JP2890033B2 - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JP2890033B2
JP2890033B2 JP8307512A JP30751296A JP2890033B2 JP 2890033 B2 JP2890033 B2 JP 2890033B2 JP 8307512 A JP8307512 A JP 8307512A JP 30751296 A JP30751296 A JP 30751296A JP 2890033 B2 JP2890033 B2 JP 2890033B2
Authority
JP
Japan
Prior art keywords
heat
resistant material
wall
combustor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8307512A
Other languages
Japanese (ja)
Other versions
JPH10141662A (en
Inventor
卓 田丸
一雄 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP8307512A priority Critical patent/JP2890033B2/en
Publication of JPH10141662A publication Critical patent/JPH10141662A/en
Application granted granted Critical
Publication of JP2890033B2 publication Critical patent/JP2890033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン燃焼
器、特に航空用又は産業用ガスタービン燃焼器における
従来の金属ライナに代わる新規の燃焼室形成構造を有す
るガスタービン燃焼器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combustor, and more particularly to a gas turbine combustor having a novel combustion chamber forming structure which replaces a conventional metal liner in an aeronautical or industrial gas turbine combustor.

【0002】[0002]

【従来の技術】従来の航空用又は産業用ガスタービン燃
焼器は、一般に外筒の内側に金属ライナを設け、外筒と
金属ライナとの間が環状の空気通路となっている。この
ようなガスタービン燃焼器において、ディフューザー入
口部を経て流入する空気は、燃焼器入口部で環状通路と
燃焼器頭部内に分流され、頭部内に流入する空気は空気
旋回器等により再循環保炎流を形成して安定燃焼に寄与
し、環状通路を流れる空気はライナ空気孔及びライナ冷
却構造を経て燃焼室に流入する。一般に、ライナ前半部
の空気孔から流入する空気は燃焼制御とライナ自身の冷
却に寄与し、ライナ中・後半部の空気孔から流入する空
気は燃焼の完結と燃焼器出口部でのタービン入口ガス温
度分布調整に用いられている。そのほか、環状通路を流
れる空気は、ライナを燃焼熱から保護するための冷却用
に用いられる。ライナ冷却空気はライナ冷却構造によっ
て流量が制限され、作動条件の変化の必要性に応じた流
量の制御はできない。
2. Description of the Related Art A conventional aeronautical or industrial gas turbine combustor generally has a metal liner provided inside an outer cylinder, and an annular air passage is provided between the outer cylinder and the metal liner. In such a gas turbine combustor, the air flowing through the diffuser inlet is diverted into the annular passage and the combustor head at the combustor inlet, and the air flowing into the head is recirculated by an air swirler or the like. The air flowing through the annular passage flows into the combustion chamber via the liner air hole and the liner cooling structure, forming a circulating flame holding flow and contributing to stable combustion. In general, the air flowing from the air holes in the first half of the liner contributes to combustion control and cooling of the liner itself, and the air flowing from the air holes in the middle and second half of the liner is used to complete combustion and reduce the turbine inlet gas at the combustor outlet. Used for temperature distribution adjustment. In addition, the air flowing through the annular passage is used for cooling to protect the liner from heat of combustion. The flow rate of the liner cooling air is limited by the liner cooling structure, and the flow rate cannot be controlled according to the necessity of changing the operating conditions.

【0003】従来の金属ライナの耐熱温度は1000K
〜1200K程度であるため、ライナがその温度以上に
加熱されるのを防止するのに、燃焼器に供給される空気
量の通常20〜40%を冷却用に用いている。しかしな
がら、近時のガスタービン燃焼器は燃料消費率向上を目
指して設計圧力比の上昇、再生サイクルの採用等により
流入空気温度の高温化が著しく、それに伴い燃焼ガス温
度が上昇しているため、金属ライナを上記耐熱温度以下
に保つにはより多くの冷却空気量が必要となってきてい
る。反面、最近排出ガスの清浄化の要求から燃焼器上流
部分の燃料/空気混合気の希薄化を図る等、燃焼制御に
利用する空気の割合が増大し、その結果タービン入口ガ
ス温度分布調整用空気(希釈空気)量が減少し、したが
って環状通路を流れる冷却空気流速が低減し、ライナ及
び外筒内面を対流冷却する能力が低下している。
[0003] The heat-resistant temperature of a conventional metal liner is 1000K.
Since it is about 1200 K, in order to prevent the liner from being heated to that temperature or more, usually 20 to 40% of the amount of air supplied to the combustor is used for cooling. However, in recent years, gas turbine combustors have experienced a remarkable increase in the inflow air temperature due to an increase in the design pressure ratio and the adoption of a regeneration cycle with the aim of improving the fuel consumption rate. In order to keep the metal liner below the heat resistant temperature, a larger amount of cooling air is required. On the other hand, the proportion of air used for combustion control has increased, for example, due to the recent demand for purification of exhaust gas to reduce the fuel / air mixture upstream of the combustor. As a result, air for adjusting the turbine inlet gas temperature distribution has been increased. The amount of (dilution air) is reduced, and thus the flow rate of cooling air flowing through the annular passage is reduced, and the ability to convectively cool the liner and the inner surface of the outer cylinder is reduced.

【0004】従来のガスタービン燃焼器においては、圧
力噴射弁を採用していたため、燃料粒径が大きく長い火
炎となっており、希釈空気孔からの多量の空気により燃
焼器出口でガス温度分布調整を行なっていた。しかしな
がら、近時は気流微粒化噴射弁の採用により火炎を短く
することが可能となり、燃焼器出口ガス温度分布は主と
して燃焼器上流側の燃焼制御によりほぼ決定される状況
となっている。そのため、最近のガスタービン燃焼器に
おいては下流側での希釈空気量が極端に少なくなってき
ている状況にある。
[0004] In the conventional gas turbine combustor, a pressure injection valve is employed, so that the flame has a large fuel particle size and a long flame. A large amount of air from the dilution air hole controls the gas temperature distribution at the combustor outlet. Was doing. However, recently, it has become possible to shorten the flame by employing an airflow atomizing injection valve, and the distribution of the gas temperature at the outlet of the combustor is almost determined mainly by the combustion control on the upstream side of the combustor. For this reason, in recent gas turbine combustors, the amount of dilution air on the downstream side has become extremely small.

