JPH02233908A - Combustion chamber and its cooling method - Google Patents

Combustion chamber and its cooling method

Info

Publication number
JPH02233908A
JPH02233908A JP5138289A JP5138289A JPH02233908A JP H02233908 A JPH02233908 A JP H02233908A JP 5138289 A JP5138289 A JP 5138289A JP 5138289 A JP5138289 A JP 5138289A JP H02233908 A JPH02233908 A JP H02233908A
Authority
JP
Japan
Prior art keywords
heat
resistant
tiles
cooling air
tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5138289A
Other languages
Japanese (ja)
Other versions
JP3099087B2 (en
Inventor
Hiroshi Miyata
寛 宮田
Takashi Machida
隆志 町田
Toshio Abe
俊夫 阿部
Noboru Hisamatsu
暢 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP01051382A priority Critical patent/JP3099087B2/en
Publication of JPH02233908A publication Critical patent/JPH02233908A/en
Application granted granted Critical
Publication of JP3099087B2 publication Critical patent/JP3099087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce thermal stresses generated in heat resisting tiles and improve heat resisting performance by a method wherein a heat resisting member is composed of frame resisting cloth formed by flame resisting fiber and heat resisting tiles formed by heat resisting material and the heat resisting tiles are fixed inside through the flame resisting cloth. CONSTITUTION:In a combustion chamber which includes a heat resisting member and a metal cylinder 21 on the inside of which the heat resisting member is fixed, being equipped with flowing systems of combustion air and cooling air respectively, the heat resisting member is formed by flame resisting cloth 22 and heat resisting tiles 23 and cooling air is introduced through cooling air holes 25 drilled on the cylinder 21 and caused to flow through the textures of the cloth 22 and the structure of air flow is so constituted as to exude the cooling air into the inside of the tiles through the circumferences, boundaries of the tiles 23, or the holes 25 drilled on the tiles. The length of one side of the title is less than that of one fourth of the circumference of the metal inner cylinder and the heat resisting tiles are formed by sintered body or ceramic combined material mingled with ceramic fiber and a number of holes are drilled on the tiles 23 or the tiles are formed in a honeycomb shape. Then, the tiles are fixed on the cylinder 21 with heat resisting bolts 24.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンにおける燃焼器ライナー及び尾
簡の耐熱性を向上し、燃焼器壁面温度の冷却性の向上、
及び燃焼器の冷却空気を削減するに好適な燃焼器及びそ
の冷却方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention improves the heat resistance of a combustor liner and tailings in a gas turbine, improves the cooling performance of the combustor wall surface temperature,
The present invention also relates to a combustor suitable for reducing cooling air for the combustor and a method for cooling the same.

〔従来の技術〕[Conventional technology]

従来の燃焼器においては、特開昭59−15727号公
報、及び特開昭62−5021号公報に記載のように、
前者では内周側にセラミックタイルと外周側に金属筒を
設け、タイルは金属筒にセラミックス等からなる固定具
によりタイルの最外境界縁の全体あるいは一部において
固定支持される構造となっていた.一方、後者では燃焼
器の最内周をセラミック繊維製燃焼筒で形成し、燃焼筒
を外周に配置された金属製包囲壁に固定支持する構造に
なっていた. タイル方式は、セラミックタイルにこのタイルの固定支
持に伴う熱応力の発生とセラミックタイル周囲の熱的環
境が適切でないため,タイルの燃焼ガス側表面は燃焼ガ
スによる昇温を受け,一方,裏面は冷却空気による冷却
を受けるとりうタイルへの熱負荷に対する十分な配慮が
なされておらず,タイルに発生する熱応力による強度信
頼性の低下の問題があった.すなわち、セラミックタイ
ルは表・裏面において加熱・冷却され、板厚方向に熱応
力の発生があるばかりでなく、タイルの固定支持部は固
定支持具との接触によりその接触面で冷却され,特に接
触部においてタイル面内に大きな温度勾配が発生し、こ
れに起因した熱応力が誘起される.また、比較的低温の
固定支持具との接触は、タイルの外周辺に位置するため
、タイル全体は中央部が高温で周辺が比較的低温になる
結果、タイル内部゜にも熱変形に伴う熱応力の発生が考
えられる. 繊維製燃焼筒方式では前記セラミックタイルの代りにセ
ラミック織布を利用することによって,高い耐熱性と信
頼性を得ようとするものである。
In conventional combustors, as described in JP-A-59-15727 and JP-A-62-5021,
In the former, a ceramic tile is provided on the inner circumference and a metal tube is provided on the outer circumference, and the tile is fixedly supported by a fixing device made of ceramic or the like on the metal tube at all or part of the outermost edge of the tile. .. On the other hand, the latter had a structure in which the innermost periphery of the combustor was formed by a combustion tube made of ceramic fiber, and the combustion tube was fixedly supported by a metal surrounding wall placed around the outer periphery. In the tile method, thermal stress occurs on the ceramic tile due to the fixed support of the tile, and the thermal environment around the ceramic tile is not appropriate, so the surface on the combustion gas side of the tile is heated by the combustion gas, while the back surface is heated. Not enough consideration was given to the thermal load on the tiles that were cooled by the cooling air, and there was a problem of reduced strength reliability due to thermal stress generated in the tiles. In other words, ceramic tiles are heated and cooled on the front and back surfaces, and not only does thermal stress occur in the thickness direction, but also the fixing support part of the tile is cooled on the contact surface due to contact with the fixing support. A large temperature gradient occurs within the tile surface, and thermal stress is induced due to this. In addition, since the contact with the relatively low-temperature fixing support is located at the outer periphery of the tile, the center of the entire tile is hot and the periphery is relatively cold, resulting in heat generated by thermal deformation inside the tile. It is possible that stress is generated. The fiber combustion tube system attempts to obtain high heat resistance and reliability by using ceramic woven fabric instead of the ceramic tiles.

