JPS63222295A - Nuclear reactor - Google Patents

Nuclear reactor

Info

Publication number
JPS63222295A
JPS63222295A JP62057059A JP5705987A JPS63222295A JP S63222295 A JPS63222295 A JP S63222295A JP 62057059 A JP62057059 A JP 62057059A JP 5705987 A JP5705987 A JP 5705987A JP S63222295 A JPS63222295 A JP S63222295A
Authority
JP
Japan
Prior art keywords
reactor
containment vessel
cooling
annulus
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057059A
Other languages
Japanese (ja)
Inventor
梶浦 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62057059A priority Critical patent/JPS63222295A/en
Publication of JPS63222295A publication Critical patent/JPS63222295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電所等の原子炉に係り、特に冷却材
喪失事故時における放射性物質の漏洩防止に好適な原子
炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear reactor such as a nuclear power plant, and particularly to a nuclear reactor suitable for preventing leakage of radioactive materials in the event of a loss of coolant accident.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

第5図に示すように、従来、原子力発電所の原子炉20
は、炉心21を収納する原子炉圧力容器22と、該原子
炉圧力容器22で発生する高温高圧水蒸気又は高温高圧
水により発電を行なうタービン設備23と、該タービン
設備23と原子炉圧力容器22とを並列に連結する給水
配管25および排水配管26と、給水配管25に配置さ
れ原子炉圧力容器22に給水する給水ポンプ28と、原
子炉20の通常時運転時原子炉圧力容器22内で炉心2
1を冷却する冷却材循環系29とを備えている。
As shown in Figure 5, conventionally, a nuclear power plant reactor 20
A reactor pressure vessel 22 that houses a reactor core 21, a turbine facility 23 that generates power using high-temperature, high-pressure steam or high-temperature, high-pressure water generated in the reactor pressure vessel 22, and a turbine facility 23 and the reactor pressure vessel 22. A water supply pipe 25 and a drainage pipe 26 that connect in parallel, a water supply pump 28 that is arranged in the water supply pipe 25 and supplies water to the reactor pressure vessel 22, and a water supply pump 28 that is arranged in the water supply pipe 25 and supplies water to the reactor pressure vessel 22.
1, and a coolant circulation system 29 for cooling the air conditioner 1.

また原子炉2oの安全を期するため、給水配管25、排
水配管26および冷却材循環系29が破断して原子炉圧
力容器22内の冷却材が喪失する事故、いわゆるLOC
Aを仮想し、原子炉圧力容器22内に水を供給して炉心
21を冷却する緊急炉心冷却系30.外界へ放射性物質
が漏洩するのを極力低減するため原子炉圧力容器22を
格納する原子炉格納容器(通常鋼板製)31および該原
子炉格納容器31を包囲してコンクリート製の二次格納
容器32が設けられている。この原子炉格納容器31お
よび二次格納容器32は、被曝防護上重要であり、これ
らの容器間の間隙空間部はアニユラス部33と呼ばれて
いる。また原子炉格納容器31内上部には、該容器31
内を冷却するためのスプレー系34が設置されている。
In addition, in order to ensure the safety of the reactor 2o, an accident in which the water supply pipe 25, the drainage pipe 26, and the coolant circulation system 29 are ruptured and the coolant in the reactor pressure vessel 22 is lost, so-called LOC.
Assuming A is an emergency core cooling system 30 that supplies water to the reactor pressure vessel 22 to cool the reactor core 21. In order to reduce leakage of radioactive materials to the outside world as much as possible, a reactor containment vessel (usually made of steel plate) 31 houses the reactor pressure vessel 22, and a secondary containment vessel 32 made of concrete surrounds the reactor containment vessel 31. is provided. The reactor containment vessel 31 and the secondary containment vessel 32 are important for radiation exposure protection, and the gap space between these vessels is called an annulus portion 33. In addition, in the upper part of the reactor containment vessel 31,
A spray system 34 is installed to cool the inside.