【0005】また、排出ガス清浄化のため燃料分配供給
法(フューエルステージング)を採用すると、燃料供給
箇所が増すことにより燃焼室断面や長さが増大し、被冷
却ライナー面積が大きくなる。それに伴い必然的に冷却
空気量も多くしなければならない。この壁面近傍の冷却
空気に燃料が混入すると燃焼反応が不完全となり未燃焼
成分排出の原因となる。特に、APU(補助動力装置)
など小型のガスタービンエンジンでは燃焼器ライナの比
表面積(燃焼室容積あたりのライナ面積)が大きいた
め、燃焼ガス量の割に多くの冷却空気を必要とし、未燃
焼成分が排出し易いという問題がある。このAPUは最
近の空港混雑に伴い地上での使用時間が長くなっている
ため、未燃焼の炭化水素や一酸化炭素の排出が各空港で
大きな問題となっている。
When the fuel distribution and supply method (fuel staging) is adopted for purifying exhaust gas, the cross section and length of the combustion chamber increase due to the increase in the number of fuel supply points, and the area of the liner to be cooled increases. Accordingly, the amount of cooling air must be increased. If fuel is mixed into the cooling air near the wall surface, the combustion reaction becomes incomplete and causes the emission of unburned components. In particular, APU (auxiliary power unit)
In small gas turbine engines such as these, the combustor liner has a large specific surface area (liner area per combustion chamber volume), so a large amount of cooling air is required for the amount of combustion gas, and unburned components are easily discharged. is there. Since the APU has been used for a long time on the ground due to recent airport congestion, emission of unburned hydrocarbons and carbon monoxide has become a serious problem at each airport.

【0006】[0006]

【発明が解決しようとする課題】上記のように、近時の
高圧力比を採用したガスタービン燃焼器では燃焼ガス温
度が高く、ライナ冷却のための多くの冷却空気量を必要
とする反面、有害排出ガス低減対策のため希釈空気が減
少し、かつ冷却空気量の低減が求められている。そのた
め、環状通路を流れる空気流速が低下し、ライナ及び外
筒冷却能力が低下している。換言すれば、高負荷条件で
はライナに高い断熱性が要求されている。また、低負荷
条件での未燃焼排出物の低減にはライナ冷却空気の低
減、即ち燃焼室壁面の高温化が最も効果があるが、金属
ライナを設けた従来のガスタービン燃焼器では、金属ラ
イナの耐熱温度により制限されるという問題点があっ
た。
As described above, a gas turbine combustor employing a recent high pressure ratio has a high combustion gas temperature and requires a large amount of cooling air for liner cooling. It is required to reduce the amount of dilution air and the amount of cooling air to reduce harmful exhaust gas. Therefore, the flow velocity of the air flowing through the annular passage is reduced, and the cooling capacity of the liner and the outer cylinder is reduced. In other words, the liner is required to have high heat insulation under high load conditions. The reduction of unburned emissions under low load conditions is most effective by reducing the liner cooling air, that is, by raising the temperature of the combustion chamber wall surface.However, in a conventional gas turbine combustor provided with a metal liner, the metal liner There is a problem that the temperature is limited by the heat-resistant temperature.

【0007】本発明は、上記実情に鑑み創案されたもの
であって、燃焼室壁面の温度を従来の金属ライナを用い
たものに比べて格段に上昇させて、燃焼室壁面近傍の燃
焼反応遅延防止が可能となり、未燃焼排出物の低減と燃
焼効率の向上を図ることができ、さらに外筒と燃焼室壁
面間に送給する空気量を従来と比較して格段に低減する
ことができ、燃焼器の小型化と軽量化を図ることができ
る新規な耐熱材壁構造を有するガスタービン燃焼器を提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has a remarkable increase in the temperature of the combustion chamber wall surface as compared with a conventional apparatus using a metal liner. It is possible to reduce the unburned emissions and improve the combustion efficiency, and further reduce the amount of air sent between the outer cylinder and the wall of the combustion chamber as compared with the conventional case. It is an object of the present invention to provide a gas turbine combustor having a novel heat-resistant material wall structure capable of reducing the size and weight of the combustor.

【0008】[0008]

【課題を解決するための手段】本発明者は、燃焼効率の
向上及び未燃焼排出物の低減にはライナ冷却空気の低
減、又は燃焼室壁面の高温化が最も効果があることに鑑
み、上記問題点を解決するために種々研究した結果、従
来の金属ライナに代えて1000℃以上、望ましくは1
600〜1800℃の壁面温度に上昇可能な耐熱・断熱
構造を有し、且つ外筒を過熱させることのない新たな耐
熱・冷却構造を着想し、本発明に到達したものである。
SUMMARY OF THE INVENTION In view of the fact that the reduction of the liner cooling air or the increase in the temperature of the combustion chamber wall is most effective for improving the combustion efficiency and reducing the unburned emission, the present inventor has considered the above. As a result of conducting various studies to solve the problems, the conventional metal liner was replaced with a temperature of 1000 ° C. or higher, preferably 1 ° C.
The present invention has been conceived of a new heat-resistant / cooling structure that has a heat-resistant / heat-insulating structure capable of raising the wall temperature to 600 to 1800 ° C. and does not overheat the outer cylinder.

【0009】即ち、本発明のガスタービン燃焼器は、燃
焼器外筒内面に燃焼室を包む壁面が非金属系耐熱材によ
り形成されている耐熱材壁を備え、該耐熱材壁内に空気
通路を有し、該空気通路から前記燃焼室内に所要空気を
通過・分配する構造になっていることを特徴とするもの
である。なお、非金属系耐熱材としては、必ずしも非金
属に限らず、耐熱性があり且つ熱伝導率が低く全体とし
て非金属的であればよく、例えば傾斜機能材のように一
部金属を含むものであっても良い。
That is, the gas turbine combustor of the present invention has a heat-resistant material wall having a wall surrounding the combustion chamber formed of a nonmetallic heat-resistant material on the inner surface of the outer cylinder of the combustor, and an air passage in the heat-resistant material wall. And a structure for passing and distributing required air from the air passage into the combustion chamber. The non-metallic heat-resistant material is not necessarily limited to non-metallic materials, but may be any material that has heat resistance and low thermal conductivity and is entirely non-metallic. It may be.

