JPS6056237A - Refractivity measuring apparatus - Google Patents

Refractivity measuring apparatus

Info

Publication number
JPS6056237A
JPS6056237A JP16465283A JP16465283A JPS6056237A JP S6056237 A JPS6056237 A JP S6056237A JP 16465283 A JP16465283 A JP 16465283A JP 16465283 A JP16465283 A JP 16465283A JP S6056237 A JPS6056237 A JP S6056237A
Authority
JP
Japan
Prior art keywords
aperture
lens
diaphragm
light
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16465283A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16465283A priority Critical patent/JPS6056237A/en
Publication of JPS6056237A publication Critical patent/JPS6056237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To obtain a refractivity measuring apparatus free of a moving part, by measuring on an observation plane a beam position which passed through different positions of a lens to be tested and then calculating a refractivity. CONSTITUTION:The first aperture 6 is provided with 2 linear openings 8 set through an angle of 90 deg. agaist each other as shown and a line sensor 7 with a number of light sensors arranged in a vertical direcion to the paper. And now, considering a flux of rays emitted from a small opening A0 of the second aperture 4, when there is no lens S subjected to testing, it does not lend itself to be refracted and, a ray of light 8' which passed through the linear opening 8 of aperture 6 flashes on the sensor 7 causing a signal to be generated in the positions J, K on the sensor 7. Next,a changes of co-ordinates of the ray of light 8' on the sensor 7 due to introduction of the test lens S into the light path correspond to the changes of points of intersections from O to O' and the calculation can be effected when co-ordinates of center point of JK and distance between J and K become available.

Description

【発明の詳細な説明】 本発明は屈折度測定装置に関し、4イに可動部を持たず
自動的に被検レンズの屈折度測定が可能なレンズメータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractive power measuring device, and more particularly to a lens meter that does not have any movable parts and is capable of automatically measuring the refractive power of a lens to be tested.

従来、自動レンズメータとしては米国特許第41825
72号公報等に知られているが、これには可動部があっ
て装置が複雑化し、耐久性に乏しいといった問題点があ
る。
Conventionally, as an automatic lens meter, U.S. Patent No. 41825
This is known from Japanese Patent No. 72, etc., but this has problems such as having a movable part, making the device complicated, and lacking in durability.

本件出願人は既に斯かる問題点を解決した装置を特願昭
57−175847号等に提案しているが、本願はこれ
に関連し可動部の無い屈折度測定装(6,を提供するも
のである。
The applicant has already proposed a device that solved this problem in Japanese Patent Application No. 57-175847, etc., but the present application relates to this and provides a refractive power measuring device (6) without moving parts. It is.

以下、先ず本発明の測定原理を述べた後、本発明の詳細
な説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The measurement principle of the present invention will be described first, and then the present invention will be explained in detail.

第1図は本発明の測定原理を示す。FIG. 1 shows the measurement principle of the present invention.

白熱電球等の光源1から出た光は第1の絞り2(ここで
は説明を簡単にするため光軸中心に単一の円形開口があ
る絞りとする)を通りコリメータレンズ3で平行光束と
され、被検レンズSに入射する。被検レンズSの後面に
は第2図に示されるような円周方向等間隔な6つの穴で
ある小開口菖Bo、 Coを有する第2の絞り4が設け
られており、該絞り4を出た後は6本の光ビームとなる
Light emitted from a light source 1 such as an incandescent light bulb passes through a first diaphragm 2 (here, to simplify the explanation, it is assumed to be a diaphragm with a single circular aperture at the center of the optical axis), and is converted into a parallel beam by a collimator lens 3. , is incident on the lens S to be tested. A second diaphragm 4 having small apertures Bo and Co, which are six holes equally spaced in the circumferential direction as shown in FIG. 2, is provided on the rear surface of the lens S to be tested. After exiting, it becomes six light beams.

すなわち斯かる6本の光ビームが実質的に被検レンズS
の異なるろ開所に照射されることと等価となり、被検レ
ンズSから光軸方向に所定間隔離れた観測面Pに至る。
In other words, these six light beams are substantially the target lens S.
This is equivalent to irradiating different filter apertures, and reaches an observation surface P that is spaced apart from the test lens S by a predetermined distance in the optical axis direction.