本方式では、繊維製燃焼筒に直接燃焼ガスが接するため
,セラミック繊維製の織布に冷却空気を微細な空隙を通
じて僅かに燃焼筒内にしみ出すようにして燃焼筒を冷却
するとともに、燃焼ガスが燃焼簡の壁内に流入するのを
防止する構造となっている.しかし、この従来技術は繊
維製燃焼簡に一様に冷却空気が流入し、しみ出し冷却が
常に十分に達成されない場合は、直接燃焼ガスに曝され
る最内周側の耐熱織布が部分的にその耐熱温度以上に加
熱され、直ちに酸化劣化等により破損を招くという問題
があった. 第16図に示されるタイル方式では、適当な大きさのセ
ラミックタイル4が保持具3と押しロッド9によって金
属枠2に固定された構造となっている.このときのセラ
ミックタイル4は第17図に示されるように比較的厚い
平板状で、溝部4bの部分で保持具3により固定支持さ
れているため、前述のように、セラミックタイル4で温
度分布の変化が生じ大きな熱応力の発生が避けられない
.第18図〜第21図には耐熱繊維筒よりなる構造が示
されるが、繊維筒11に燃焼空気孔13が設けられてお
り,金属筒12にも同じ位置に空気流入孔13が穿設さ
れている.この繊維筒11は金属筒12にボルト等(図
示せず)により固定支持されている。繊維筒11は直接
燃焼ガス流16に曝されるため、金属筒12に設けられ
ている多数の冷却空気孔14群から導入された冷却空気
17を図示するように、繊維筒11の厚さ方向に流通さ
せ、繊維筒11の冷却と筒内の燃焼ガス流の筒外への流
出を防止している。この繊維筒11は耐熱性セラミック
ファイバよりなる織物を多数枚巻いて(あるいは重ねて
)Y3.成されているが、この冷却空気17が不十分に
なると、繊維筒11を形成する織物の最内周側のセラミ
ックファイバが高温に曝されることにより酸化あるいは
劣化し,破損するなどの問題を生じていた。
In this method, since the combustion gas comes into direct contact with the fiber combustion tube, the cooling air is allowed to seep slightly into the combustion tube through minute gaps in the woven ceramic fiber cloth to cool the combustion tube, and the combustion gas The structure is designed to prevent water from flowing into the walls of the combustion chamber. However, in this conventional technology, cooling air uniformly flows into the textile combustion chamber, and if sufficient cooling is not always achieved through seepage, the heat-resistant woven fabric on the innermost side, which is directly exposed to combustion gas, may partially However, there was a problem in that it was heated above its heat-resistant temperature and immediately suffered damage due to oxidative deterioration, etc. In the tile system shown in FIG. 16, a ceramic tile 4 of an appropriate size is fixed to a metal frame 2 by a holder 3 and a push rod 9. At this time, the ceramic tile 4 has a relatively thick flat plate shape as shown in FIG. 17, and is fixedly supported by the holder 3 at the groove portion 4b. Changes occur and the generation of large thermal stress is unavoidable. 18 to 21 show a structure made of a heat-resistant fiber tube, the fiber tube 11 is provided with combustion air holes 13, and the metal tube 12 is also provided with air inlet holes 13 at the same position. ing. This fiber tube 11 is fixedly supported by a metal tube 12 with bolts or the like (not shown). Since the fiber tube 11 is directly exposed to the combustion gas flow 16, cooling air 17 introduced from a large number of cooling air holes 14 provided in the metal tube 12 is directed in the thickness direction of the fiber tube 11, as shown in the figure. The fiber cylinder 11 is cooled and the combustion gas flow inside the cylinder is prevented from flowing out of the cylinder. This fiber tube 11 is made by winding (or overlapping) a large number of fabrics made of heat-resistant ceramic fibers Y3. However, if this cooling air 17 is insufficient, the ceramic fibers on the innermost circumferential side of the fabric forming the fiber cylinder 11 will be exposed to high temperatures, causing problems such as oxidation or deterioration and damage. was occurring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の燃焼器及びその冷却方法にあっては、タイル方式
はタイルの板厚方向のみならず,中央部と周辺部との間
に温度差があって熱応力が発生しており、繊維製燃焼筒
方式は燃焼筒が一様に冷却されず、局部的に加熱、酸化
されて劣化し、破損を招く問題点があった. 本発明の目的は,耐熱材料で形成した耐熱タイルに発生
する熱応力を低減し、かつ耐熱繊維で形成した耐熱織布
の部分的な酸化や劣化を防止できる耐熱性能と強度信頼
性を向上した燃焼器及びその冷却方法を提供することに
ある。
In the conventional combustor and its cooling method, the tile method generates thermal stress not only in the thickness direction of the tile, but also between the center and the periphery, which causes thermal stress. The problem with the cylinder method was that the combustion cylinder was not cooled uniformly, causing local heating and oxidation, leading to deterioration and damage. The purpose of the present invention is to reduce the thermal stress generated in heat-resistant tiles made of heat-resistant materials, and to improve heat-resistant performance and strength reliability that can prevent partial oxidation and deterioration of heat-resistant woven fabrics made of heat-resistant fibers. An object of the present invention is to provide a combustor and a method for cooling the same.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため、本発明に係る燃焼器は,金
属筒の内面に耐熱部材を固定し,耐熱部材及び金属筒の
それぞれに燃焼空気及び冷却空気の流通手段を備えた燃
焼器において、耐熱部材は、耐熱繊維で形成した耐熱織
布と耐熱材料で形成した耐熱タイルとからなり、耐熱タ
イルは耐熱織布を介して内面に固定されるように構成さ
れている。
In order to achieve the above object, the combustor according to the present invention has a heat-resistant member fixed to the inner surface of a metal tube, and a combustion air and cooling air circulation means in each of the heat-resistant member and the metal tube. The heat-resistant member includes a heat-resistant woven fabric made of heat-resistant fibers and a heat-resistant tile made of a heat-resistant material, and the heat-resistant tile is fixed to the inner surface via the heat-resistant woven fabric.