【0010】前記耐熱材壁としては、軽量で且つ120
0K以上、望ましくは2000K以上の耐熱性があれば
良く、例えばCC材(Carbon-Carbon系材料)を含むセラ
ミック材や多孔もしくは繊維状複合材又は傾斜機能材等
種々の耐熱材料が使用できる。または、燃焼火炎と接す
る燃焼室側壁面に化学蒸着法(CVD)等により例えば
SiC材等で耐熱、耐酸化処理を行なったものが使用で
きる。
The heat-resistant material wall is made of a lightweight and 120
A heat resistance of 0K or more, desirably 2000K or more may be used. For example, various heat-resistant materials such as a ceramic material containing a CC material (Carbon-Carbon-based material), a porous or fibrous composite material, or a functionally graded material can be used. Alternatively, a material obtained by subjecting a side wall surface of a combustion chamber in contact with a combustion flame to heat and oxidation resistance treatment with, for example, a SiC material or the like by a chemical vapor deposition method (CVD) or the like can be used.

【0011】耐熱材壁それ自体があまり通気性を有しな
い材料で構成されている場合は、該耐熱材壁と前記外筒
との間に冷却空気が通過する僅かな隙間もしくは多孔を
設けると共に、該耐熱材壁に前記燃焼室に通じる燃焼制
御用空気通路を形成するのが望ましい。また、前記耐熱
材壁が、繊維強化複合材等それ自体が通気性を有する構
造である場合は、耐熱材壁構造内の空隙が空気通路とな
るので、別個に空気通路を形成しなくても良い。そし
て、前記耐熱材壁が、繊維強化複合材等それ自体が通気
性を有する構造である場合は、燃焼室側壁面を緻密化層
として、該繊維複合材を通過する冷却空気が前記緻密化
層を介して該燃焼室内に僅かつづ滲み出すようにするこ
とが望ましい。
When the heat-resistant material wall itself is made of a material having little air permeability, a small gap or a hole through which cooling air passes is provided between the heat-resistant material wall and the outer cylinder, It is desirable to form a combustion control air passage leading to the combustion chamber in the heat-resistant material wall. In addition, when the heat-resistant material wall has a structure having breathability itself such as a fiber-reinforced composite material, the gap in the heat-resistant material wall structure serves as an air passage, so that it is not necessary to separately form an air passage. good. When the heat-resistant material wall has a structure having air permeability by itself such as a fiber-reinforced composite material, cooling air passing through the fiber composite material is used as a densified layer by using a combustion chamber side wall surface as the densified layer. It is desirable that the liquid be slightly oozed into the combustion chamber via the air.

【0012】また、他の冷却構造として、ガスタービン
の回転軸又は燃焼器主軸と平行に構成された多数の板状
支持体を取り付け、該支持体先端部に耐熱材壁部材が燃
焼室壁面を形成するように取り付けた構造を採用し、外
筒と燃焼室壁面を形成する耐熱材壁との間に板状の支持
体で区画された空気通路を形成するようにすることも可
能である。前記支持体もしくは該支持体の先端に取付け
られた耐熱材壁部材を着脱可能に取付けることによっ
て、部分的な損傷に対して簡単に補修する対応が出来、
経済的である。さらに、請求項1〜3記載の構造のガス
タービン燃焼器においても、耐熱材壁を部分的に代替品
と交換できるように着脱可能に形成された同一形状の多
数の耐熱材壁部材で構成すると経済的である。
Further, as another cooling structure, a number of plate-like supports formed in parallel with the rotation axis of the gas turbine or the main axis of the combustor are mounted, and a heat-resistant material wall member covers the combustion chamber wall at the tip of the support. It is also possible to adopt a structure mounted so as to form an air passage defined by a plate-like support between the outer cylinder and the heat-resistant material wall forming the combustion chamber wall surface. By detachably attaching the heat-resistant material wall member attached to the support or the tip of the support, it is possible to easily repair partial damage,
It is economical. Further, also in the gas turbine combustor having the structure according to claims 1 to 3, the heat-resistant material wall is constituted by a plurality of heat-resistant material wall members of the same shape which are detachably formed so that they can be partially replaced with substitutes. It is economical.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面を
基に詳細に説明する。図1は、本発明のガスタービン燃
焼器の実施形態を示す。本実施形態では環状燃焼器につ
いて示すが、本発明は環状燃焼器に限らず筒型燃焼器に
ついても適用できる。図中1、1’はそれぞれ環状の外
筒であり、2、2’は従来のライナと外筒間の環状通路
に相当する部分に設置されたセラミック系の耐熱材壁で
あり、例えば2000K以上の耐熱性及び断熱性を有し
ている。該耐熱材壁の内側壁面が従来の金属ライナと同
様に燃焼室3の壁面を構成している。4は燃焼室頭部壁
であり、前記耐熱材壁と同様な材料又は従来のライナと
同様な金属材で形成され、その中央部に図1(b)に示
すように、所定間隔で燃料ノズル5及び空気旋回器6又
は保炎器を有するバーナ7が1個又は複数個配置されて
いる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an embodiment of the gas turbine combustor of the present invention. In the present embodiment, an annular combustor is described. However, the present invention is not limited to the annular combustor, and can be applied to a cylindrical combustor. In the figure, reference numerals 1 and 1 ′ denote annular outer cylinders, and reference numerals 2 and 2 ′ denote ceramic heat-resistant material walls installed at portions corresponding to a conventional annular passage between the liner and the outer cylinder. It has heat resistance and heat insulation properties. The inner wall surface of the heat-resistant material wall constitutes the wall surface of the combustion chamber 3 like the conventional metal liner. Reference numeral 4 denotes a combustion chamber head wall, which is formed of the same material as the heat-resistant material wall or the same metal material as the conventional liner, and has a fuel nozzle at a predetermined interval at a central portion thereof as shown in FIG. One or a plurality of burners 7 having an air swirler 6 or a flame stabilizer are arranged.

