JPH06324178A - Heat removing method for melting debris - Google Patents

Heat removing method for melting debris

Info

Publication number
JPH06324178A
JPH06324178A JP5111971A JP11197193A JPH06324178A JP H06324178 A JPH06324178 A JP H06324178A JP 5111971 A JP5111971 A JP 5111971A JP 11197193 A JP11197193 A JP 11197193A JP H06324178 A JPH06324178 A JP H06324178A
Authority
JP
Japan
Prior art keywords
heat
cooling device
molten debris
wall
debris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5111971A
Other languages
Japanese (ja)
Inventor
Shunji Kobayashi
俊二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5111971A priority Critical patent/JPH06324178A/en
Publication of JPH06324178A publication Critical patent/JPH06324178A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To cool melting debris in a short time, and prevent leakage of the melting debris by burying a heat absorbing part of a cooling device in an inner wall of a dry well, and radiating heat absorbed by this heat absorbing part by a heat radiating part arranged outside. CONSTITUTION:A heat absorbing part 10 is buried in a horizontal inner wall 6 of a dry well 3 under a nuclear reactor, and a cooling device 16 is constituted so that heat is radiated from a heat radiating part 12 through a heat insulating part 14 passing penetratingly airtightly through a nuclear reactor housing container. If melting debris 5 is accumulated in a lower part of the housing container since melting of a reactor core is caused, the cooling device 16 is operated, and the melting debris 5 is cooled, and is prevented from leaking out while destroying a part with which the melting debris 5 comes into contact. This cooling device 16 is a heat pipe, and the heat absorbing part 10 corresponds to an evaporation part, and the heat radiating part 12 corresponds to a condensation part. For example, though it is preferable to use sodium or lithium having a high operation temperature as operating fluid, when it is buried in the concrete inner wall part 6 like this example, water may be also allowed to be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電設備に関わ
り、更に詳しくは、沸騰水型原子炉における溶融デブリ
の熱除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nuclear power generation equipment, and more particularly to a method for removing heat from molten debris in a boiling water reactor.

【0002】[0002]

【従来の技術】沸騰水型原子炉(BWR)の格納容器
は、原子炉圧力容器(以下単に、原子炉という)を安全
に密閉収容する設備であり、例えば図5に例示するよう
に、圧力容器1を中央部のペデスタル2上に設置したド
ライウェル3と、ドライウェル3に連通し大量の水を内
部に有するサプレッションチャンバー4とからなる。原
子炉は極めて安全性が高く、かつ安全に制御されている
が、何らかの想定事故において、炉心が溶融し(図でA
で示す)、融けた炉心(以下、溶融デブリという)が原
子炉圧力容器の下端に溜まって容器を溶かし(B)、容
器から落下した溶融デブリ5がドライウェル3のコンク
リート製床上に溜まる。
2. Description of the Related Art A containment vessel of a boiling water reactor (BWR) is a facility for safely and hermetically containing a reactor pressure vessel (hereinafter simply referred to as a reactor). For example, as shown in FIG. It comprises a dry well 3 in which the container 1 is installed on a pedestal 2 in the center, and a suppression chamber 4 which communicates with the dry well 3 and has a large amount of water inside. The reactor is extremely safe and is controlled safely, but in the event of an accident, the core will melt (see the figure A
The molten core (hereinafter, referred to as molten debris) accumulates at the lower end of the reactor pressure vessel to melt the vessel (B), and the molten debris 5 dropped from the vessel accumulates on the concrete floor of the dry well 3.