また耐熱タイルの一辺を金属内筒の円周を4分割した長
さ以下に形成した構成とする。
Further, one side of the heat-resistant tile is formed to be equal to or less than the length obtained by dividing the circumference of the metal inner cylinder into four.

さらに耐熱タイルをセラミック焼結体又はセラミックフ
ァイバ入りセラミック複合材料で形成した構成とし、耐
熱夕.イルに多数の孔を穿設又は耐熱タイルをハニカム
状に形成するものとする。
Furthermore, the heat-resistant tile is made of a ceramic sintered body or a ceramic composite material containing ceramic fiber, and the heat-resistant tile is made of a ceramic sintered body or a ceramic composite material containing ceramic fiber. A large number of holes shall be bored in the tiles or the heat-resistant tiles shall be formed into a honeycomb shape.

そして耐熱タイルは耐熱ボルトにより金属筒に固定され
ている構成とする。
The heat-resistant tiles are fixed to the metal tube with heat-resistant bolts.

また金属筒の内面に耐熱部材を固定し,耐熱部材及び金
属筒のそれぞれに燃焼空気及び冷却空気の流通手段を備
えた燃焼器の冷却方法においては、耐熱部材を耐熱織布
と耐熱タイルとにより形成し、金属筒に穿設した冷却空
気孔を経由して冷却空気を導入し、冷却空気を耐熱織布
の織目を通して流通し、耐熱タイルの周囲,境界又は耐
熱タイルに穿設した冷却空気孔を通して耐熱タイルの内
面に冷却空気を滲み出させるように構成される。
In addition, in a method for cooling a combustor in which a heat-resistant member is fixed to the inner surface of a metal cylinder, and each of the heat-resistant member and the metal cylinder is provided with a means of circulating combustion air and cooling air, the heat-resistant member is made of heat-resistant woven fabric and heat-resistant tiles. The cooling air is introduced through the cooling air holes formed and drilled in the metal cylinder, the cooling air is distributed through the weave of the heat-resistant woven fabric, and the cooling air is formed around, at the border of, or drilled in the heat-resistant tile. It is configured to exude cooling air through the holes and onto the inner surface of the refractory tile.

〔作用〕[Effect]

本発明によれば,燃焼器の金属筒の内面に耐熱織布を介
して耐熱タイルを固定することによって、耐熱織布は直
接燃焼ガスに曝されない。
According to the present invention, by fixing the heat-resistant tile to the inner surface of the metal cylinder of the combustor via the heat-resistant woven fabric, the heat-resistant woven fabric is not directly exposed to combustion gas.