【0014】前記耐熱材壁2、2’は、外筒1、1’と
の間に僅かな小間隙通路8、8’を有するように外筒に
取り付けられ、該隙間に僅かな空気を流すことにより外
筒と耐熱材壁の温度上昇を防ぐようにしてある。また、
11、11’は燃焼室3内に空気を送るための空気通路
であり、その燃焼室に向けて開口している空気流入口1
2、12’に連通している。
The heat-resistant material walls 2, 2 'are attached to the outer cylinder so as to have small gap passages 8, 8' between them and the outer cylinder 1, 1 ', and a small amount of air flows through the gap. This prevents the temperature of the outer cylinder and the heat-resistant material wall from rising. Also,
Reference numerals 11 and 11 'denote air passages for sending air into the combustion chamber 3, and the air inlets 1 open to the combustion chamber.
2, 12 '.

【0015】本実施形態のガスタービン燃焼器は以上の
ように構成され、前記耐熱材壁はセラミック系で構成さ
れているので、燃焼室壁面の高温化に耐えることができ
る。しかも、断熱性も高いので、燃焼室側壁面の温度は
高くても外筒側の外壁が過熱することがない。
The gas turbine combustor of this embodiment is configured as described above, and the heat-resistant material wall is made of a ceramic material, so that the wall of the combustion chamber can withstand high temperatures. In addition, since the heat insulating property is high, even if the temperature of the side wall surface of the combustion chamber is high, the outer wall of the outer cylinder does not overheat.

【0016】従来のガスタービン燃焼器50では、図7
に示すように金属ライナ51、51’の冷却構造は、燃
焼ガスからの対流熱伝達流束C1と輻射熱伝達流束R1
受け、環状通路52、52’を通る空気に対流熱伝達流
束C2と主として外筒53、53’への輻射熱伝達流束
2とで熱平衡を維持している。従って、従来の金属ラ
イナにおいては対流熱伝達流束C1を低下させるため
に、膜冷却や複合冷却等種々の冷却構造を適用して、金
属ライナ表面に接触する燃焼ガスの温度を図6(a)に
示すように、ライナの耐熱温度まで冷却している。
In the conventional gas turbine combustor 50, FIG.
Metal liner 51, as shown in the 'cooling structure is subjected to convective heat transfer flux C 1 and radiation heat transfer flux R 1 from the combustion gas, the annular passage 52, 52' convective heat transfer flow to the air passing through the It maintains thermal equilibrium with the radiation heat transfer flux R 2 to primarily the outer tube 53, 53 'and the bundle C 2. Therefore, in order in the conventional metal liner to reduce the convective heat transfer flux C 1, by applying various cooling structures such as film cooling or combined cooling, the temperature of the combustion gases in contact with the metal liner surface 6 ( As shown in a), it is cooled down to the heat resistant temperature of the liner.

【0017】例えば、圧力比40のエンジンの場合に
は、燃焼器流入空気温度は1000K、火炎温度は25
00Kとなる。従って、従来構造の金属ライナでは耐熱
温度が1100〜1300Kであるため、燃焼ガスから
の対流熱伝達流束C1に1000K以上の温度差を作ら
ねばならない。燃焼器流入空気の一部である冷却空気で
この温度差を作り出すには、ライナ燃焼室側壁面に沿う
空気を多量に必要とし、それが低負荷では未燃焼ガスの
排出の原因となっている。また、高負荷条件において従
来のライナ構造の冷却では、例え今後金属材料の進歩に
よりライナの耐熱温度が上昇しても、その分外筒への輻
射熱伝達流束R2が増加するため、外筒の高温化につな
がり安全上の問題が生じ、外筒冷却の対策が必要となっ
てくる。
For example, in the case of an engine having a pressure ratio of 40, the temperature of the air flowing into the combustor is 1000K, and the temperature of the flame is 25.
00K. Thus, the metal liner of the conventional structure for the heat resistant temperature is 1100~1300K, must make a temperature difference more than 1000K to convective heat transfer flux C 1 from the combustion gases. Creating this temperature difference with the cooling air, which is part of the air entering the combustor, requires a large amount of air along the side wall of the liner combustion chamber, which causes emission of unburned gas at low load. . Further, in the cooling of conventional liner structure in the high load condition, even if increased heat resistance temperature of the liner advances in future metallic material for example, because the radiation heat transfer flux R 2 to that unmerited cylinder is increased, the outer tube As a result, safety problems arise, and measures for cooling the outer cylinder are required.

【0018】これに対し、上記実施形態における断熱構
造では、例えば1900Kの耐熱材壁を用いれば、燃焼
室側の表面温度T1を高くし、比較的小さい燃焼ガスか
らの対流熱伝達流束C1でも燃焼器設計が可能となり、
図6(b)に示すように、耐熱材壁の熱伝導率の小さい
特性から外筒側表面温度T0を低下させることができ、
断熱材に接触する燃焼ガス温度を高くすることができ、
未燃焼成分の排出を押えることができる。
On the other hand, in the heat insulating structure in the above embodiment, if a heat-resistant material wall of, for example, 1900 K is used, the surface temperature T 1 on the combustion chamber side is increased, and the convection heat transfer flux C from relatively small combustion gas is increased. 1 enables combustor design,
As shown in FIG. 6 (b), the outer cylinder side surface temperature T 0 can be reduced due to the low thermal conductivity of the heat resistant material wall,
Combustion gas temperature in contact with insulation can be increased,
Emission of unburned components can be suppressed.