なお第2の絞り4は被検レンズSの背後であって特に被
検レンズSの後面と共役位置に設けられても良い。ここ
で被検レンズSが光路中に無い場合には第2の絞り4の
小開口AOから出た光ビームは光軸に平行となり観測面
PでAの位置に至る。
Note that the second diaphragm 4 may be provided behind the lens S to be tested, particularly at a position conjugate with the rear surface of the lens S to be tested. Here, if the lens S to be tested is not in the optical path, the light beam emitted from the small aperture AO of the second diaphragm 4 becomes parallel to the optical axis and reaches the position A on the observation plane P.

しかし光路中に被検レンズSが入ると被検レンズSの屈
折力によりビームは屈折され第ろ図に示されるように観
測面PでA′の位置に至る。他の小間口Bo、 Coか
ら出た光ビームは同様に観測面PでB;C′の位置に至
る。
However, when the test lens S enters the optical path, the beam is refracted by the refractive power of the test lens S and reaches a position A' on the observation plane P as shown in FIG. The light beams emitted from the other booths Bo and Co similarly reach positions B; C' on the observation plane P.

ところで被検レンズSが光軸中心にあれば光軸上の点Q
でろ本の光ビームは合致する。
By the way, if the lens S to be tested is at the center of the optical axis, then the point Q on the optical axis
The light beams of the books match.

このときの絞り4の位1aから点Qまでの距離のJφ数
がレンズメータでめる頂点屈折力となるが上記距離をめ
る替わりに観測1fii P上の6本の光ビーム照射位
置の相互の間隔をめても頂点屈折力を算出することがで
きる。
At this time, the Jφ number of the distance from the digit 1a of the diaphragm 4 to the point Q becomes the apex refractive power determined by the lens meter, but instead of calculating the above distance, it is possible to The apex refractive power can also be calculated by increasing the distance between the two.

なお被検レンズSが光軸に対して偏心していると点Qは
光軸上に位置しないが近軸的に考えれば位置のみがずれ
間隔は変わらない。
Note that if the lens S to be tested is decentered with respect to the optical axis, the point Q will not be located on the optical axis, but if considered from a paraxial perspective, only the position will remain the same and the deviation interval will remain the same.

この位置ずれが偏心の情報を与え、結局、観測面Pでの
各光ビームの位置を知れば、被検レンズの屈折力と偏心
を知ることができる。
This positional shift provides information on eccentricity, and after all, by knowing the position of each light beam on the observation plane P, it is possible to know the refractive power and eccentricity of the lens to be tested.

すなわち観測面Pで絞りの小開口Ao、 Boを通過し
た光ビームが照射する位置A ’、 B ’の間隔は被
検レンズSのAo、 Bo径線方向の頂点屈折力の情報
を与え、B ’、 C’の間隔、Ct、 A ’の間隔
も同様に、各々Bo、 Co径線方向、Co、AOの径
線方向の頂点屈折力の情報を与える。
In other words, the interval between the positions A' and B' irradiated by the light beam that has passed through the small apertures Ao and Bo of the diaphragm on the observation plane P gives information on the apex refractive power of the test lens S in the radial direction of Ao and Bo, and B Similarly, the intervals of ' and C' and the intervals of Ct and A' give information on the apex refractive power in the Bo and Co radial directions, and in the Co and AO radial directions, respectively.

ここで被検レンズSは一般に乱視を含んでいるが各径線
方向の屈折力をめるには少なくとも二径線方向の屈折力
をめれば良い。すなわちθヤ基準径線方向からの円周方
向の角度とすると、対応する屈折力りはθの関数として D(θ)−αsin” (θ+h+γ と表わされ、少
なくとも二径線方向の屈折力測定よりα、β、γが特定
される。
Here, the lens S to be tested generally includes astigmatism, but in order to measure the refractive power in each radial direction, it is sufficient to measure the refractive power in at least two radial directions. In other words, if θ is the angle in the circumferential direction from the reference radial direction, the corresponding refractive power is expressed as a function of θ as D(θ)−αsin'' (θ+h+γ), and the refractive power measurement in at least two radial directions is From this, α, β, and γ are specified.

