成しておき、炉
の運転時に淋黒鉛プロ、りの相互間で前記のテーパ面同
士が密着し合って接合面のシールを行うようにしたもの
である。
In order to achieve the above object, the present invention has developed a method to apply thermal expansion differentials due to temperature differences between the inside and outside of the graphite blocks that are supported during furnace operation to the inner circumferential areas of the left and right end surfaces of each graphite block adjacent to each other along the circumferential direction. Appropriate notched tapered surfaces are formed, and when the furnace is operated, the tapered surfaces come into close contact with each other between the graphite plates and seal the joint surfaces.

〔発明の実施例〕[Embodiments of the invention]

第4図および第5図は固定反射体の一部を取シ出して示
したこの発明の実施例を示すものであり、周方向に沿っ
て並ぶ黒鉛ブ目ツク11はその左右側面を接合面12と
して、互に接合面同士を突き合わせて隣接し合っている
。かかる構成において、この発明によυ各点鉛ブロック
11の接合面12の内周領域には切欠きテーパ面13が
形成しておシ、これによル固定反射体の組立状態で前記
のテーパ面13の相互間に隙間14が画成されている。
FIG. 4 and FIG. 5 show an embodiment of the present invention in which a part of the fixed reflector is taken out, and the graphite dots 11 arranged along the circumferential direction have their left and right sides connected to the bonding surface. 12, they are adjacent to each other with their joint surfaces facing each other. In such a structure, according to the present invention, a notched tapered surface 13 is formed in the inner circumferential region of the joint surface 12 of each dot lead block 11, so that the taper surface 13 is formed in the assembled state of the fixed reflector. A gap 14 is defined between the surfaces 13.

この切欠きテーパ面の半径方向に対する傾斜角度は、炉
の運転時における黒鉛ブロック11の内外を流れるガス
温度条件から求めた黒鉛ブロックの温度分布を基に、黒
鉛ブロック11の内外領域の熱膨張差を補償して炉の運
転中は第5図の鎖線で示すように前記の隙間14を埋め
てテーパ面13同士が密着し合い、この部分で接合シー
ル面を形成するように決定される。
The inclination angle of this notch tapered surface with respect to the radial direction is determined based on the temperature distribution of the graphite block obtained from the temperature conditions of gas flowing inside and outside the graphite block 11 during operation of the furnace. While the furnace is in operation, the gap 14 is filled and the tapered surfaces 13 are brought into close contact with each other, as shown by the chain line in FIG. 5, and this portion forms a joint sealing surface.

上記の構成により、組立状態では第4図、および第5図
の実線で示すように各黒鉛ブロック11は接合面12の
外周域を互いに突き合わせて固定反射体を構成しておシ
、この部分で固定反射体の内外の7一ル面を形成してい
る。この状態から炉が運転に入p、黒鉛ブロック11が
次オに昇温してその内外のガス温度差で内、外周領域の
間に熱膨張差が生じるようになると、あらかじめ設定し
た隙間14を埋めて内周領域のテーバ面13同士が安定
よく密着し合ってこの部分で7一ル面を形成する。した
がって熱膨張のために接合面12の外周領域相互間の隙
間が増大しても、安定したシール性能を確保でき、これ
によって冷却ガスのバイパス流を抑制することができる
。しかもこの方式によれば、複雑なシール部材を必要と
せずに容易に実施でき、しかも高い信頼性が得られる。
With the above configuration, in the assembled state, each graphite block 11 forms a fixed reflector by abutting the outer peripheral areas of the bonding surfaces 12 against each other, as shown by the solid lines in FIGS. 4 and 5. It forms seven inner and outer surfaces of the fixed reflector. When the furnace starts operation from this state, the temperature of the graphite block 11 rises to the next level, and a difference in thermal expansion occurs between the inner and outer peripheral regions due to the difference in gas temperature between the inside and outside. The tapered surfaces 13 in the inner circumferential region are stably and closely attached to each other, and this portion forms a 7-round surface. Therefore, even if the gap between the outer circumferential regions of the joint surfaces 12 increases due to thermal expansion, stable sealing performance can be ensured, thereby suppressing the bypass flow of cooling gas. Moreover, according to this method, it can be easily implemented without requiring a complicated sealing member, and moreover, high reliability can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、黒鉛ブロックの左
右間接合面の内周領域に内外の熱膨張差に見合う切欠き
テーパ面を形成しておくことによシ・炉の運転時に社テ
ーーパ面同士が密着して黒鉛ブロック相互間で安定した
シール性能が維持でき、原子炉運転時における冷却ガス
バイパス流の抑制に優れた効果を発揮することができる
As described above, according to the present invention, a notched tapered surface corresponding to the difference in thermal expansion between the inside and outside is formed in the inner circumferential region of the joint surface between the left and right sides of the graphite block. Since the surfaces are in close contact with each other, stable sealing performance can be maintained between the graphite blocks, and an excellent effect can be exerted on suppressing cooling gas bypass flow during reactor operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温ガス炉の略示構成断面図、第2図は第1図
における固定反射体の一部の組立外形斜視図、刀・3図
は従来の黒鉛ブロック構成を示す第2図のP部の拡大平
面図、第4図はこの発明の実施例を示す固定反射体の一
部構成斜視図、第5図は第4図の平面図である。 1・・・原子炉圧力容器、2・炉心部、10・・・固定
反射体、 11・黒鉛ブO,り、12・黒鉛ブロック相
互の接合面、13・・・切欠きテーパ面。
Figure 1 is a schematic cross-sectional view of the high-temperature gas furnace, Figure 2 is a perspective view of a part of the fixed reflector in Figure 1, and Figure 3 is a conventional graphite block configuration. FIG. 4 is a perspective view of a partial configuration of a fixed reflector showing an embodiment of the present invention, and FIG. 5 is a plan view of FIG. 4. DESCRIPTION OF SYMBOLS 1... Reactor pressure vessel, 2. Reactor core, 10... Fixed reflector, 11. Graphite block O, 12. Joint surface between graphite blocks, 13. Notch tapered surface.