【0019】本発明の上記断熱構造のガスタービン燃焼
器における前記断熱壁面の温度勾配についてさらに検討
すると、固体壁面内の壁単位面積あたりの熱伝導流束は
λΔT/δで表される。ここで、λ、ΔT及びδは、そ
れぞれ熱伝導率、断熱材表裏温度差、及び断熱材厚さで
ある。従って、例えば従来の厚み2mmの金属ライナと厚
さ10mmの本発明による断熱材ライナを通過する熱流束
が同一であるとすると、金属ライナ壁で表裏5Kの温度
差の場合、本実施形態の耐熱材壁では500Kの温度差
を作ることが可能となる。即ち、本発明によれば、燃焼
室側壁面温度をより高く、外筒側壁面をより低く保つこ
とが可能である。
When the temperature gradient of the heat insulating wall in the gas turbine combustor having the above heat insulating structure of the present invention is further examined, the heat conduction flux per unit area of the wall in the solid wall is represented by λΔT / δ. Here, λ, ΔT, and δ are the thermal conductivity, the temperature difference between the front and back of the heat insulating material, and the thickness of the heat insulating material, respectively. Therefore, for example, if the heat flux passing through the conventional metal liner having a thickness of 2 mm and the heat insulating liner according to the present invention having a thickness of 10 mm is the same, if the temperature difference between the front and back of the metal liner wall is 5K, the heat resistance of the present embodiment is In the material wall, it is possible to make a temperature difference of 500K. That is, according to the present invention, it is possible to keep the temperature of the combustion chamber side wall surface higher and keep the outer cylinder side wall surface lower.

【0020】図2は本発明の他の実施形態に係るガスタ
ービン燃焼器20の要部を示し、前記実施形態と同様な
構成については同じ引出符号を用いて表して説明を省略
し、特徴点のみを詳細に説明する。
FIG. 2 shows a main part of a gas turbine combustor 20 according to another embodiment of the present invention. The same components as those of the above embodiment are denoted by the same reference numerals, and description thereof is omitted. Only the details will be described.

【0021】本実施形態では耐熱材壁21、21’に
は、耐熱温度が少なくとも900K以上の耐熱性のある
炭素繊維やセラミック繊維等の非金属繊維を、冷却空気
が流通可能に不織状又は編網状あるいは織布状に形成し
てなる非金属繊維複合材を採用し、燃焼室に面する側で
は耐熱1800K以上の非金属耐熱材で直接燃焼室壁面
を構成してある。該耐熱材壁21は外筒に固着され、燃
焼室壁面を構成する境界領域は緻密構造層22、22’
にし、より耐熱性を高めるために、その表面を化学蒸着
法(CVD)等によって耐熱・酸化処理を行なうのが好
ましい。
In the present embodiment, non-metallic fibers such as heat-resistant carbon fibers or ceramic fibers having a heat-resistant temperature of at least 900 K are applied to the heat-resistant material walls 21 and 21 ′ in a non-woven or non-woven form so that cooling air can flow therethrough. A nonmetallic fiber composite material formed in a knitted mesh shape or a woven fabric shape is employed, and the wall facing the combustion chamber is directly composed of a nonmetallic heat resistant material having a heat resistance of 1800K or more. The heat-resistant material wall 21 is fixed to the outer cylinder, and the boundary region forming the combustion chamber wall surface is the dense structure layers 22, 22 '.
In order to further improve the heat resistance, it is preferable that the surface is subjected to a heat resistance / oxidation treatment by a chemical vapor deposition method (CVD) or the like.

【0022】上記実施形態によれば、耐熱材壁21、2
1’自体が繊維状構造で通気性を有するので、該耐熱材
壁に冷却空気を流すことにより、空気は大きな圧力損失
を生じることなく燃焼室内に滲み出して、燃焼のコント
ロールや燃焼室壁面の適度の冷却を行なうことができ
る。従って、緻密構造層22の緻密度を適宜選択するこ
とによって、燃焼室に滲みだす空気量を適宜コントロー
ルすることができる。また、燃焼室壁の前部と後部の緻
密度を適宜選択することによって、燃焼室の前部と後部
に滲みだす空気量を適宜コントロールすることもでき
る。また、耐熱材壁を繊維状複合材は、軽量であり、且
つ衝撃に強く剥がれや割れが生じにくいという利点があ
る。なお、燃焼室への空気噴射が必要な場合は、前記実
施形態と同様に、耐熱材壁内に別個に空気通路を設けて
空気を供給するようにすることも可能である。
According to the above embodiment, the heat-resistant material walls 21, 2
Since 1 'itself has a fibrous structure and has air permeability, by flowing cooling air through the heat-resistant material wall, the air oozes out into the combustion chamber without generating a large pressure loss, thereby controlling combustion and controlling the combustion chamber wall. Appropriate cooling can be performed. Therefore, by appropriately selecting the density of the dense structure layer 22, the amount of air seeping into the combustion chamber can be appropriately controlled. Also, by appropriately selecting the density of the front and rear portions of the combustion chamber wall, the amount of air seeping into the front and rear portions of the combustion chamber can be appropriately controlled. Further, the fibrous composite material having a heat-resistant material wall has an advantage that it is lightweight, and it is strongly resistant to impact and hardly peels or cracks. When air injection into the combustion chamber is required, it is also possible to provide an air passage separately in the heat-resistant material wall to supply air, similarly to the above embodiment.

【0023】図3は本発明に係るガスタービン燃焼器の
さらに他の実施形態を示している。本実施形態のガスタ
ービン燃焼器30では、外筒31、31’に流れに沿っ
て板状の支持体32、32’を適宜間隔で平行に設け、
該支持体の先端部にセラミック等の耐熱材からなる同一
形状の長尺状の耐熱壁部材33、33’を燃焼器主軸と
平行に燃焼室入口側からノズル部に延び且つ互いに近接
させて取り付けて、多板保持耐熱構造の耐熱材壁35、
35’を構成している。支持体32、32’の取付構造
としては、例えば図4に示すように、外筒31、31’
の内面に軸線方向に沿って蟻溝状の取付溝36を形成
し、支持体の基部37を該蟻溝状の取付孔に嵌合する形
状に形成することにより、耐熱材壁を外筒31に着脱可
能に取り付けることができる。
FIG. 3 shows still another embodiment of the gas turbine combustor according to the present invention. In the gas turbine combustor 30 of the present embodiment, plate-like supports 32, 32 'are provided in parallel with the outer cylinders 31, 31' at appropriate intervals along the flow,
At the tip of the support, elongated heat-resistant wall members 33, 33 'of the same shape made of a heat-resistant material such as ceramic extend from the inlet side of the combustion chamber to the nozzle in parallel with the main axis of the combustor, and are attached close to each other. The heat-resistant material wall 35 of the multi-plate holding heat-resistant structure,
35 '. As a mounting structure of the supports 32, 32 ', for example, as shown in FIG.
By forming a dovetail-shaped mounting groove 36 along the axial direction on the inner surface of the base and forming the base 37 of the support into a shape that fits into the dovetail-shaped mounting hole, the heat-resistant material wall is formed in the outer cylinder 31. Can be removably attached to