ここにα、β、γは各々乱視度、几視角、球面度数を表
わす。
Here, α, β, and γ represent the degree of astigmatism, viewing angle, and spherical power, respectively.

なお前述したように被検レンズSが偏心していると観測
面P上で各ビームの絶対位置はシフトするが相対位置す
なわち間隔は変化せず、位1rtのシフトfaより偏心
が知れる。
As described above, if the lens S to be measured is eccentric, the absolute position of each beam on the observation plane P shifts, but the relative position, that is, the interval does not change, and the eccentricity can be known from the shift fa of the order 1rt.

さて第4図は本発明第1の実施例を示す。Now, FIG. 4 shows a first embodiment of the present invention.

第1図と同一部材は同一の符号を示す。Components that are the same as in FIG. 1 are designated by the same reference numerals.

第4図中第1の絞りである線絞り6は第5図に示す如く
互いに直角な2本の線状開口8を有し、ラインセンサ7
は紙面に垂直方向に並んだ多数の光センサを有する。第
5図は光軸方向から眺めた第1の絞りである線絞り6の
線状開口8と第2の絞り4の小開口Ao (Bo、 C
oは省略)とラインセンサ7を示す。
The line diaphragm 6, which is the first diaphragm in FIG. 4, has two linear apertures 8 perpendicular to each other as shown in FIG.
has a large number of optical sensors arranged perpendicular to the plane of the paper. FIG. 5 shows the linear aperture 8 of the linear aperture 6, which is the first aperture, and the small aperture Ao (Bo, C) of the second aperture 4, viewed from the optical axis direction.
o is omitted) and line sensor 7 are shown.

いま第2の絞り4の1つの小開口A○から出た光束を考
えると、被検レンズSが無い時は屈折されず第6図(a
)の如くセンサ7上に第1の絞りである線絞り6の線状
間u8を通過した光8′がiE1射され、センサ7上の
点JKの位置に信号が発生する。
Now, considering the light flux emitted from one small aperture A○ of the second diaphragm 4, when there is no test lens S, it is not refracted and becomes
), the light 8' that has passed through the linear space u8 of the linear diaphragm 6, which is the first diaphragm, is emitted onto the sensor 7, iE1, and a signal is generated at the position of the point JK on the sensor 7.

次に被検レンズSが光路中に入ると光束は屈折される。Next, when the lens S to be tested enters the optical path, the light beam is refracted.

一般に被検レンズSが光路中に入ることによるセンサ7
上の光8′の座櫟変化(すなわち第2図、第6図の点A
o、 Bo、 Coカラ点A;BzC′ヘノ変化に対応
)は光8′の交差する点Oかw′への変化に対応しJ 
Kの間隔及び、J i(の中心位11?座標が得られれ
ば算出される。
Generally, the sensor 7 is generated when the lens S to be tested enters the optical path.
The change in the position of the upper light 8' (i.e. point A in Figures 2 and 6)
o, Bo, Co (corresponding to the change in the empty point A; BzC') corresponds to the change to the point O or w' where the light 8' intersects, and J
It is calculated if the interval of K and the center position 11? coordinates of J i( are obtained).

例えば被検レンズSが凸レンズで、被検レンズが光路中
に入ることにより第6図(’b)のull<光8′が下
方ヘシフトすれば点J Kの間隔のみが第2図、第6図
に関して述べた如く屈折力の情報を与えることとなる。
For example, if the test lens S is a convex lens and the test lens enters the optical path and the light 8' in FIG. As described in connection with the figure, information on refractive power is given.

ところで被検レンズSが横方向に偏心していると第61
ffl(c)の如く点JKの間隔を一定に保って横方向
ヘシフトし、そのずれ喰が偏心1114を与える。
By the way, if the test lens S is decentered in the lateral direction, the 61st
As shown in ffl(c), the points JK are shifted in the lateral direction while keeping the interval constant, and the shift gives an eccentricity 1114.