このような従来の原子炉2oにおいて万−LOCAが発
生した場合、原子炉格納容器31内は、給水配管25か
ら放出された高温高圧水蒸気により瞬時に高温高圧状態
になり、その内壁面31aは、容器31内の高温空気や
高温水蒸気の凝縮水35等により加熱される。またアニ
ユラス部33内の空気は、原子炉格納容器31の外壁面
31bに直接液しているため、自由対流や輻射により加
熱され、体積膨張する。
When a 10,000-LOCA occurs in such a conventional nuclear reactor 2o, the inside of the reactor containment vessel 31 instantly becomes a high-temperature, high-pressure state due to the high-temperature, high-pressure steam released from the water supply pipe 25, and the inner wall surface 31a of the reactor containment vessel 31 becomes It is heated by high-temperature air in the container 31, condensed water 35 of high-temperature steam, and the like. In addition, since the air in the annulus section 33 is in liquid form directly on the outer wall surface 31b of the reactor containment vessel 31, it is heated by free convection and radiation and expands in volume.

一方、I、CHsI  なとの放射性ヨウ素や放射性希
ガスも、高温高圧水蒸気とともに給水配管25から原子
炉格納容器31内に放出されるが、これらの放射性物質
は、原子炉格納容器31内の圧力Pvがアニユラス部3
3内の空気圧力Paより高いため、アニユラス部33内
に漏洩し、該アニユラス部33の空気内に拡散する。こ
の空気は、前述の如く熱膨張するため、放置しておくと
空気圧力Paが外界36の圧力Poより高くなり、アニ
ユラス部33内の空気とともに、放射性物質も外界36
へ放出される可能性がある。
On the other hand, radioactive iodine and radioactive noble gases such as I and CHsI are also released from the water supply pipe 25 into the reactor containment vessel 31 along with high-temperature and high-pressure steam; Pv is Anyuras Club 3
Since the air pressure is higher than the air pressure Pa in the annulus 3, it leaks into the annulus 33 and diffuses into the air in the annulus 33. Since this air thermally expands as described above, if left as it is, the air pressure Pa will become higher than the pressure Po of the outside world 36, and together with the air inside the annulus section 33, the radioactive material will also be absorbed into the outside world 36.
There is a possibility of release.

このような問題を解決するために、アニユラス部33内
の空気を排気する排風機38とフィルタ装置39とから
なる安全系40を設置し、LOCA発生と同時に排風機
38を起動させてアニユラス部33内の放射性物質含有
の空気を吸引し、フィルタ装置39により放射性物質を
除去した後スタック41から大気中へ放出し、アニユラ
ス部33の圧力上昇を抑制するようにしていた。
In order to solve such problems, a safety system 40 consisting of an exhaust fan 38 and a filter device 39 for exhausting the air inside the annulus section 33 is installed, and the exhaust fan 38 is activated at the same time as LOCA occurs to remove the air from the annulus section 33. Air containing radioactive substances is sucked in, the radioactive substances are removed by a filter device 39, and then released from the stack 41 into the atmosphere, thereby suppressing the pressure rise in the annulus section 33.

ところが、LOCA発生後直ちに排風機38を起動させ
ても原子炉格納容器31からアニユラス部33への伝熱
が急速でかつ、その伝熱量が多量であるため、アニユラ
ス部33内の圧力P&をすぐ外界36の圧力Poと同圧
又は微負圧に保持することは困難で、通常5〜10分程
度要している。
However, even if the exhaust fan 38 is started immediately after a LOCA occurs, the heat transfer from the reactor containment vessel 31 to the annulus section 33 is rapid and the amount of heat transfer is large, so the pressure P & inside the annulus section 33 is not immediately reduced. It is difficult to maintain the pressure at the same pressure as the pressure Po of the outside world 36 or at a slightly negative pressure, and it usually takes about 5 to 10 minutes.