【0024】該実施形態において、支持体32、32’
間に沿って空気を流すことにより、空気は燃焼ガスによ
って過熱される断熱部材33、33’から熱伝導を外筒
に伝えることを防ぐことができ、かつ耐熱壁部材33、
33’の隙間あるいは小孔より適宜燃焼室内に冷却空気
を滲みださせることができる。また、この構造は燃焼器
の高温化に伴って外筒等が熱膨張変形した場合、図5
(a)に示すように、耐熱壁部材33、33’の間隔が
開いて燃焼室内へ流入する壁面冷却用空気の増加をもた
らし、熱膨張変形を補償する自動冷却空気調整機能を合
わせもつ。また、断熱ライナを構成する耐熱壁部材等に
部分的な割れや損傷が発生した場合にはその耐熱壁部材
部分だけ取り替える互換性をもたすことができる。
In this embodiment, the supports 32, 32 '
By flowing air along the gap, air can be prevented from transmitting heat conduction to the outer cylinder from the heat insulating members 33, 33 'which are superheated by the combustion gas, and the heat-resistant wall member 33,
Cooling air can bleed into the combustion chamber from the gap or small hole 33 '. In addition, when the outer cylinder and the like are thermally expanded and deformed due to the high temperature of the combustor, the structure shown in FIG.
As shown in (a), the gap between the heat-resistant wall members 33 and 33 'is widened to increase the amount of wall cooling air flowing into the combustion chamber, and also has an automatic cooling air adjustment function for compensating for thermal expansion deformation. Further, when a heat-resistant wall member or the like constituting the heat-insulating liner is partially cracked or damaged, the heat-resistant wall member can be replaced only with the heat-resistant wall member.

【0025】以上、本発明のガスタービン燃焼器の種々
の実施形態を説明したが、本発明はこれらの実施形態に
限るものでなく、その技術的思想の範囲内で種々の設計
変更が可能である。
Although various embodiments of the gas turbine combustor according to the present invention have been described above, the present invention is not limited to these embodiments, and various design changes are possible within the scope of the technical idea. is there.

【0026】[0026]

【発明の効果】以上のように、本願発明のガスタービン
燃焼器は、従来の金属ライナに代えて非金属耐熱材によ
って耐熱材壁を構成しているため、燃焼室壁の耐熱性を
従来の金属ライナの1000K〜1200Kに比べ飛躍
的に向上させることができる。その結果、燃焼室壁面温
度を1200K以上、望ましくは1800〜2050K
に保つことができ、壁面近傍での燃焼反応を遅延させる
ことがない。したがって、炭化水素や一酸化炭素等の未
燃焼排出物を飛躍的に低減することができる。さらに、
冷却空気量を削減できるので、その分の空気を希薄燃焼
に使うことができ、窒素酸化物NOxの発生も低減する
ことができる。
As described above, in the gas turbine combustor of the present invention, since the heat-resistant material wall is formed of a non-metal heat-resistant material instead of the conventional metal liner, the heat resistance of the combustion chamber wall is reduced. It can be dramatically improved compared to 1000K to 1200K of the metal liner. As a result, the temperature of the wall surface of the combustion chamber becomes 1200K or more, preferably 1800 to 2050K.
And the combustion reaction near the wall surface is not delayed. Therefore, unburned emissions such as hydrocarbons and carbon monoxide can be drastically reduced. further,
Since the amount of cooling air can be reduced, the air can be used for lean combustion, and the generation of NOx can be reduced.

【0027】そして、必要な空気量のみを耐熱材壁その
ものから、あるいは内部に特別に設けた空気通路により
燃焼器の必要部分に必要量だけ供給することができ、燃
焼効率の向上が図られ、且つ燃焼器の小型化と軽量化を
図ることができる。また、従来ガスタービンの部材の中
で最も耐久性に懸念のあった金属ライナを用いずに非金
属系の耐熱材を用いるので、変形や損傷が少なく、且つ
熱膨張係数も金属に比べて格段に小さいので変形による
疲労も考慮する必要がない。
Only the required amount of air can be supplied to the required portion of the combustor from the heat-resistant material wall itself or to a required portion of the combustor through a specially provided air passage, thereby improving combustion efficiency. Further, the size and weight of the combustor can be reduced. In addition, since a non-metallic heat-resistant material is used without using a metal liner, which has been the most concerned about durability among conventional gas turbine components, deformation and damage are small and the coefficient of thermal expansion is much higher than that of metal. It is not necessary to consider fatigue due to deformation.

【0028】さらに、非金属系耐熱材壁の熱伝導率が金
属と比べて格段に小さいので、燃焼室壁面側が高温にな
っても外筒壁面側は低温を維持することができ、燃焼室
壁面側の高温化に伴う外筒の輻射過熱を防止することが
できる。燃焼ガスは耐熱材壁面での過度の冷却がないた
め、タービン入口ガス温度分布の半径方向均等化がはか
り易い。
Further, since the heat conductivity of the non-metallic heat-resistant material wall is much smaller than that of metal, even if the combustion chamber wall surface becomes hot, the outer cylinder wall surface can be maintained at a low temperature. Radiation overheating of the outer cylinder due to high temperature on the side can be prevented. Since the combustion gas does not have excessive cooling on the heat-resistant material wall surface, it is easy to equalize the turbine inlet gas temperature distribution in the radial direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガスタービン燃焼器の実施形態を示
し、(a)はその軸方向断面模式図であり(b)のA’
−A’断面図に相当し、(b)は(a)のA−A断面矢
視図である。
FIG. 1 shows an embodiment of a gas turbine combustor according to the present invention, in which (a) is a schematic cross-sectional view in the axial direction and A ′ in (b).
(B) is a sectional view taken along the line AA in (a).