Claims (1)

【特許請求の範囲】[Claims] 1)炉心部の周囲を取シ囲んで構築された黒鉛ブロック
の積層体としてなるガス冷却形原子炉の固定反射体にお
いて、周方向に沿って隣接し合う各黒鉛ブロックの左右
端面の内周側領域に、炉運転時における黒鉛ブロックの
内外周領域の温度差による熱膨張差分に見合った切欠き
テーパ面を形成し、炉運転時には黒鉛ブロック相互間で
前記テーパ面同士が密着し合って接合面のシールを行う
ようKしたことを特徴とするガス冷却形原子炉の固定反
射体。
1) In the fixed reflector of a gas-cooled nuclear reactor, which is a stack of graphite blocks constructed around the core, the inner peripheral side of the left and right end faces of each adjacent graphite block along the circumferential direction. A notched tapered surface corresponding to the thermal expansion difference caused by the temperature difference between the inner and outer peripheral regions of the graphite block during furnace operation is formed in the area, and the tapered surfaces are brought into close contact between the graphite blocks during furnace operation to form a bonding surface. A fixed reflector for a gas-cooled nuclear reactor, characterized in that it is designed to provide a seal.
JP58093217A 1983-05-26 1983-05-26 Stationary reflector of gas cooled reactor Pending JPS59217191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093217A JPS59217191A (en) 1983-05-26 1983-05-26 Stationary reflector of gas cooled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093217A JPS59217191A (en) 1983-05-26 1983-05-26 Stationary reflector of gas cooled reactor

Publications (1)

Publication Number Publication Date
JPS59217191A true JPS59217191A (en) 1984-12-07

Family

ID=14076388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093217A Pending JPS59217191A (en) 1983-05-26 1983-05-26 Stationary reflector of gas cooled reactor

Country Status (1)

Country Link
JP (1) JPS59217191A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382666U (en) * 1986-11-20 1988-05-31
US5051230A (en) * 1985-09-18 1991-09-24 Eberhardt Teuchert Nuclear reactor of a ball-bed type for batch-wise use of core fuel balls replaced by a new batch at relatively long intervals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051230A (en) * 1985-09-18 1991-09-24 Eberhardt Teuchert Nuclear reactor of a ball-bed type for batch-wise use of core fuel balls replaced by a new batch at relatively long intervals
JPS6382666U (en) * 1986-11-20 1988-05-31

Similar Documents

Publication Publication Date Title
JPS62265597A (en) Auxiliary cooling system of radiating vessel
US3005105A (en) Shipping cask for radioactive materials
EP0398733B1 (en) Improved system for passive cooling of liquid metal cooled nuclear reactors
US4000595A (en) Insulation structure for pressure vessel cavity
US3124514A (en) koutz etal
US3830695A (en) Nuclear reactor
JPS59217191A (en) Stationary reflector of gas cooled reactor
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
JPH023196Y2 (en)
RU2179340C2 (en) First wall of fusion reactor
JPS5853791A (en) Gas seal device of core supporting plate in gas cooled reactor
JPH0273192A (en) Nuclear fuel element
JPH0116072Y2 (en)
JPS6056289A (en) Support structure of reactor core structure
JPS6168586A (en) Core support plate structure of high-temperature gas cooling type reactor
JPS6350791A (en) Safety vessel for fast breeder reactor
RU2154310C2 (en) Fusion reactor blanket
JPH0152714B2 (en)
JPS60238788A (en) Liquid metal cooling type nuclear reactor
JPH063289B2 (en) Steam generator
JPS59111091A (en) Gas sealing device for core support plate in gas cooling type nuclear reactor
JPS60205278A (en) Fast breeder reactor
JPS5990092A (en) Supporting device for weight material fixed in high temperature gas
JPH11180712A (en) Vessel for melting silicon
JPH06235788A (en) Roof deck structure for fast breeder reactor