【0003】[0003]

【発明が解決しようとする課題】上述したように、想定
事故において、かりに炉心溶融がおきても、溶融デブリ
5は格納容器内に密閉されたままであり、原子炉内の物
質が外部に漏れ出すおそれはない。しかし、ドライウェ
ルの床面に溜まった溶融デブリが放熱で冷えるまでに
は、相当の時間がかかる問題点が想定される。この間、
溶融デブリにより格納容器内の温度が上昇し、また、炉
心の冷却水が溶融デブリと接触すると高温の水蒸気とな
り、これにより格納容器内が高圧になる問題点があっ
た。このため、長時間、原子炉を放置せざるを得ない問
題点があった。また、長時間放置すると溶融デブリに接
触しているコンクリート部が高温により破損し、溶融デ
ブリが外部に漏れだす可能性がある問題点があった。
As described above, even if the core melts in the expected accident, the molten debris 5 remains sealed in the containment vessel, and the substance in the reactor leaks to the outside. There is no fear. However, it is assumed that the molten debris accumulated on the floor of the drywell takes a considerable amount of time to cool down due to heat radiation. During this time,
There is a problem that the temperature inside the containment vessel rises due to the molten debris, and when the cooling water of the core comes into contact with the molten debris, it becomes high temperature steam, which causes a high pressure inside the containment vessel. Therefore, there was a problem that the reactor had to be left for a long time. In addition, if left for a long time, there is a problem that the concrete part in contact with the molten debris may be damaged by the high temperature and the molten debris may leak to the outside.

【0004】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、多数
の故障が重なる想定事故において、かりに炉心溶融が起
こり溶融デブリが格納容器の下端に溜まった場合でも、
溶融デブリに接触する部分の破損による漏れだしを防
ぎ、かつこの溶融デブリを短時間に安全に冷却すること
ができる溶融デブリの熱除去方法を提供することにあ
る。
The present invention was created to solve such problems. That is, the purpose of the present invention is, even in the case of a supposed accident in which a large number of failures overlap, even if molten debris accumulates at the lower end of the containment vessel due to core melting.
It is an object of the present invention to provide a method for removing heat from molten debris, which can prevent leakage due to breakage of a portion in contact with the molten debris and can cool the molten debris safely in a short time.

【0005】[0005]

【課題を解決するための手段】本発明によれば、原子炉
の下方に位置するドライウェルの水平な内壁内に埋設さ
れた吸熱部と、原子炉格納容器の外部に位置する放熱部
と、前記吸熱部と放熱部を連通しかつ原子炉格納容器を
気密に貫通した断熱部と、からなる冷却装置を備え、上
記ドライウェル内壁上に溜まった溶融デブリの熱を間隔
を隔てた前記吸熱部で吸熱し、この熱を前記放熱部で放
熱する、ことを特徴とする溶融デブリの熱除去方法が提
供される。
According to the present invention, a heat absorbing portion buried in a horizontal inner wall of a dry well located below a nuclear reactor, and a heat radiating portion located outside a reactor containment vessel, The heat absorbing part is provided with a cooling device comprising a heat insulating part communicating with the heat absorbing part and the heat radiating part and airtightly penetrating the reactor containment vessel, wherein the heat of the molten debris accumulated on the inner wall of the dry well is spaced apart. A method for removing heat from molten debris is provided, characterized in that the heat is absorbed by and the heat is radiated by the heat dissipation portion.

【0006】本発明の好ましい実施例によれば、前記冷
却装置はヒートパイプであり、前記吸熱部はヒートパイ
プの蒸発部であり、前記放熱部はヒートパイプの凝縮部
であり、前記断熱部はヒートパイプの断熱部である。ま
た、別の実施例によれば、前記冷却装置は水循環冷却装
置であり、前記吸熱部と放熱部は隔板式熱交換器であ
り、前記断熱部は前記2つの熱交換器を連通する2本の
配管である。
According to a preferred embodiment of the present invention, the cooling device is a heat pipe, the heat absorbing part is an evaporating part of the heat pipe, the heat radiating part is a condensing part of the heat pipe, and the heat insulating part is This is the heat insulation part of the heat pipe. According to another embodiment, the cooling device is a water circulation cooling device, the heat absorbing part and the heat radiating part are partition plate heat exchangers, and the heat insulating part communicates the two heat exchangers with each other. It is a pipe of a book.

【0007】更に、前記ドライウェルの水平な内壁上
に、上部が開口した耐熱容器が設置される、ことが好ま
しい。
Further, it is preferable that a heat-resistant container having an open top is installed on the horizontal inner wall of the dry well.