つまり、この間はアニユラス部33は正圧となり、アニ
ユラス部33内の放射性物質含有空気がある程度外界3
6へ漏洩する可能性がある。なお、この漏洩される放射
性物質の被曝評価の結果、許容される量であることを確
認しており実用上全く問題ないが、この放射性物質の漏
洩はできる限り最小限にすることが要望されている。
In other words, during this period, the annulus section 33 is under positive pressure, and the radioactive material-containing air inside the annulus section 33 is absorbed to some extent by the outside world 3.
There is a possibility of leakage to 6. Furthermore, as a result of the exposure assessment of this leaked radioactive material, it has been confirmed that the amount is permissible and there is no problem in practical use, but it is desired that the leakage of this radioactive material be minimized as much as possible. There is.

この要望を満足させるために、原子炉格納容器31の外
壁面31bを水で冷却する方法が、実開昭59−116
891号公報に提案されている。この方法は、原子炉格
納容器31の外壁面31bを被覆するようにして水のジ
ャケットを設け、LOCA発生と同時に、ポンプを起動
させて外部から冷却水を迅速にジャケット内に供給する
ことにより、原子炉格納容器31に伝えられた多量の熱
を冷却しようとするものである。
In order to satisfy this demand, a method of cooling the outer wall surface 31b of the reactor containment vessel 31 with water was proposed in U.S. Pat.
This is proposed in Publication No. 891. In this method, a water jacket is provided to cover the outer wall surface 31b of the reactor containment vessel 31, and at the same time as the LOCA occurs, a pump is started to quickly supply cooling water from the outside into the jacket. This is intended to cool down a large amount of heat transferred to the reactor containment vessel 31.

しかし、本方法では、原子炉格納容器31の内壁面31
aは、容器内の多量の高温空気や高温水蒸気で加熱され
100℃程度の高温となるのに対し、外壁面31bは冷
却水により浸漬されているため50〜60℃程度の低温
に保持される結果、内外壁面間で大きな温度勾配が生じ
、原子炉格納容器31に大きな熱応力が加ねるおそれが
あるという問題がある。
However, in this method, the inner wall surface 31 of the reactor containment vessel 31
A is heated by a large amount of high-temperature air and high-temperature steam in the container and reaches a high temperature of about 100°C, whereas the outer wall surface 31b is immersed in cooling water and is kept at a low temperature of about 50 to 60°C. As a result, there is a problem that a large temperature gradient occurs between the inner and outer wall surfaces, which may cause large thermal stress to be applied to the reactor containment vessel 31.

この問題を解決するために、第6図に示すように、原子
炉格納容器31内からアニユラス部33に漏洩した放射
性物質を含有す空気を吸引機42で吸引し、フィルタ装
置43を通過させて放射性ヨウ素などを除外した後、再
びアニユラス部33に戻す系統を設ける方法が提案され
ている。しかし、本方法においても、アニユラス部33
の容積は大きく、短時間に放射性物質含有の空気をすべ
て吸引機42で吸引することはできない。そのため、完
全に放射性物質を除去することはできないまま放射性物
質含有の空気がアニユラス部33に戻される。その結果
、微量の放射性物質がアニユラス部33から外界36へ
漏洩する可能性がある。
In order to solve this problem, as shown in FIG. 6, air containing radioactive materials leaked from inside the reactor containment vessel 31 into the annulus section 33 is sucked in by a suction device 42 and passed through a filter device 43. A method has been proposed in which a system is provided in which radioactive iodine and the like are removed and then returned to the annulus section 33. However, also in this method, the annulus portion 33
has a large volume, and it is not possible for the suction device 42 to suction all the air containing radioactive substances in a short period of time. Therefore, the radioactive material-containing air is returned to the annulus portion 33 without completely removing the radioactive material. As a result, a small amount of radioactive material may leak from the annulus portion 33 to the outside world 36.

上記のように従来の技術では、原子炉20の冷部材喪失
事故時、原子炉格納容器31から外界36へ漏洩する放
射性物質を完全に阻止することは困難であるという問題
があった。
As described above, the conventional technology has a problem in that it is difficult to completely prevent radioactive materials from leaking from the reactor containment vessel 31 to the outside world 36 in the event of a cold member loss accident in the nuclear reactor 20.