ここで1つの小開口AOから出た光束のみを考えるとJ
Kの間隔及び、JKの中心位1’j Pl’、標の変化
から屈折力の情報と偏心量の情報を判別することができ
ないが、これは6つの小開口Ao、 Bo、 Coの少
なくとも2つの開口から出た光束を検出することにより
判別可能となる。
If we consider only the light flux emitted from one small aperture AO, then J
Although it is not possible to determine the refractive power information and the eccentricity information from the distance between K, the center position 1'j Pl' of JK, and the change in the target, this is due to at least two of the six small apertures Ao, Bo, and Co. This can be determined by detecting the light flux emitted from the two apertures.

すなわち2つの開口例えばAo、 Boから出た光B′
の各シフト量はロ16心に起因する場合には同一であり
屈折力に起因する場合には異なることから判別できる。
That is, light B' emitted from two apertures, for example, Ao and Bo.
This can be determined from the fact that the respective shift amounts are the same when the shift amount is caused by the 16 cores, and are different when the shift amount is caused by the refractive power.

第7図は第2の絞り4の6箇の小開口Ao、 Bo、 
Coからの光束が同時にセンサ7上に照射された状態を
示す。
FIG. 7 shows six small apertures Ao, Bo,
A state in which the light beams from Co are simultaneously irradiated onto the sensor 7 is shown.

ここで小開口Ao、 Bo、 Coから各々光3A ’
、 8B ’、 3C’がセンサ7に照射し、点J^J
 E、 J a、 KA、 KB、 KOの6筒の位置
情報が得られる。これより屈折されたビームの方向と程
度がわかり、第6図の点A ’、 B ’、 C’に相
当する情報が算出され第6図に関連して既述した方法で
屈折力及び偏心量が算出される。すなわち被検レンズS
が光路内に入ったことによる光3A ’、 3B、’ 
3C’の同一のシフト量は偏心量を与え、異なるシフト
量は屈折力を与える。
Here, 3 A' of light is emitted from the small apertures Ao, Bo, and Co, respectively.
, 8B', 3C' illuminate the sensor 7, and the point J^J
Position information for six cylinders, E, J a, KA, KB, and KO, can be obtained. From this, the direction and extent of the refracted beam are known, and information corresponding to points A', B', and C' in Figure 6 is calculated, and the refractive power and eccentricity are calculated using the method already described in connection with Figure 6. is calculated. That is, the test lens S
Light 3A', 3B,' due to entering the optical path
The same amount of shift of 3C' gives eccentricity, and different amounts of shift gives refractive power.

次に第8図は本発明の第2の実施例を示す。Next, FIG. 8 shows a second embodiment of the present invention.

光路中センサ7の手前には受光レンズ9を配し、センサ
7の位置が受光レンズ9の後(+tll焦点位置となる
ようにする。従って線絞り6とセンサ7は共役となり、
線絞り6がセンサ7に結像される。
A light-receiving lens 9 is placed in front of the sensor 7 in the optical path, and the sensor 7 is positioned behind the light-receiving lens 9 (+tll focal position. Therefore, the line diaphragm 6 and the sensor 7 are conjugate,
Line diaphragm 6 is imaged onto sensor 7 .

また被検レンズSと受光レンズ9の間には偏角プリズム
10が設けられる。
Further, a deflection prism 10 is provided between the lens S to be tested and the light receiving lens 9.

偏角プリズム10は第9図に示す如く第2の絞り4の6
箇の小開口Ao、 Bo、 Coに対応して6箇のプリ
ズム10A、 IOB、 IOCを有し、センサ7上の
各像を大きく分離させセンサ7を有効に利用することが
可能となる。
As shown in FIG.
It has six prisms 10A, IOB, and IOC corresponding to the small apertures Ao, Bo, and Co, so that each image on the sensor 7 can be largely separated, and the sensor 7 can be used effectively.

また本実施例では結像されるため、位置信号をより正確
に得ることができる。
Further, in this embodiment, since the image is formed, a position signal can be obtained more accurately.

次に第10図は本発明の第6の実施例を示す。Next, FIG. 10 shows a sixth embodiment of the present invention.