そして金属筒の冷却空気孔を通して流入した冷却空気は
耐熱織布内を一様に流通し、耐熱タイルの周囲等からそ
の内面に滲み出す.一方、比較的脆い耐熱タイルは耐熱
織布をクッションとして金居筒に固定されるため、固定
の際の機械的な力が緩和されるとともに耐熱タイルの熱
変形が吸収され、燃焼器全体の燃焼振動もダンピングさ
れる。
The cooling air that flows in through the cooling air holes in the metal cylinder flows uniformly within the heat-resistant fabric, and seeps out from around the heat-resistant tile to its inner surface. On the other hand, relatively brittle heat-resistant tiles are fixed to the metal fittings using a heat-resistant woven fabric as a cushion, which alleviates the mechanical force during fixation and absorbs thermal deformation of the heat-resistant tiles, thereby reducing the overall combustion rate of the combustor. Vibration is also damped.

〔実施例〕〔Example〕

本発明の一実施例を第1図を参照しながら説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図に示されるように、金属筒21の内面にm熱部材
を固定し、耐熱部材及び金属筒21のそれぞれに燃焼空
気及び冷却空気の流通手段を備えた燃焼器において、耐
熱部材は、耐熱繊維で形成した耐熱織布22と耐熱材料
で形成した耐熱タイル23とからなり、耐熱タイル23
は耐熱織布22を介して内面に固定された構成である。
As shown in FIG. 1, in a combustor in which a heat member is fixed to the inner surface of a metal tube 21, and each of the heat-resistant member and the metal tube 21 is provided with a circulation means for combustion air and cooling air, the heat-resistant member is The heat-resistant tile 23 is made up of a heat-resistant woven fabric 22 made of heat-resistant fibers and a heat-resistant tile 23 made of a heat-resistant material.
is fixed to the inner surface via a heat-resistant woven fabric 22.

第1図に示される実施例では、金属筒21の内周部に耐
熱織布22が金属筒21に沿って配置され、耐熱織布2
2は耐熱タイル23及び耐熱ボルト製の結合具24によ
って金属筒21に抑圧固定される.第2図に本発明にな
る燃焼器の一部の概念図が示される。本実施例では耐熱
タイル23は六角形タイルとしている.本発明では特に
詳しく言及しないが、燃焼器には燃焼空気流入孔25が
必要であり、その燃焼空気流入孔25は耐熱タイル23
の一部を切欠くことにより形成できる。耐熱タイルの具
体的な一実施例が第4図及び第5図に示される.六角形
状の耐熱タイル23に多数の孔26を設けるか又はハニ
カム状に形成してある。
In the embodiment shown in FIG.
2 is pressed and fixed to the metal tube 21 by heat-resistant tiles 23 and connectors 24 made of heat-resistant bolts. FIG. 2 shows a conceptual diagram of a part of the combustor according to the present invention. In this embodiment, the heat-resistant tiles 23 are hexagonal tiles. Although not mentioned in detail in the present invention, the combustor requires a combustion air inlet 25, and the combustion air inlet 25 is connected to the heat-resistant tile 23.
It can be formed by cutting out a part of the. A specific example of the heat-resistant tile is shown in Figures 4 and 5. A hexagonal heat-resistant tile 23 is provided with a large number of holes 26 or formed into a honeycomb shape.

もちろん、この孔26の配列は種々選択が可能であり,
他の実施例が第7図及び第8図bi示される。
Of course, the arrangement of the holes 26 can be selected in various ways.
Another embodiment is shown in FIGS. 7 and 8bi.

耐熱タイル23は円筒形状の一部を形成し、かつ全体は
長方形をなしている.第4図〜第8図の耐熱タイル23
のほぼ中央に設けられた固定孔27は耐熱タイル23を
金属筒21に固定具24を介して固定するためのもので
ある。この状況が第9図に具体的に示される。耐熱織布
22は耐熱タイル23を介して結合具24により金属筒
21に押圧固定される.金属筒21に設けられた冷却空
気孔30は冷却空気の取入れ用のものである。
The heat-resistant tile 23 forms part of a cylindrical shape, and has a rectangular shape as a whole. Heat-resistant tiles 23 in Figures 4 to 8
A fixing hole 27 provided approximately in the center is for fixing the heat-resistant tile 23 to the metal cylinder 21 via a fixture 24. This situation is specifically shown in FIG. The heat-resistant woven fabric 22 is pressed and fixed to the metal tube 21 by a connector 24 via a heat-resistant tile 23. Cooling air holes 30 provided in the metal cylinder 21 are for taking in cooling air.