本発明の目的は、LOCA事故時等におけるアニユラス
部の圧力上昇を事故初期においても有効に抑制し、放射
性物質の外界への漏洩を完全に阻止できるようにした原
子炉を提供することにある。
An object of the present invention is to provide a nuclear reactor that can effectively suppress the pressure increase in the annulus during a LOCA accident even in the early stages of the accident, and completely prevent radioactive materials from leaking to the outside world.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するため、原子炉格納容器壁
面に断熱層を設け、かつ原子炉格納容器と二次格納容器
とにより形成されたアニユラス部内の空気を冷却する冷
却機構を設けたことを特徴とする。
In order to achieve the above object, the present invention provides a heat insulating layer on the wall surface of the reactor containment vessel and a cooling mechanism that cools the air in the annulus formed by the reactor containment vessel and the secondary containment vessel. It is characterized by

〔作用〕[Effect]

上述の構成によれば、断熱層により原子炉格納容器内の
多量の熱が、原子炉格納容器壁面を通してアニユラス部
に伝達されるのを阻止することができるとともに、冷却
機構によりアニユラス部内の空気が冷却される。その結
果、アニユラス部内の空気の圧力は、常に外界の圧力に
対して同程度又は微負圧に維持され、アニユラス部から
の外界への放射性物質の漏洩が防止される。
According to the above configuration, the heat insulating layer can prevent a large amount of heat inside the reactor containment vessel from being transmitted to the annulus section through the wall surface of the reactor containment vessel, and the cooling mechanism can prevent air in the annulus section from being transmitted to the annulus section. cooled down. As a result, the pressure of the air within the annulus is always maintained at the same level or slightly negative pressure relative to the pressure of the outside world, and leakage of radioactive substances from the annulus to the outside world is prevented.

〔実施例〕〔Example〕

以下1本発明を図面に示す実施例に基づいて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on embodiments shown in the drawings.

第1図から第3図は本発明の第1実施例に係り、第5図
に示す従来例と同等部分には同一符号を付し、その説明
は省略する。
1 to 3 relate to a first embodiment of the present invention, and parts equivalent to those of the conventional example shown in FIG. 5 are given the same reference numerals, and their explanation will be omitted.

本発明に係る原子炉1は、断熱層2と、冷却機構3とを
備えており、断熱層2は断熱材でハニカム構造に形成さ
れており、原子炉圧力容器22を格納する原子炉格納容
器31の壁面、例えば外壁面31bを被覆するようにし
て設置されている。
The nuclear reactor 1 according to the present invention includes a heat insulating layer 2 and a cooling mechanism 3, the heat insulating layer 2 is formed into a honeycomb structure with a heat insulating material, and the reactor containment vessel houses a reactor pressure vessel 22. It is installed so as to cover the wall surface of 31, for example, the outer wall surface 31b.

冷却機構3は、冷却層5と、冷却水タンク6と、冷却水
元弁8とからなり、冷却層5は、例えばアニユラス部3
3内に断熱層2の外表面を被覆するようにして設置され
ている。冷却水タンク6は、二次格納容器32外の上方
に設置されており、冷却層5と配管9により連結されて
いる。冷却水元弁8は、二次格納容器32外の配管9上
に設置されている。
The cooling mechanism 3 includes a cooling layer 5, a cooling water tank 6, and a cooling water source valve 8. The cooling layer 5 includes, for example, an annulus portion 3.
The heat insulating layer 2 is installed within the heat insulating layer 3 so as to cover the outer surface of the heat insulating layer 2. The cooling water tank 6 is installed above and outside the secondary containment vessel 32, and is connected to the cooling layer 5 by piping 9. The cooling water source valve 8 is installed on the piping 9 outside the secondary containment vessel 32.

つぎに、本発明の第1実施例の作用を説明する。Next, the operation of the first embodiment of the present invention will be explained.