【0008】[0008]

【作用】上記、本発明の方法によれば、冷却装置の吸熱
部が原子炉下方のドライウェル内壁内に埋設されてお
り、この吸熱部で吸収した熱を格納容器を気密に貫通し
た断熱部を介して、格納容器の外部に位置する放熱部で
放熱させることができるので、ドライウェル内壁上に溜
まった溶融デブリの熱を間隔を隔てた吸熱部で吸熱し、
この熱を放熱部で放熱する、ことにより溶融デブリを短
時間に冷却することができる。これにより、高温の溶融
デブリによる格納容器内の温度上昇と圧力上昇を短時間
に低減することができ、原子炉の放置時間が短くなり、
十分な安全対策を早期に施すことができる。
According to the above method of the present invention, the heat absorbing portion of the cooling device is embedded in the inner wall of the dry well below the reactor, and the heat absorbed by the heat absorbing portion is hermetically penetrated through the containment vessel. The heat of the molten debris accumulated on the inner wall of the dry well can be absorbed by the heat absorbing portions that are spaced apart because the heat can be radiated by the heat radiating portion located outside the containment vessel.
By radiating this heat in the heat radiating portion, the molten debris can be cooled in a short time. As a result, it is possible to reduce the temperature rise and pressure rise in the containment vessel due to the high temperature molten debris in a short time, and shorten the reactor leaving time,
Sufficient safety measures can be taken early.

【0009】また、ドライウェルの水平な内壁上に上部
が開口した耐熱容器を設置すれば、溶融デブリに接触し
ているコンクリート部から溶融デブリが外部に漏れだす
おそれも全くなく、安全性を更に万全なものにすること
ができる。
Further, if a heat-resistant container having an open upper portion is installed on the horizontal inner wall of the dry well, there is no possibility that the molten debris will leak out from the concrete portion which is in contact with the molten debris, and the safety is further improved. It can be perfect.

【0010】[0010]

【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には同
一の符号を付して使用する。図1及び図2は、本発明に
よる溶融デブリの熱除去方法を実施するための装置の全
体構成図である。図1及び図2において、この装置は、
原子炉の下方に位置するドライウェル3の水平な内壁6
内に埋設された吸熱部10と、原子炉格納容器の外部に
位置する放熱部12と、前記吸熱部10と放熱部12を
連通しかつ原子炉格納容器を気密に貫通した断熱部14
と、からなる冷却装置16を備えている。本発明の方法
によれば、ドライウェル3の内壁6の上に溜まった溶融
デブリ5の熱をコンクリートで間隔を隔てられた前記吸
熱部10で吸熱し、この熱を前記放熱部12で放熱す
る。これにより、溶融デブリを短時間に冷却することが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In addition, in each figure, the same parts are denoted by the same reference numerals. 1 and 2 are general configuration diagrams of an apparatus for carrying out a method for removing heat from molten debris according to the present invention. 1 and 2, the device is
Horizontal inner wall 6 of the drywell 3 located below the reactor
The heat absorbing part 10 embedded inside, the heat radiating part 12 located outside the reactor containment vessel, and the heat insulating part 14 communicating the heat absorbing part 10 with the heat radiating part 12 and airtightly penetrating the reactor containment vessel.
And a cooling device 16 consisting of According to the method of the present invention, the heat of the molten debris 5 accumulated on the inner wall 6 of the dry well 3 is absorbed by the heat absorbing portions 10 which are spaced by concrete, and the heat is radiated by the heat radiating portion 12. . Thereby, the molten debris can be cooled in a short time.