第10図に燃焼空気流入孔25部における耐熱タイルの
形状例が示される.耐熱タイル23の一辺を,少くとも
その円周を4分割した長さに形成し、四隅に4枚並べて
中央の部分に内孔、すなわち燃焼空気流入孔25を形成
する。第12図に燃焼器壁における耐熱タイル、金属内
筒、及び耐熱織布の配置の他の実施例が示される。第9
図に示される実施例と異なり、金属筒21と耐熱織布2
2の間にさらに金属内筒28を配置し、金應内筒28と
金属筒21との間に空隙29を設けたものである.金属
筒21に開けられた冷却空気孔30より導入された冷却
空気は、まず空隙29に導かれ、しかる後金属内筒28
に設けられた多数の小孔31を通して耐熱織布22に至
り、その後耐熱タイルに設けられた孔26及び隣り合う
耐熱タイル23間の隙間より燃焼ガス流32中へ放出さ
れる。
Figure 10 shows an example of the shape of the heat-resistant tile in the combustion air inlet 25 section. One side of the heat-resistant tile 23 is formed to have a length obtained by dividing at least the circumference into four, four tiles are arranged at the four corners, and an inner hole, that is, a combustion air inflow hole 25 is formed in the center part. FIG. 12 shows another example of the arrangement of heat-resistant tiles, metal inner tubes, and heat-resistant woven fabrics on the combustor wall. 9th
Unlike the embodiment shown in the figure, a metal cylinder 21 and a heat-resistant woven fabric 2
A metal inner cylinder 28 is further arranged between the inner cylinder 28 and the metal cylinder 21, and a gap 29 is provided between the inner cylinder 28 and the metal cylinder 21. Cooling air introduced through the cooling air hole 30 opened in the metal tube 21 is first guided to the air gap 29 and then passed through the metal inner tube 28.
It reaches the heat-resistant woven fabric 22 through a large number of small holes 31 provided in the heat-resistant tile, and is then released into the combustion gas flow 32 through the holes 26 provided in the heat-resistant tile and the gaps between adjacent heat-resistant tiles 23.

第13図に他の実施例が示される。第12図の実施例と
異なり,耐熱タイル23に冷却空気孔が設けられておら
ず,冷却空気はもっぱら隣り合う耐熱タイル23の隙間
33より燃焼ガス流32中へ放出される構造である.も
う一つの他の実施例が第14図に示されるが、本実施例
では金属筒21の冷却空気孔30から流入した冷却空気
は空隙29に導かれた後,金属内筒28の小孔31を通
って耐熱織布22の織目間を流通して耐熱タイル23に
設けた空間34に至る。空間34に満たされた冷却空気
はその後隙間33より燃焼ガス流32中へ放出される構
造となっている。耐熱タイル23の概観が第15図に示
される。
Another embodiment is shown in FIG. Unlike the embodiment shown in FIG. 12, the heat-resistant tiles 23 are not provided with cooling air holes, and the structure is such that the cooling air is exclusively released into the combustion gas flow 32 through the gaps 33 between adjacent heat-resistant tiles 23. Another embodiment is shown in FIG. 14. In this embodiment, the cooling air flowing in from the cooling air hole 30 of the metal tube 21 is guided to the air gap 29, and then the cooling air flows through the small hole 31 of the metal inner tube 28. It flows between the textures of the heat-resistant woven fabric 22 and reaches the space 34 provided in the heat-resistant tile 23 . The cooling air filling the space 34 is then released into the combustion gas flow 32 through the gap 33. An overview of the heat-resistant tile 23 is shown in FIG.

本発明は、タイル方式と繊維製燃焼筒方式との長所、す
なわちタイル方式では燃焼ガスに直接曝される部分に耐
熱性に優れたセラミックタイル(耐熱タイル)が配置さ
れており、一方繊維製燃焼筒方式では熱変形に対する破
壊強度に優れたセラミック繊維(耐熱繊維)が主要な役
割を果たしているという特徴をそれぞれ活かし、さらに
セラミックタイルに発生する熱応力の低減と、セラミッ
ク繊維の酸化による劣化を防止するために、燃焼ガスに
直接曝される燃焼器の最内周の部材として耐熱無機材料
(例えばセラミックス燃焼体又はセラミックファイバ複
合材料)、その外周囲に耐熱繊維よりなる謝熱織布を配
置し耐熱無機材料を柔に固定支持する構造とし、全体を
最外周に設けた金属筒により支持する構造としたもので
ある。
The present invention is based on the advantages of the tile method and the fiber combustion tube method, namely, in the tile method, ceramic tiles (heat-resistant tiles) with excellent heat resistance are placed in the parts that are directly exposed to combustion gas; The cylindrical method takes advantage of the fact that ceramic fibers (heat-resistant fibers), which have excellent breaking strength against thermal deformation, play a major role, and further reduces the thermal stress generated in the ceramic tiles and prevents deterioration due to oxidation of the ceramic fibers. In order to do this, a heat-resistant inorganic material (for example, a ceramic combustion body or a ceramic fiber composite material) is used as the innermost member of the combustor that is directly exposed to combustion gas, and a heat-resistant woven fabric made of heat-resistant fibers is placed around the outer circumference of the material. It has a structure in which a heat-resistant inorganic material is flexibly fixed and supported, and the entire structure is supported by a metal tube provided on the outermost periphery.