原子炉1で万−LOCAが発生した場合、従来の原子炉
20と同様、原子炉格納容器31の内壁面31aは高温
空気や高温水蒸気により加熱されて高温になる。この場
合、原子炉格納容器31は、その外壁面31bが断熱層
2により被覆されているので、外壁面31bまで達した
熱は、第2図に示すように、微少空間の集合体で形成し
て空気の自由対流を抑えたハニカム構造の断熱層2の部
分で伝熱を阻止され、いわゆる熱遮閉状態となる。
When a 10,000-LOCA occurs in the nuclear reactor 1, the inner wall surface 31a of the reactor containment vessel 31 is heated by high-temperature air or high-temperature steam and becomes high temperature, similar to the conventional nuclear reactor 20. In this case, since the outer wall surface 31b of the reactor containment vessel 31 is covered with the heat insulating layer 2, the heat that reaches the outer wall surface 31b is generated by a collection of minute spaces, as shown in FIG. Heat transfer is blocked by the honeycomb-structured heat insulating layer 2 that suppresses free convection of air, resulting in a so-called heat shielding state.

一方、LOCA発生と同時に、冷却水元弁8を開とし、
冷却水タンク6の水を重力により直ちに断熱層2の外表
面に設けた冷却層5に充填する。
On the other hand, at the same time as the LOCA occurs, the cooling water main valve 8 is opened,
The water in the cooling water tank 6 is immediately filled by gravity into the cooling layer 5 provided on the outer surface of the heat insulating layer 2.

この冷却層5の冷却水によってアニユラス部33内の空
気を冷却すると同時に、断熱層2に伝わってくる微少の
熱を吸収し、これによって熱がアニユラス部33へほと
んど伝達されないようにすることが可能となる。
The cooling water in the cooling layer 5 cools the air inside the annulus section 33 and at the same time absorbs a small amount of heat transmitted to the heat insulating layer 2, thereby making it possible to prevent almost no heat from being transmitted to the annulus section 33. becomes.

この場合の各部における温度変化の状態を第3図に示す
。同図において、横軸に原子炉格納容器31の内壁面3
1aからの距離、縦軸に各部の温度をとり、実線はLO
CA時、破線は通常時における温度曲線を示している。
FIG. 3 shows the state of temperature change in each part in this case. In the figure, the horizontal axis indicates the inner wall surface 3 of the reactor containment vessel 31.
The distance from 1a, the temperature of each part is plotted on the vertical axis, and the solid line is LO
During CA, the broken line shows the temperature curve under normal conditions.

また、A、B、C。Also, A, B, C.

D、Eは、それぞれ原子炉格納容器31.断熱層2、冷
却層5.アニユラス33.二次格納容器32の各区間を
示している。
D and E are reactor containment vessels 31. Heat insulation layer 2, cooling layer 5. Anylus 33. Each section of the secondary containment vessel 32 is shown.

同図から分るように、LOCA時においてアニユラス部
33に伝達される熱は、通常時の場合とほとんど同一で
あり、アニユラス部33内の空気圧力は、LOCA発生
後でも外界36の圧力に対して同程度又は微負荷に保持
される。また原子炉格納容器31の外壁面31bは、断
熱層2と冷却層5との2層により被覆されており、原子
炉格納容器31からアニユラス部33へ漏洩する放射性
物質は抑制される。これによってアニユラス部33から
外界36への放射性物質の漏洩をなくすことができる。
As can be seen from the figure, the heat transferred to the annulus section 33 during a LOCA is almost the same as during normal times, and the air pressure inside the annulus section 33 is smaller than the pressure in the outside world 36 even after a LOCA occurs. The load is maintained at the same level or slightly. Further, the outer wall surface 31b of the reactor containment vessel 31 is covered with two layers, the heat insulating layer 2 and the cooling layer 5, so that radioactive substances leaking from the reactor containment vessel 31 to the annulus section 33 are suppressed. Thereby, leakage of radioactive substances from the annulus portion 33 to the outside world 36 can be eliminated.