第1の絞り11は第11図に示す如く互いに600を為
す6本のエツジを備えた三角形状の開口を有する。
The first diaphragm 11 has a triangular opening with six edges forming 600 degrees with each other, as shown in FIG.

また偏角プリズム12は第2の絞り4のろ箇の小開口A
o、 Bo、 Coを通過した光束を6箇のラインセン
サ16へ13B、13Cの方向へ導く。
Further, the deflection prism 12 has a small aperture A in the second diaphragm 4.
The light beams that have passed through O, Bo, and Co are guided to six line sensors 16 in the directions 13B and 13C.

受光レンズ9により各センサ13A、 13B、 13
C上に結像サレル第1 (7)絞す11 (7)開口像
14”A、14’B、14’Cが各センサ13A、 1
3B、 13Cに照射される状態を第12図に示す。
Each sensor 13A, 13B, 13 is detected by the light receiving lens 9.
(7) Aperture image 14''A, 14'B, 14'C is formed on each sensor 13A, 1
FIG. 12 shows the state in which 3B and 13C are irradiated.

各センサ上で開[二1像と各センサとが交差した位置を
検出し、既述の方法により屈折力及び偏心量が算出でき
る。
The position where the aperture image intersects with each sensor is detected on each sensor, and the refractive power and eccentricity can be calculated by the method described above.

第16又は本発明の第4の実fi列で単一のラインセン
サ7へ第2の絞り4の各小開口Ao、 Bo、 Coを
通過した光が同時にではなく、順次に照射されるように
したものである。
In the 16th or 4th real fi column of the present invention, the light that has passed through each of the small apertures Ao, Bo, and Co of the second aperture 4 is irradiated to the single line sensor 7 not simultaneously but sequentially. This is what I did.

すなわちコンデンサレンズ15は第14図に示す光源1
6へ16B、16C(例えばLED )をコリメータレ
ンズろを介して第2の絞り4上に結像させ、光源16戊
16B;16Cを順次点灯させる。
That is, the condenser lens 15 is connected to the light source 1 shown in FIG.
6, 16B and 16C (for example, an LED) are imaged onto the second aperture 4 through a collimator lens, and the light sources 16 16B and 16C are sequentially turned on.

これによりセンサ7上には第15図の如く第1の絞りで
ある線絞り6の開口像8 ’A、 8 ’B、 8 ’
Cが順次現われ、像がオーバラップすることなく正確な
検出が行われ、又偏角プリズムも必要としない。
As a result, aperture images 8'A, 8'B, 8' of the line diaphragm 6, which is the first diaphragm, are displayed on the sensor 7 as shown in FIG.
C appears sequentially, accurate detection is performed without overlapping images, and no deflection prism is required.

なお、以上第2の絞り49小開口を6箇として述べたが
ろ箇以上であっても良く、また必ずしも円周方向に等間
隔に設けなくても良い。 。
Although the number of small openings in the second diaphragm 49 is described above as six, there may be more than six small openings, and they do not necessarily have to be provided at equal intervals in the circumferential direction. .

また第2の絞り4の光軸上の位置は被検レンズSの後面
或いはその共役位置に限られない。
Further, the position of the second aperture 4 on the optical axis is not limited to the rear surface of the lens S to be tested or its conjugate position.

なお以上の説明におけるラインセンサの替わりに2次元
センサを用いることも可能である。
Note that it is also possible to use a two-dimensional sensor instead of the line sensor in the above description.

また第1の絞りである線絞りにおいて2本の線状開口は
互いに直交することは必ずしも必要でなくそれ以外の所
定角度であっても良い。
Further, in the line diaphragm which is the first diaphragm, the two linear apertures do not necessarily need to be orthogonal to each other, but may be at other predetermined angles.