さらに、耐熱繊維の耐熱性を保証するため耐熱織布の織
目に冷却空気を流通させたものである。
Furthermore, in order to guarantee the heat resistance of the heat-resistant fibers, cooling air is passed through the weaves of the heat-resistant woven fabric.

また,燃焼ガスに直接曝される耐熱無機材料からなる部
材にその熱応力の低減のために多数の孔を設け、その部
材の温度が一様になるように、かつ耐熱繊維の耐熱織布
内を流通する冷却空気が滞留することなく燃焼ガス流中
に放出させるようにしたものである. また、強度信頼性に関しては、耐熱タイルに発生する応
力が基本的に熱応力であるため,多孔板(あるいはハニ
カム)では発生熱ひずみが孔の効果により解放され熱応
力の低減が可能で、同じ耐熱材料の耐熱タイルであって
も実質的に信頼性が高くなる.さらに多孔板(あるいは
ハニカム)では、万一耐熱タイルの1部にき裂が発生し
た場合、き裂が進展し・て孔に到達するとき裂が停止す
るばかりでなく、熱ひずみエネルギーも解放されるとい
う効果がある. 〔発明の効果〕 本発明によれば、燃焼器の内面に耐熱織布を介して耐熱
タイルを固定しかつ耐熱織布を通して冷却空気を流通す
るため、耐熱性能が向上し冷却空気を大幅に削減できる
。その結果、燃焼空気の利用率が増大して石炭ガス化燃
料使用の場合有利となる。耐熱性の向上は高負荷燃焼を
可能とし、低N O x化を自在に行える二次的な効果
も得られる。
In addition, a large number of holes are provided in the member made of heat-resistant inorganic material that is directly exposed to combustion gas to reduce the thermal stress, and the temperature of the member is made uniform, and the heat-resistant woven fabric made of heat-resistant fibers is This allows the circulating cooling air to be released into the combustion gas flow without stagnation. In addition, regarding strength reliability, since the stress generated in heat-resistant tiles is basically thermal stress, with a perforated plate (or honeycomb), the generated thermal strain is released by the effect of the holes, making it possible to reduce thermal stress. Even heat-resistant tiles made of heat-resistant materials are substantially more reliable. Furthermore, with perforated plates (or honeycombs), if a crack occurs in a part of the heat-resistant tile, the crack will not only propagate and stop when it reaches the hole, but will also release thermal strain energy. It has the effect of [Effects of the Invention] According to the present invention, heat-resistant tiles are fixed to the inner surface of the combustor via a heat-resistant woven fabric, and cooling air is distributed through the heat-resistant woven fabric, thereby improving heat resistance performance and significantly reducing the amount of cooling air. can. As a result, the utilization rate of combustion air increases, which is advantageous when using coal gasified fuel. Improving heat resistance enables high-load combustion, and has the secondary effect of freely reducing NOx.

また耐熱タイルを多孔状に形成するため、その応力が緩
和されるとともに、き裂が発生してもき裂を停止させる
効果がある。
Furthermore, since the heat-resistant tile is formed into a porous shape, the stress is alleviated, and even if a crack occurs, it has the effect of stopping the crack.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図〜第4
図は第1図の耐熱タイルの一実施例を示す図、第5図は
第4図の■・■断面図、第6図は第4図の一部拡大図、
第7図及び第8図は耐熱タイルの他の実施例を示す図、
第9図は本発明の他の実施例を示す一部断面図,第10
図及び第11図は耐熱タイルの他の実施例を示す図、第
12図〜第14図は本発明の他の実施例を示す一部断面
図、第15図は耐熱タイルの他の実施例を示す斜視図、
第16図は従来の技術を示す平面断面図、第17図は従
来の技術のセラミックタイルを示す斜視図、第18図は
従来の技術を示す縦断面図、第19図及び第20図は第
18図の平面断面図、第21図は従来の技術の斜視図で
ある。 21・・・金属筒,  22・・・耐熱織布,23・・
・耐熱タイル、25・・・吸入空気孔(燃焼空気孔)。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIGS.
The figure shows an example of the heat-resistant tile in Figure 1, Figure 5 is a sectional view of ■ and ■ in Figure 4, and Figure 6 is a partially enlarged view of Figure 4.
Figures 7 and 8 are diagrams showing other embodiments of heat-resistant tiles;
FIG. 9 is a partial sectional view showing another embodiment of the present invention, and FIG.
11 and 11 are views showing other embodiments of the heat-resistant tile, FIGS. 12 to 14 are partial sectional views showing other embodiments of the present invention, and FIG. 15 is another embodiment of the heat-resistant tile. A perspective view showing
Fig. 16 is a plan sectional view showing the conventional technique, Fig. 17 is a perspective view showing a ceramic tile of the conventional technique, Fig. 18 is a vertical sectional view showing the conventional technique, and Figs. FIG. 18 is a plan sectional view, and FIG. 21 is a perspective view of the conventional technology. 21...Metal tube, 22...Heat-resistant woven fabric, 23...
・Heat-resistant tile, 25... Intake air hole (combustion air hole).