【図2】本発明のガスタービン燃焼器の他の実施形態を
示し、(a)はその軸方向断面模式図であり(b)の
B’−B’断面図に相当し、(b)は(a)のB−B断
面矢視図である。
FIG. 2 shows another embodiment of the gas turbine combustor of the present invention, in which (a) is a schematic sectional view in the axial direction and corresponds to a B′-B ′ sectional view of (b), and (b) is It is a BB sectional arrow view of (a).

【図3】本発明のガスタービン燃焼器のさらに他の実施
形態を示し、(a)はその軸方向断面模式図であり
(b)のC’−C’断面図に相当し、(b)は(a)の
C−C断面矢視図である。
3A and 3B show still another embodiment of the gas turbine combustor according to the present invention, wherein FIG. 3A is a schematic sectional view in the axial direction, and corresponds to a sectional view taken along the line C′-C ′ of FIG. FIG. 4 is a sectional view taken along the line CC in FIG.

【図4】図3に示すガスタービン燃焼器の要部斜視図で
ある。
4 is a perspective view of a main part of the gas turbine combustor shown in FIG.

【図5】図3に示すガスタービンの耐熱ライナの機能説
明図で、(a)は外筒が過熱して耐熱壁部材が開いてい
る状態、(b)は冷却流を増加させて通常状態に復帰し
た状態をそれぞれ示している。
5A and 5B are explanatory views of the function of the heat-resistant liner of the gas turbine shown in FIG. 3, wherein FIG. 5A shows a state where the outer cylinder is overheated and the heat-resistant wall member is open, and FIG. 5B shows a normal state where the cooling flow is increased. , Respectively.

【図6】図1に示す本発明のガスタービン燃焼器と従来
のガスタービン燃焼器のライナの伝熱状態を示す模式図
であり、(a)は従来例、(b)は本発明のガスタービ
ン燃焼器の場合を示す。
6A and 6B are schematic diagrams showing heat transfer states of the gas turbine combustor of the present invention shown in FIG. 1 and a liner of a conventional gas turbine combustor, wherein FIG. 6A is a conventional example, and FIG. The case of a turbine combustor is shown.

【図7】金属ライナを有する従来のガスタービン燃焼器
の伝熱構造を示す模式図である。
FIG. 7 is a schematic diagram showing a heat transfer structure of a conventional gas turbine combustor having a metal liner.

【符号の説明】[Explanation of symbols]

1、1’、31、31’ 外筒 2,2’、21、21’、35、35’ 耐熱材壁 3 燃焼室 7 バーナ 8、8’ 小間隙
通路 10 ガスタービン燃焼器 11 空気通
路 12 空気流入口 10、20、30 ガスタービン燃焼器 22、22’ 緻密構造層 32、32’ 支持体 33、33’ 耐熱壁部材
1, 1 ', 31, 31' Outer cylinder 2, 2 ', 21, 21', 35, 35 'Heat-resistant material wall 3 Combustion chamber 7 Burner 8, 8' Small gap passage 10 Gas turbine combustor 11 Air passage 12 Air Inlet 10, 20, 30 Gas turbine combustor 22, 22 'Dense structure layer 32, 32' Support 33, 33 'Heat-resistant wall member

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F23R 3/42 F23R 3/04 F02C 7/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F23R 3/42 F23R 3/04 F02C 7/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼器外筒内面に燃焼室を包む壁面が非
金属系耐熱材により形成されている耐熱材壁を備え、該
耐熱材壁の内部に、燃焼室に向けて開口している空気流
入口に連通している空気通路を複数有し、該空気通路か
ら前記燃焼室内に所要空気を通過・分配する構造になっ
おり、且つ前記耐熱材壁と燃焼器外筒との間に、前記
耐熱材壁を冷却するための小隙間通路を形成してなるこ
を特徴とするガスタービン燃焼器。
1. A heat-resistant material wall having a wall surrounding a combustion chamber formed of a non-metallic heat-resistant material on an inner surface of an outer cylinder of a combustor, and is opened inside the heat-resistant material wall toward the combustion chamber. Air flow
It has a plurality of air passages communicating with the inlet, has a structure to pass and distribute required air from the air passage into the combustion chamber , and between the heat-resistant material wall and the combustor outer cylinder,
A small gap passage for cooling the heat-resistant material wall
And a gas turbine combustor.
【請求項2】 燃焼器外筒内面に、冷却空気が流通可能
な繊維強化複合材により形成されている燃焼室を包む耐
熱材壁を備え、該耐熱材壁は、燃焼室側に露出する壁面
該耐熱材壁の他の部分よりも緻密化された緻密構造層
に形成され、該耐熱材壁を通過する冷却空気により該耐
熱材壁を冷却すると共に、冷却空気が前記緻密構造層の
間隙もしくは細孔から燃焼室内に滲み出し、前記緻密構
造層の緻密度を選択することによって前記燃焼室内に所
要空気を通過・分配する構造になっていることを特徴と
するガスタービン燃焼器。
2. Cooling air can flow through the inner surface of the outer cylinder of the combustor.
Resistant to envelop combustion chambers made of various fiber reinforced composites
A heat- resistant material wall , wherein the heat-resistant material wall is formed in a dense structure layer in which the wall surface exposed to the combustion chamber side is more dense than other portions of the heat-resistant material wall, and cooling air passing through the heat-resistant material wall Due to the resistance
While cooling the heat material wall, cooling air seeps into the combustion chamber from gaps or pores of the dense structure layer , and the dense structure
By selecting the density of the stratification,
It is characterized by a structure that passes and distributes air required.
Gas turbine combustor.
【請求項3】 燃焼室外筒内面に燃焼室を包む壁面が非
金属系耐熱材により形成されている耐熱材壁を備え、該
耐熱材壁が、燃焼器外筒内面の流れに沿って板状の支持
体を適宜間隔で平行に設け、該支持体の先端部に耐熱材
からなる長尺状の耐熱壁部材を燃焼器主軸と平行に燃焼
室入口側からノズル部に延び且つ互いに近接させて取り
付けて多板保持耐熱構造に形成され、前記板状支持体が
前記燃焼器外筒と前記耐熱壁部材との間で、ガスタービ
ンの回転軸又は燃焼器主軸と平行な空気通路を形成して
いることを特徴とするガスタービン燃焼器
3. The inner wall of the outer cylinder of the combustion chamber has a non-wall surface surrounding the combustion chamber.
A heat-resistant material wall formed of a metal-based heat-resistant material, wherein the heat-resistant material wall is provided with plate-shaped supports in parallel at appropriate intervals along the flow of the inner surface of the combustor outer cylinder; A long heat-resistant wall member made of a heat-resistant material is attached to the tip of the body in a manner extending parallel to the main axis of the combustor from the inlet side of the combustion chamber to the nozzle portion and attached close to each other to form a multi-plate holding heat-resistant structure. A gas turbine combustor, characterized in that a support in the form of an air between the combustor casing and the heat-resistant wall member forms an air passage parallel to a rotation axis of the gas turbine or a main axis of the combustor .
【請求項4】 前記耐熱材壁が部分的に代替品と交換で
きるように着脱可能に形成された同一形状の多数の耐熱
材壁部材で構成されている請求項記載のガスタービン
燃焼器。
4. The gas turbine combustor according to claim 3, wherein the heat-resistant material wall is constituted by a plurality of heat-resistant material wall members of the same shape which are detachably formed so that they can be partially replaced with substitutes.
JP8307512A 1996-11-05 1996-11-05 Gas turbine combustor Expired - Lifetime JP2890033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8307512A JP2890033B2 (en) 1996-11-05 1996-11-05 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8307512A JP2890033B2 (en) 1996-11-05 1996-11-05 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPH10141662A JPH10141662A (en) 1998-05-29
JP2890033B2 true JP2890033B2 (en) 1999-05-10