以上、本発明によれば機械的可動部が無く、シかも構造
が単純で信頼性の高い測定ができる屈折度測定装置を提
供できる。
As described above, according to the present invention, it is possible to provide a refractometer that has no mechanically movable parts, has a simple structure, and can perform highly reliable measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は第2の絞りの図、 第6図は観測面Pでの6本の光ビームの照射される位置
を示す図、 第4図は本発明の第1の実施例を示す図、第5図は第1
の絞り、第2の絞り、ラインセンサを光軸方向から眺め
た図、 第6図0 (b) (c)はラインセンサ上での第1の
絞りを通過した光の照射される位置を示す図で、第6図
(→は被検レンズの無い場合、第6図(b) (0)は
各々被検レンズに屈折力が有る場合、偏心が有る場合を
示す図、 第7図は単一のラインセンサに第1の絞りを通過した光
が同時に照射されることを示す図、第8図は本発明の第
2の実施例を示す図、第9図は第2の絞りと偏角プリズ
ムを光軸方向から眺めた図、 第10図は本発明の第6の実施例を示す図、第11図は
第1の絞りの異なる実施例の図、第12図はセンサ上で
の第1の紋り像を示す図、第16図は本発明の第4の実
施例を示す図、第14図は第4の実施例の光源を示す図
、第15図は第4の実施例のセンサ上で順次第1の絞り
像が形成されることを示す図、 図中 1は光源、2,6.11は第1の絞り、ろはコリメータ
レンズ、4は第2の絞り、7.1ろA、13B、1ろC
はラインセンサ、8は線状開口、9は受光レンズ、10
.12は偏角プリズム、14は三角形開口、15はコン
デンサレンズ、16へ16B、16Cは光源である。 出願人 キャノン株式会社 ((1) (b) (C) jO(3?(IC
Figure 1 is a diagram explaining the principle of the present invention, Figure 2 is a diagram of the second aperture, Figure 6 is a diagram showing the positions where the six light beams are irradiated on the observation plane P, and Figure 4 is the book. A diagram showing the first embodiment of the invention, FIG.
Diagrams of the aperture, the second aperture, and the line sensor viewed from the optical axis direction, Figure 6 (b) and (c) show the position on the line sensor where the light passing through the first aperture is irradiated. In the figure, Fig. 6 (→ shows the case where there is no test lens, Fig. 6 (b) (0) shows the case where the test lens has refractive power and eccentricity, respectively, and Fig. 7 shows the case where there is no test lens, respectively. A diagram showing that the light passing through the first aperture is simultaneously irradiated onto one line sensor, FIG. 8 is a diagram showing the second embodiment of the present invention, and FIG. 9 is a diagram showing the second aperture and the declination angle. FIG. 10 is a diagram showing a sixth embodiment of the present invention, FIG. 11 is a diagram of a different embodiment of the first diaphragm, and FIG. 12 is a diagram showing a prism viewed from the optical axis direction. 16 is a diagram showing the fourth embodiment of the present invention, FIG. 14 is a diagram showing the light source of the fourth embodiment, and FIG. 15 is a diagram showing the light source of the fourth embodiment. A diagram showing that the first aperture image is formed sequentially on the sensor. In the figure, 1 is the light source, 2, 6.11 is the first aperture, aro is the collimator lens, 4 is the second aperture, 7.1 Ro A, 13B, 1 Ro C
is a line sensor, 8 is a linear aperture, 9 is a light receiving lens, 10
.. 12 is a deflection prism, 14 is a triangular aperture, 15 is a condenser lens, and 16, 16B, and 16C are light sources. Applicant Canon Co., Ltd. ((1) (b) (C) jO(3?(IC)

Claims (1)