Claims (1)

【特許請求の範囲】 1、金属筒の内面に耐熱部材を固定し、該耐熱部材及び
前記金属筒のそれぞれに燃焼空気及び冷却空気の流通手
段を備えた燃焼器において、前記耐熱部材は、耐熱繊維
で形成した耐熱織布と耐熱材料で形成した耐熱タイルと
からなり、該耐熱タイルは前記耐熱織布を介して前記内
面に固定されたことを特徴とする燃焼器。 2、耐熱織布の外周に金属内筒を設け、多数の小孔を穿
設した該金属内筒の外周と金属筒の内周との間に空隙を
設けたことを特徴とする請求項1記載の燃焼器。 3、耐熱タイルの一辺を金属内筒の円周を4分割した長
さ以下に形成したことを特徴とする請求項1又は2記載
の燃焼器。 4、耐熱タイルをセラミック焼結体又はセラミックファ
イバ入りセラミック複合材料で形成したことを特徴とす
る請求項1、2又は3記載の燃焼器。 5、耐熱タイルに多数の孔を穿設又は該耐熱タイルをハ
ニカム状に形成したことを特徴とする請求項1、2、3
又は4記載の燃焼器。 6、耐熱タイルは耐熱ボルトにより金属筒に固定されて
いることを特徴とする請求項1、2、3又は4記載の燃
焼器。 7、金属筒の内面に耐熱部材を固定し、該耐熱部材及び
前記金属筒のそれぞれに燃焼空気及び冷却空気の流通手
段を備えた燃焼器の冷却方法において、前記耐熱部材を
耐熱織布と耐熱タイルとにより形成し、前記金属筒に穿
設した冷却空気孔を経由して冷却空気を導入し、該冷却
空気を前記耐熱織布の織目を通して流通し、前記耐熱タ
イルの周囲、境界又はその耐熱タイルに穿設した冷却空
気孔を通して該耐熱タイルの内面に前記冷却空気を滲み
出させることを特徴とする燃焼器の冷却方法。
[Claims] 1. In a combustor in which a heat-resistant member is fixed to the inner surface of a metal cylinder, and each of the heat-resistant member and the metal cylinder is provided with a means for circulating combustion air and cooling air, the heat-resistant member is a heat-resistant member. A combustor comprising a heat-resistant woven fabric made of fibers and a heat-resistant tile made of a heat-resistant material, the heat-resistant tile being fixed to the inner surface via the heat-resistant woven fabric. 2. Claim 1, characterized in that a metal inner cylinder is provided on the outer periphery of the heat-resistant woven fabric, and a gap is provided between the outer periphery of the metal inner cylinder, which has a large number of small holes, and the inner periphery of the metal cylinder. Combustor as described. 3. The combustor according to claim 1 or 2, wherein one side of the heat-resistant tile is formed to be equal to or less than a length obtained by dividing the circumference of the metal inner cylinder into four. 4. The combustor according to claim 1, 2 or 3, wherein the heat-resistant tile is formed of a ceramic sintered body or a ceramic composite material containing ceramic fibers. 5. Claims 1, 2, and 3, characterized in that the heat-resistant tile has a large number of holes or is formed into a honeycomb shape.
Or the combustor described in 4. 6. The combustor according to claim 1, 2, 3, or 4, wherein the heat-resistant tile is fixed to the metal cylinder by heat-resistant bolts. 7. A method for cooling a combustor, in which a heat-resistant member is fixed to the inner surface of a metal tube, and each of the heat-resistant member and the metal tube is provided with circulation means for combustion air and cooling air, in which the heat-resistant member is fixed to a heat-resistant woven fabric and a heat-resistant Cooling air is introduced through cooling air holes formed in the metal cylinder, and the cooling air is circulated through the weave of the heat-resistant woven fabric, and the cooling air is passed through the weave of the heat-resistant woven fabric, and is formed around the heat-resistant tile, at its boundary, or around the heat-resistant tile. A method for cooling a combustor, comprising causing the cooling air to seep out onto the inner surface of the heat-resistant tile through cooling air holes formed in the heat-resistant tile.
JP01051382A 1989-03-03 1989-03-03 Combustor Expired - Lifetime JP3099087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01051382A JP3099087B2 (en) 1989-03-03 1989-03-03 Combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01051382A JP3099087B2 (en) 1989-03-03 1989-03-03 Combustor

Publications (2)

Publication Number Publication Date
JPH02233908A true JPH02233908A (en) 1990-09-17
JP3099087B2 JP3099087B2 (en) 2000-10-16

Family

ID=12885397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01051382A Expired - Lifetime JP3099087B2 (en) 1989-03-03 1989-03-03 Combustor