【0011】図1において、前記冷却装置16はヒート
パイプであり、前記吸熱部10はヒートパイプの蒸発部
であり、前記放熱部12はヒートパイプの凝縮部であ
り、前記断熱部14はヒートパイプの断熱部である。ヒ
ートパイプは、管内に毛細管作用を有するウイックが設
けられたパイプ容器に、作動流体を封入したものであ
り、蒸発部で作動流体が蒸発して熱を吸収し、蒸発した
作動流体が凝縮部で凝縮して熱を放熱し、凝縮した作動
流体は毛細管作用によりウイックを通って蒸発部まで戻
るものである。
In FIG. 1, the cooling device 16 is a heat pipe, the heat absorbing part 10 is a heat pipe evaporating part, the heat radiating part 12 is a heat pipe condensing part, and the heat insulating part 14 is a heat pipe. It is the heat insulation part. A heat pipe is a pipe container in which a wick having a capillary action is provided in a pipe, and a working fluid is enclosed in the pipe container.The working fluid evaporates in the evaporation portion to absorb heat, and the evaporated working fluid is condensed in the condensing portion. The condensed working fluid radiates heat, and the condensed working fluid returns to the evaporation section through the wick by the capillary action.

【0012】なお、本発明に使用するヒートパイプは、
使用温度が比較的高いものがよく、例えば作動流体とし
てナトリウム(使用温度880〜1470K)、或いは
リチウム(同1280〜2070K)を用いるのがよ
い。なお、本発明によれば、ヒートパイプの蒸発部は、
コンクリート製の内壁6内に埋設され、溶融デブリ5の
熱をコンクリートを挟んで間隔を隔てて受けるので、更
に使用温度の低い作動流体、例えば水(300〜470
K)であってもよい。
The heat pipe used in the present invention is
It is preferable that the working temperature is relatively high, and for example, sodium (the working temperature of 880 to 1470K) or lithium (the same temperature of 1280 to 2070K) should be used as the working fluid. In addition, according to the present invention, the evaporation part of the heat pipe,
It is embedded in the inner wall 6 made of concrete and receives the heat of the molten debris 5 at intervals with the concrete sandwiched, so that the working fluid having a lower operating temperature, for example, water (300 to 470).
K).

【0013】かかる構成により、機械的な作動部分が全
くないヒートパイプにより、作動流体が外部に漏れるお
それもなく、非常に大きな熱伝達を行うことができ、こ
れにより、溶融デブリを短時間に安全に冷却することが
できる。
With such a construction, the heat pipe having no mechanical working portion can carry out a very large heat transfer without the risk of the working fluid leaking to the outside, and thus the molten debris can be safely protected in a short time. Can be cooled to.

【0014】図2において、前記冷却装置16は水循環
冷却装置であり、前記吸熱部10と放熱部12は隔板式
熱交換器であり、前記断熱部は前記2つの熱交換器を連
通する2本の配管である。隔板式熱交換器は、例えば
管、コイル、フィン付板を介して内部に流れる水を加熱
又は冷却するものである。配管の一部にはポンプ18を
備え、2つの熱交換器の間を水を循環させるようになっ
ている。吸熱部10はコンクリート製の内壁6内に埋設
され、溶融デブリ5の熱をコンクリートを挟んで間隔を
隔てて受ける。放熱部は、原子炉格納容器の外部に位置
し、空気または水で冷却される。
In FIG. 2, the cooling device 16 is a water circulation cooling device, the heat absorbing part 10 and the heat radiating part 12 are partition plate type heat exchangers, and the heat insulating part communicates the two heat exchangers. It is a pipe of a book. The partition plate type heat exchanger heats or cools water flowing inside through, for example, a pipe, a coil, and a plate with fins. A pump 18 is provided in a part of the pipe to circulate water between the two heat exchangers. The heat absorption part 10 is embedded in the inner wall 6 made of concrete, and receives the heat of the molten debris 5 at intervals with sandwiching the concrete. The heat dissipation part is located outside the reactor containment vessel and is cooled by air or water.

【0015】かかる構成により、水を循環させるだけ
で、溶融デブリに水が直接接触することなく(接触する
と蒸気となって格納容器内の温度、圧力が上昇する)、
溶融デブリを短時間に安全に冷却することができる。
With this structure, the water does not come into direct contact with the molten debris by simply circulating the water (when it comes into contact with the molten debris, the temperature and pressure in the containment vessel rise).
The molten debris can be cooled safely in a short time.