Family

ID=17969977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8307512A Expired - Lifetime JP2890033B2 (en) 1996-11-05 1996-11-05 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JP2890033B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986002B2 (en) * 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
CA2862597C (en) * 2013-10-03 2018-12-11 Karl L. Hasel Geared gas turbine engine architecture for enhanced efficiency
WO2018162995A1 (en) 2017-03-07 2018-09-13 8 Rivers Capital, Llc System and method for combustion of solid fuels and derivatives thereof
EA201992080A1 (en) 2017-03-07 2020-03-12 8 Риверз Кэпитл, Ллк SYSTEM AND METHOD FOR CARRYING OUT THE VARIABLE FUEL COMBUSTION CHAMBER FOR A GAS TURBINE
KR102080566B1 (en) * 2018-01-03 2020-02-24 두산중공업 주식회사 Cooling structure of combustor, combustor and gas turbine having the same
KR102080567B1 (en) * 2018-01-03 2020-02-24 두산중공업 주식회사 Cooling structure of combustor, combustor and gas turbine having the same
CA3106955A1 (en) 2018-07-23 2020-01-30 8 Rivers Capital, Llc System and method for power generation with flameless combustion
CN109724402B (en) * 2019-01-25 2024-02-13 东莞市瑾耀精密设备有限公司 High-temperature sintering furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857657B2 (en) * 1980-02-01 1983-12-21 工業技術院長 Inner cylinder of gas turbine combustor
US4414816A (en) * 1980-04-02 1983-11-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combustor liner construction
JPS61228225A (en) * 1985-03-30 1986-10-11 Agency Of Ind Science & Technol Liner of combustor for gas turbine
JPH0195224A (en) * 1987-10-08 1989-04-13 Tokyo Electric Power Co Inc:The Ceramic burner
JPH04225725A (en) * 1990-12-27 1992-08-14 Nissan Motor Co Ltd Liner of combustor

Also Published As

Publication number Publication date
JPH10141662A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
US9423130B2 (en) Reverse flow ceramic matrix composite combustor
US5749229A (en) Thermal spreading combustor liner
EP1152191B1 (en) Combustor having a ceramic matrix composite liner
US3918255A (en) Ceramic-lined combustion chamber and means for support of a liner with combustion air penetrations
EP2481983B1 (en) Turbulated Aft-End liner assembly and cooling method for gas turbine combustor
US10767863B2 (en) Combustor tile with monolithic inserts
US8505306B2 (en) Ceramic combustor liner panel for a gas turbine engine
US11466855B2 (en) Gas turbine engine combustor with ceramic matrix composite liner
US20150323186A1 (en) Cooled fuel injector system for a gas turbine engine and method for operating the same
US20090120093A1 (en) Turbulated aft-end liner assembly and cooling method
US20100186415A1 (en) Turbulated aft-end liner assembly and related cooling method
US6767659B1 (en) Backside radiative cooled ceramic matrix composite component
JP2004534178A (en) Coolable segments for turbomachinery and combustion turbines
WO2014137428A1 (en) Dual-wall impingement, convection, effusion combustor tile
JP2890033B2 (en) Gas turbine combustor
US11149948B2 (en) Fuel nozzle with angled main injection ports and radial main injection ports
US20060156731A1 (en) Heat shield for a fuel manifold and method
US11226099B2 (en) Combustor liner for a gas turbine engine with ceramic matrix composite components
US20100316966A1 (en) Burner arrangement for a combustion system for combusting liquid fuels and method for operating such a burner arrangement
US20100071379A1 (en) Effusion cooling techniques for combustors in engine assemblies
JP2004044845A (en) Low nox combustion method for gas turbine, and low nox combustor
US8047000B2 (en) Gas turbine combustion chamber
WO2015175501A1 (en) Combustion liner with bias effusion cooling
JP2005016733A (en) Combustor for gas turbine
CN114791109B (en) Ceramic matrix composite flame tube with air inlet hopper

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term