Country Status (1)

Country Link
JP (1) JP3099087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534430U (en) * 1991-10-15 1993-05-07 株式会社プランテツク Side wall structure of garbage incinerator
US7938223B2 (en) * 2008-05-21 2011-05-10 Cooper Technologies Company Sintered elements and associated systems
US8512430B2 (en) 2009-05-05 2013-08-20 Cooper Technologies Company Explosion-proof enclosures with active thermal management using sintered elements
US9250023B2 (en) 2009-05-14 2016-02-02 Cooper Technologies Company Explosion-proof enclosures with active thermal management by heat exchange

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200474934Y1 (en) 2013-11-29 2014-10-27 한전케이피에스 주식회사 Spring Holder for Gas Turbine tile
KR101733200B1 (en) * 2015-06-26 2017-05-08 주식회사 마루이엔지 Electric scooter having tilting structure of steering part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237126A (en) * 1975-09-12 1977-03-22 Noboru Tanigawa Baseball bat
JPS5915728A (en) * 1982-07-19 1984-01-26 Central Res Inst Of Electric Power Ind Heat shield construction of wall surface exposed to high heating temperature
JPS60155756U (en) * 1984-03-26 1985-10-17 アイシン精機株式会社 Burner cone of combustor for Stirling engine
JPS61228225A (en) * 1985-03-30 1986-10-11 Agency Of Ind Science & Technol Liner of combustor for gas turbine
JPS6242213A (en) * 1985-08-20 1987-02-24 Mitsubishi Electric Corp Output power controller for solar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237126A (en) * 1975-09-12 1977-03-22 Noboru Tanigawa Baseball bat
JPS5915728A (en) * 1982-07-19 1984-01-26 Central Res Inst Of Electric Power Ind Heat shield construction of wall surface exposed to high heating temperature
JPS60155756U (en) * 1984-03-26 1985-10-17 アイシン精機株式会社 Burner cone of combustor for Stirling engine
JPS61228225A (en) * 1985-03-30 1986-10-11 Agency Of Ind Science & Technol Liner of combustor for gas turbine
JPS6242213A (en) * 1985-08-20 1987-02-24 Mitsubishi Electric Corp Output power controller for solar battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534430U (en) * 1991-10-15 1993-05-07 株式会社プランテツク Side wall structure of garbage incinerator
US7938223B2 (en) * 2008-05-21 2011-05-10 Cooper Technologies Company Sintered elements and associated systems
US8512430B2 (en) 2009-05-05 2013-08-20 Cooper Technologies Company Explosion-proof enclosures with active thermal management using sintered elements
US8992649B2 (en) 2009-05-05 2015-03-31 Cooper Technologies Company Explosion-proof enclosures with active thermal management using sintered elements
US9250023B2 (en) 2009-05-14 2016-02-02 Cooper Technologies Company Explosion-proof enclosures with active thermal management by heat exchange
US9863718B2 (en) 2009-05-14 2018-01-09 Cooper Technologies Company Explosion-proof enclosures with active thermal management by heat exchange

Also Published As

Publication number Publication date
JP3099087B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
CA2400705C (en) Stirling engine thermal system improvements
US5711661A (en) High intensity, low NOx matrix burner
US6840047B2 (en) Lining for inner walls of combustion chambers
CN105276620B (en) A kind of aeroengine combustor buring room burner inner liner wall compound cooling structure
US20080127652A1 (en) Heat Shield Element
KR20140013065A (en) Infrared metal heating body and production method thereof
JPH02233908A (en) Combustion chamber and its cooling method
JP2890033B2 (en) Gas turbine combustor
JP2000249427A (en) LOW NOx SYSTEM IN HIGH TEMPERATURE REGENERATOR FOR ABSORPTION TYPE COLD/HOT WATER HEATER
US4538551A (en) Refractory choke for a high intensity combustor
JPH0316569B2 (en)
JP4575623B2 (en) Furnace lining
RU2289715C1 (en) Engine and its seal unit, cord seal and bearing insert
RU209161U1 (en) HEAT SHIELD FOR GAS TURBINE COMBUSTION CHAMBER
CN217131834U (en) Full-fiber energy-saving furnace lining
CN210108032U (en) Temperature-resistant brick for copper wall surface lamination
RU209216U1 (en) HEAT SHIELD FOR GAS TURBINE COMBUSTION CHAMBER
CN216523084U (en) Communicating flame path and roasting furnace
JP2015175506A (en) Piping coating structure
CN214251538U (en) Nonmetal expansion joint front cushion block assembly based on heavy gas turbine
CN216408998U (en) Reciprocating grate water cooling device
JPS5915728A (en) Heat shield construction of wall surface exposed to high heating temperature
JPS6242213B2 (en)
JPH08145282A (en) Heat insulation structure of internal part of extendable tube for high temperature
JPH0125868Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9