【0016】更に、図1及び図2において、前記ドライ
ウェル3の水平な内壁6の上に、上部が開口した耐熱容
器20が設置されている。この耐熱容器20は、溶融デ
ブリ5の熱に耐え、割れが生じないようにセラミック製
であるのがよい。これにより、溶融デブリに接触してい
るコンクリート部から溶融デブリが外部に漏れだすおそ
れも全くなく、安全性を更に万全なものにすることがで
きる。
Further, in FIGS. 1 and 2, on the horizontal inner wall 6 of the dry well 3, a heat-resistant container 20 having an open top is installed. The heat-resistant container 20 is preferably made of ceramic so as to withstand the heat of the molten debris 5 and not crack. As a result, there is no possibility that the molten debris will leak out from the concrete portion in contact with the molten debris, and safety can be further enhanced.

【0017】図3は、本発明の方法をコンクリート製新
型格納容器に適用した例を示す全体図である。図に示す
ように下部ドライウェル3′の床面に吸熱部10(図で
はヒートパイプの蒸発部)を埋設することにより、安全
かつ効果的に溶融デブリの冷却を行うことができる。
FIG. 3 is an overall view showing an example in which the method of the present invention is applied to a new concrete containment vessel. As shown in the figure, by burying the heat absorbing part 10 (evaporating part of the heat pipe in the figure) in the floor surface of the lower dry well 3 ', the molten debris can be cooled safely and effectively.

【0018】図4は、本発明の方法をマークII型格納
容器に適用した例を示す全体図である。図に示すように
原子炉下方の床面内に吸熱部10(図ではヒートパイプ
の蒸発部)を埋設することにより、図3と同様に安全か
つ効果的に溶融デブリの冷却を行うことができる。
FIG. 4 is an overall view showing an example in which the method of the present invention is applied to a Mark II type storage container. As shown in the figure, by burying the heat absorbing part 10 (evaporating part of the heat pipe in the figure) in the floor surface below the reactor, the molten debris can be cooled safely and effectively as in the case of FIG. .

【0019】[0019]

【発明の効果】上述したように、本発明によれば、冷却
装置の吸熱部が原子炉下方のドライウェル内壁内に埋設
されており、この吸熱部で吸収した熱を格納容器を気密
に貫通した断熱部を介して、格納容器の外部に位置する
放熱部で放熱させることができるので、ドライウェル内
壁上に溜まった溶融デブリの熱を間隔を隔てた吸熱部で
吸熱し、この熱を放熱部で放熱する、ことにより溶融デ
ブリを短時間に冷却することができる。これにより、高
温の溶融デブリによる格納容器内の温度上昇と圧力上昇
を短時間に低減することができ、原子炉の放置時間が短
くなり、十分な安全対策を早期に施すことができる。
As described above, according to the present invention, the heat absorbing portion of the cooling device is embedded in the inner wall of the dry well below the reactor, and the heat absorbed by the heat absorbing portion penetrates the containment vessel in an airtight manner. Since the heat radiating portion located outside the containment vessel can radiate heat through the heat insulating portion, the heat of the molten debris accumulated on the inner wall of the dry well is absorbed by the heat absorbing portions at intervals, and this heat is radiated. By radiating heat in the part, the molten debris can be cooled in a short time. As a result, temperature rise and pressure rise in the containment vessel due to high-temperature molten debris can be reduced in a short time, the reactor can be left for a short time, and sufficient safety measures can be taken at an early stage.

【0020】また、ドライウェルの水平な内壁上に上部
が開口したセラミック製耐熱容器を設置すれば、溶融デ
ブリに接触しているコンクリート部から溶融デブリが外
部に漏れだすおそれも全くなく、安全性を更に万全なも
のにすることができる。
Further, if a ceramic heat-resistant container having an open top is installed on the horizontal inner wall of the dry well, there is no possibility that the molten debris will leak out from the concrete portion which is in contact with the molten debris to the outside. Can be further perfected.