なお、本実施例では、断熱M2を原子炉格納容rI31
の外壁面3bに設けたが、内壁面31aに設けるように
してもよい。
In addition, in this embodiment, the heat insulation M2 is connected to the reactor containment volume rI31.
Although it is provided on the outer wall surface 3b, it may be provided on the inner wall surface 31a.

第4図は本発明の第2実施例に係り、複数の冷却フィン
11を設けた冷却層5がアニユラス部33の中間部に設
置されており、冷却層5の外側に該冷却層5の外表面に
風を送るための複数のファン12がアニユラス部33の
各所に設置されている。また冷却層5内に冷却水又は冷
却空気を供給するポンプ又はファン13と冷却器15が
二次格納容器32の外方にそれぞれ設置されている。
FIG. 4 shows a second embodiment of the present invention, in which a cooling layer 5 provided with a plurality of cooling fins 11 is installed in the middle part of the annulus part 33, and the cooling layer 5 is provided outside the cooling layer 5. A plurality of fans 12 are installed at various locations in the annulus section 33 for blowing air to the surface. Further, a pump or fan 13 that supplies cooling water or cooling air into the cooling layer 5 and a cooler 15 are installed outside the secondary containment vessel 32, respectively.

第2実施例では、アニユラス部33を強力に冷却するた
めに、冷却MS内に冷却器15で冷却した冷却水又は冷
却空気などの冷媒を供給するとともに、アニユラス部3
3内に設けたファン12により空気を撹拌し、冷却層5
とアニユラス部33の空気との熱伝達が促進される。そ
の他の構成および作用は、第1実施例に示すものと同様
である。
In the second embodiment, in order to strongly cool the annulus portion 33, a refrigerant such as cooling water or cooling air cooled by the cooler 15 is supplied into the cooling MS, and the annulus portion 33 is
The air is stirred by the fan 12 provided in the cooling layer 5.
Heat transfer between the air and the air in the annulus portion 33 is promoted. Other configurations and operations are similar to those shown in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

上述のとおり1本発明によれば、アニユラス部内の圧力
を外界に対して同等又は微負荷に維持することができる
ので、万−LOCAが発生した場合でも原子炉格納容器
から漏洩した放射性物質をアニユラス部に閉じこめ、外
界に漏洩させることがない。
As described above, according to the present invention, the pressure inside the annulus can be maintained at the same level or a slight load with respect to the outside world, so even if a 10,000-LOCA occurs, radioactive materials leaked from the reactor containment vessel can be removed from the annulus. Confined to the room and not leaked to the outside world.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明の第1実施例に係り、第1図
は原子炉の縦断面図、第2図は第1図の■−n矢視部分
斜視図、第3図は各構成部の温度変化の状態を示す線図
、第4図は本発明の第2実施例に係る原子炉の縦断面図
、第5図は従来例に係る原子炉の縦断面図、第6図は他
の従来例に係る原子炉の縦断面図である。 1・・・原子炉、2・・・断熱層、3・・・冷却機構、
21・・・炉心、22・・・原子炉圧力容器、23・・
・タービン設備、25・・・給水配管、28・・・給水
ポンプ、29・・・冷却材循環系、30・・・緊急炉心
冷却系、31・・・原子炉格納容器、33・・・アニユ
ラス部。
1 to 3 relate to the first embodiment of the present invention, in which FIG. 1 is a vertical cross-sectional view of a nuclear reactor, FIG. 2 is a partial perspective view taken along the arrow ■-n in FIG. Diagrams showing the state of temperature changes in each component, FIG. 4 is a vertical cross-sectional view of a nuclear reactor according to the second embodiment of the present invention, FIG. 5 is a vertical cross-sectional view of a nuclear reactor according to a conventional example, and FIG. The figure is a longitudinal sectional view of a nuclear reactor according to another conventional example. 1... Nuclear reactor, 2... Heat insulation layer, 3... Cooling mechanism,
21...Reactor core, 22...Reactor pressure vessel, 23...
・Turbine equipment, 25... Water supply piping, 28... Water supply pump, 29... Coolant circulation system, 30... Emergency core cooling system, 31... Reactor containment vessel, 33... Annulus Department.