【特許請求の範囲】 り少なくとも1箇の光源、少なくとも2本の互いに角度
をもったエツジを有する第1の絞り、該第1の絞りがそ
の前側焦点位置に置かれるように配設されたコリメータ
レンズ、 光路中核コリメータレンズの背後に配設された被検レン
ズの背後に設けられる少なくとも6箇の孔を有する第2
の絞り、 該第2の絞りを通して前記第1の絞り開口の光を検出す
る少なくとも1箇のラインセンサ、を備えたことを特徴
とする屈折度測定装置。 2、前記第2の絞りは光路中、被検レンズの後面又はそ
の共役位置に設けられる特許請求の範囲第1項記載の屈
折度測定装置。 3、前記第2の絞りの背後に偏角プリズムが配される特
許請求の範囲第1項記載の屈折度測定装置。 4、前記第2の絞りの背後に受光レンズが設けられ前記
第1の絞りがラインセンサに結像される特許請求の範囲
第1項記載の屈折度測定装置。 5、前記第1の絞りは互いに角度をもった2本の線状開
口を有づ−る特許請求の範囲第1項記載の屈折度測定袋
(4゜ 6、前記第1の絞りは三角形状の開口を有する特許請求
の範囲第1項記載の屈折度測定装置。 マ、前記三角形状のエツジに対応してろ箇のラインセン
サが設けられる特許請求の範囲第6項記載の屈折度測定
装置。 8 光路中前記筒1の絞りの前にコンデンサレンズを設
け、前記第2の絞りと共役位置に少なくともる箇の順次
点灯する光源を設けた特許請求の範囲第1項記載の屈折
度測定装置。
What is claimed is: at least one light source; a first aperture having at least two mutually angled edges; a collimator arranged such that the first aperture is located at its front focal point; lens, a second lens having at least six holes located behind the test lens disposed behind the optical path core collimator lens;
A refractometer, comprising: an aperture; and at least one line sensor that detects light from the first aperture through the second aperture. 2. The refractive power measuring device according to claim 1, wherein the second diaphragm is provided in the optical path at the rear surface of the test lens or at a conjugate position thereof. 3. The refractive power measuring device according to claim 1, wherein a deviation angle prism is arranged behind the second diaphragm. 4. The refractive power measuring device according to claim 1, wherein a light receiving lens is provided behind the second aperture, and an image of the first aperture is formed on a line sensor. 5. The refractive power measuring bag according to claim 1, wherein the first diaphragm has two linear openings at an angle to each other (4°6, the first diaphragm has a triangular shape The refraction measuring device according to claim 1, having an opening of 1. The refraction measuring device according to claim 6, wherein a line sensor is provided in a groove corresponding to the triangular edge. 8. The refractive power measuring device according to claim 1, further comprising a condenser lens provided in the optical path in front of the diaphragm of the tube 1, and at least a light source that turns on sequentially at a position conjugate with the second diaphragm.
JP16465283A 1983-09-07 1983-09-07 Refractivity measuring apparatus Pending JPS6056237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16465283A JPS6056237A (en) 1983-09-07 1983-09-07 Refractivity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16465283A JPS6056237A (en) 1983-09-07 1983-09-07 Refractivity measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6056237A true JPS6056237A (en) 1985-04-01

Family

ID=15797244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16465283A Pending JPS6056237A (en) 1983-09-07 1983-09-07 Refractivity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6056237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216428A (en) * 1988-03-05 1990-08-29 Hoya Corp Automatic lens meter
US6621564B2 (en) 2001-02-09 2003-09-16 Hoya Corporation Automatic lens meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216428A (en) * 1988-03-05 1990-08-29 Hoya Corp Automatic lens meter
US6621564B2 (en) 2001-02-09 2003-09-16 Hoya Corporation Automatic lens meter

Similar Documents

Publication Publication Date Title
US4779979A (en) Automatic lens meter
JPS58205834A (en) Measurement of astigmation
JPS61234837A (en) Apparatus for measuring eye refraction
EP0210722B1 (en) Apparatus for measuring the refractive power or radius of curvature of an optical system
CA1078170A (en) Apparatus for testing the refractive power(s) of lenses
JPS63212318A (en) Eye measuring apparatus
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
US2818775A (en) Method of and apparatus for objectively testing optical systems
US5212507A (en) Apparatus for measuring cornea shape
US5075560A (en) Moire distance measurements using a grating printed on or attached to a surface
US4398822A (en) Two-axis angular deviation measurement system with target image rotating means
JPS6056237A (en) Refractivity measuring apparatus
JPS5964022A (en) Method and apparatus for measuring refractivity
JPH0353572B2 (en)
JP3833713B2 (en) Fringe deflectometry apparatus and method
JPH0124251B2 (en)
JPH0346774B2 (en)
JPH0580611B2 (en)
JPH0471453B2 (en)
JPS593238A (en) Automatic lens meter
JPH0154055B2 (en)
JPS6331632A (en) Keratometer
JPS5854927A (en) Method and apparatus for measuring shape of cornea
JPS6343091B2 (en)