【0021】従って、本発明の方法により、多数の故障
が重なる想定事故において、かりに炉心溶融が起こり溶
融デブリが格納容器の下端に溜まった場合でも、溶融デ
ブリに接触する部分の破損による漏れだしを防ぎ、かつ
この溶融デブリを短時間に安全に冷却することができる
優れた効果を得ることができる。
Therefore, according to the method of the present invention, even if the core melts and the molten debris accumulates at the lower end of the containment vessel in a possible accident in which a large number of failures are overlapped, the leakage of the portion contacting the molten debris causes leakage. It is possible to obtain an excellent effect of preventing the molten debris from being cooled in a short time and safely.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による溶融デブリの熱除去方法を実施す
るための装置の全体構成図である。
FIG. 1 is an overall configuration diagram of an apparatus for carrying out a method for removing heat from molten debris according to the present invention.

【図2】本発明による溶融デブリの熱除去方法を実施す
るための装置の別の全体構成図である。
FIG. 2 is another overall configuration diagram of an apparatus for carrying out the method for removing heat from molten debris according to the present invention.

【図3】本発明の方法をコンクリート製新型格納容器に
適用した例を示す全体図である。
FIG. 3 is an overall view showing an example in which the method of the present invention is applied to a new concrete containment vessel.

【図4】本発明の方法をマークII型格納容器に適用し
た例を示す全体図である。
FIG. 4 is an overall view showing an example in which the method of the present invention is applied to a Mark II type storage container.

【図5】炉心溶融を起こした格納容器の概念図である。FIG. 5 is a conceptual diagram of a containment vessel in which a core melt has occurred.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 ペデスタル 3 ドライウェル 4 サプレッションチャンバー 5 溶融デブリ 6 内壁 10 吸熱部 12 放熱部 14 断熱部 16 冷却装置(ヒートパイプ、水循環冷却装置) 18 ポンプ 20 耐熱容器 1 Reactor Pressure Vessel 2 Pedestal 3 Drywell 4 Suppression Chamber 5 Molten Debris 6 Inner Wall 10 Endothermic Part 12 Heat Dissipation Part 14 Heat Insulation Part 16 Cooling Device (Heat Pipe, Water Circulation Cooling Device) 18 Pump 20 Heat Resistant Container

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉の下方に位置するドライウェルの
水平な内壁内に埋設された吸熱部と、原子炉格納容器の
外部に位置する放熱部と、前記吸熱部と放熱部を連通し
かつ原子炉格納容器を気密に貫通した断熱部と、からな
る冷却装置を備え、 上記ドライウェル内壁上に溜まった溶融デブリの熱を間
隔を隔てた前記吸熱部で吸熱し、この熱を前記放熱部で
放熱する、ことを特徴とする溶融デブリの熱除去方法。
1. A heat absorbing part buried in a horizontal inner wall of a dry well located below a nuclear reactor, a heat radiating part located outside of a reactor containment vessel, and connecting the heat absorbing part to the heat radiating part. A heat insulating unit that hermetically penetrates the containment vessel is provided, and a cooling device is provided, and the heat of the molten debris accumulated on the inner wall of the dry well is absorbed by the heat absorbing units that are spaced apart from each other, and this heat is released by the heat radiating unit. A method for removing heat from molten debris, characterized in that heat is radiated.
【請求項2】 前記冷却装置はヒートパイプであり、前
記吸熱部はヒートパイプの蒸発部であり、前記放熱部は
ヒートパイプの凝縮部であり、前記断熱部はヒートパイ
プの断熱部である、ことを特徴とする請求項1に記載の
溶融デブリの熱除去方法。
2. The cooling device is a heat pipe, the heat absorbing part is an evaporating part of the heat pipe, the heat radiating part is a condensing part of the heat pipe, and the heat insulating part is a heat insulating part of the heat pipe. The method for removing heat from molten debris according to claim 1, wherein:
【請求項3】 前記冷却装置は水循環冷却装置であり、
前記吸熱部と放熱部は隔板式熱交換器であり、前記断熱
部は前記2つの熱交換器を連通する2本の配管である、
ことを特徴とする請求項1に記載の溶融デブリの熱除去
方法。
3. The cooling device is a water circulation cooling device,
The heat absorbing portion and the heat radiating portion are partition plate heat exchangers, and the heat insulating portion is two pipes that connect the two heat exchangers.
The method for removing heat from molten debris according to claim 1, wherein:
【請求項4】 前記ドライウェルの水平な内壁上に、上
部が開口した耐熱容器が設置される、ことを特徴とする
請求項1に記載の溶融デブリの熱除去方法。
4. The method for removing heat from molten debris according to claim 1, wherein a heat-resistant container having an open top is installed on a horizontal inner wall of the dry well.
JP5111971A 1993-05-14 1993-05-14 Heat removing method for melting debris Pending JPH06324178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5111971A JPH06324178A (en) 1993-05-14 1993-05-14 Heat removing method for melting debris