Claims (1)

【特許請求の範囲】[Claims] 1、炉心を収納する原子炉圧力容器と、該原子炉圧力容
器を格納する原子炉格納容器と、該原子炉格納容器を包
囲して設けられた二次格納容器と、前記炉心に冷却材を
供給するとともに発生される蒸気又は高温水を排出する
給排出配管と、通常運転時前記炉心を冷却する冷却材循
環系と、冷却材喪失事故時に前記炉心を急速に冷却する
緊急炉心冷却系と、を備えた原子炉において、前記原子
炉格納容器壁面に断熱層を設け、かつ前記原子炉格納容
器と前記二次格納容器とにより形成されたアニユラス部
内の空気を冷却する冷却機構を設けた原子炉。
1. A reactor pressure vessel housing the reactor core, a reactor containment vessel housing the reactor pressure vessel, a secondary containment vessel provided surrounding the reactor containment vessel, and supplying coolant to the reactor core. supply and discharge piping that discharges steam or high-temperature water that is generated while being supplied; a coolant circulation system that cools the core during normal operation; and an emergency core cooling system that rapidly cools the core in the event of a loss of coolant accident; A nuclear reactor comprising a heat insulating layer on the wall surface of the reactor containment vessel, and a cooling mechanism for cooling air in an annulus formed by the reactor containment vessel and the secondary containment vessel. .
JP62057059A 1987-03-12 1987-03-12 Nuclear reactor Pending JPS63222295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057059A JPS63222295A (en) 1987-03-12 1987-03-12 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057059A JPS63222295A (en) 1987-03-12 1987-03-12 Nuclear reactor

Publications (1)

Publication Number Publication Date
JPS63222295A true JPS63222295A (en) 1988-09-16

Family

ID=13044870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057059A Pending JPS63222295A (en) 1987-03-12 1987-03-12 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPS63222295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031684A (en) * 2013-08-07 2015-02-16 株式会社東芝 Nuclear power plant
JP2017122649A (en) * 2016-01-07 2017-07-13 株式会社東芝 Radioactive matter removal system and nuclear facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031684A (en) * 2013-08-07 2015-02-16 株式会社東芝 Nuclear power plant
JP2017122649A (en) * 2016-01-07 2017-07-13 株式会社東芝 Radioactive matter removal system and nuclear facility

Similar Documents

Publication Publication Date Title
KR102580625B1 (en) Passive cooling for cold shutdown
JPH04125495A (en) Nuclear reactor facility
KR950009881B1 (en) Neclear power facilities
US4678626A (en) Radiant vessel auxiliary cooling system
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
KR101742644B1 (en) Passive Auxiliary Feedwater Cooling System having Air-Cooled Double Containments
JP2013104711A (en) Liquid metal cooled nuclear reactor
JPS6184588A (en) Underground type nuclear power plant
JPS63223593A (en) Nuclear-reactor container-heat removing device
JP2011252837A (en) Heat removal system and method for reactor container
JPS63222295A (en) Nuclear reactor
JP2003227893A (en) Leakage suppressor for atmosphere inside nuclear reactor containment and nuclear reactor facility
JPS6082888A (en) Reactor containing vessel piping
JPS6148875B2 (en)
JPH0271193A (en) Nuclear reactor containment vessel
KR102418902B1 (en) Safety system for a nuclear power plant and nuclear power plant having the same
JPH06324178A (en) Heat removing method for melting debris
JPH0298690A (en) Cooler for pressurized water reactor
JPS6130237B2 (en)
JPS5952788A (en) Reactor container facility
JPS6385494A (en) Annulus exhaust facility
US10607740B2 (en) System, a device and a method for passive decay heat transport
JPS6071995A (en) Combustion inhibitor for leaking sodium
JPH0298691A (en) Cooler for pressurized water reactor
JPS5946593A (en) Sodium equipment surrounding construction for fast breeder