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5111971A JPH06324178A (en) 1993-05-14 1993-05-14 Heat removing method for melting debris

Publications (1)

Publication Number Publication Date
JPH06324178A true JPH06324178A (en) 1994-11-25

Family

ID=14574729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5111971A Pending JPH06324178A (en) 1993-05-14 1993-05-14 Heat removing method for melting debris

Country Status (1)

Country Link
JP (1) JPH06324178A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102281A2 (en) * 1999-11-17 2001-05-23 General Electric Company Core catcher cooling by heat pipe
JP2012154644A (en) * 2011-01-21 2012-08-16 Toshiba Corp Heat transportation device of reactor container and method of the same
US9025721B2 (en) 2010-03-29 2015-05-05 Kabushiki Kaisha Toshiba Holding device
JP2021183954A (en) * 2020-05-22 2021-12-02 東京電力ホールディングス株式会社 heat pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102281A2 (en) * 1999-11-17 2001-05-23 General Electric Company Core catcher cooling by heat pipe
EP1102281A3 (en) * 1999-11-17 2001-06-27 General Electric Company Core catcher cooling by heat pipe
US9025721B2 (en) 2010-03-29 2015-05-05 Kabushiki Kaisha Toshiba Holding device
JP2012154644A (en) * 2011-01-21 2012-08-16 Toshiba Corp Heat transportation device of reactor container and method of the same
JP2021183954A (en) * 2020-05-22 2021-12-02 東京電力ホールディングス株式会社 heat pipe

Similar Documents

Publication Publication Date Title
US4678626A (en) Radiant vessel auxiliary cooling system
US4478784A (en) Passive heat transfer means for nuclear reactors
US8300759B2 (en) Decay heat removal system comprising heat pipe heat exchanger
JPH04125495A (en) Nuclear reactor facility
JP2001166081A (en) Cooling of reactor core catcher by heat pipe
CN104269194A (en) Temperature-triggered passive accident residual heat removal system for pool type reactor
JPH02201293A (en) Natural circulation type passive cooling system for containment construction
US4335781A (en) High power cooler and method thereof
JPH0318792A (en) Passive type cooling device
JPH0395489A (en) Liquid metal cooling type nclear reactor with passive cooling system
US4342621A (en) Molten core catcher and containment heat removal system
USH91H (en) Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
JP5727799B2 (en) Heat transfer device for reactor containment
CA1096513A (en) Nuclear power plant with collector vessel for melting core masses
JPH06324178A (en) Heat removing method for melting debris
JPH0463357B2 (en)
JPH0224594A (en) Passive cooler for nuclear reactor containment construction
JPH08557B2 (en) Emergency heat exhaust device for heat engine power generation system with pressure shell for deep sea
JP3666836B2 (en) Reactor containment cooling equipment
JPS622277B2 (en)
JPH04290994A (en) Reactor container vessel
JP3333591B2 (en) Cooling structure of high temperature container seal
JPS63222295A (en) Nuclear reactor
RU2810515C1 (en) Truss console of melt localization device (options)
CN116168855A (en) Reactor heat exchange shielding structure