JPS6056014A - Method and device for cooling in heat treatment of metal - Google Patents

Method and device for cooling in heat treatment of metal

Info

Publication number
JPS6056014A
JPS6056014A JP16457383A JP16457383A JPS6056014A JP S6056014 A JPS6056014 A JP S6056014A JP 16457383 A JP16457383 A JP 16457383A JP 16457383 A JP16457383 A JP 16457383A JP S6056014 A JPS6056014 A JP S6056014A
Authority
JP
Japan
Prior art keywords
cooling
liquid
air
mixture
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16457383A
Other languages
Japanese (ja)
Inventor
Kenji Fujikake
藤掛 賢司
Yutaka Yokoi
豊 横井
Kazuyuki Nakanishi
和之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP16457383A priority Critical patent/JPS6056014A/en
Publication of JPS6056014A publication Critical patent/JPS6056014A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching

Abstract

PURPOSE:To enable cooling which has the initial cooling rate satisfying a desired heat treatment and is thereafter slow with less quenching strain and crack by using a gas-liquid mixture formed by dispersing fine foam of gas into liquid as a cooling medium. CONSTITUTION:An air-water mixture is put into an inside vessel 2 of a cooling vessel 1 having a double construction and liquid such as water or oil is put into an outside vessel 3. The temp. of said liquid is controlled by a heater 4 to maintain the temp. of the above-mentioned mixture or to control the temp. thereof. The above-described mixture is subjected to flow rate control by a throttle valve 7 from a device 5 for forming said mixture and is admitted into the vessel 2 in the circumferential tangential direction along the inside wall of the lower part thereof so as to be distributed uniformly in the tank 2. The mixture is then discharged from an overflow port 8. The air foam is thus uniformly dispersed at the horizontal section of the vessel 2 and at the same time the floating of the air foam is limited. The quasi-static state of the cooling liquid in the vessel is obtd. with the decreased amt. of the mixture to be introduced. The inflow rate is conversely increased by the valve 7 or turning flow is formed in the vessel 2 by a stirrer 9 to make the cooling liquid more positively convectional.

Description

【発明の詳細な説明】 本発明は金属熱処理における冷却方法、およびその方法
に使用する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling method in metal heat treatment and an apparatus used in the method.

従来、焼入れとくに浸漬焼入れにおける冷却能の選択は
、通常冷却液を変更することにより行なわれ;液温、攪
拌といった要素も二次的効果としてとり入れられている
。したがって冷却能の選択巾はいかに冷却能の異なった
冷却液を選択できるかにより決まシ、現状単相として空
冷、温冷、油冷、水冷などが利用されている。
Conventionally, the selection of cooling capacity in quenching, especially in immersion quenching, is usually done by changing the coolant; factors such as liquid temperature and stirring are also taken into account as secondary effects. Therefore, the selection range of cooling capacity is determined by the ability to select cooling liquids with different cooling capacities, and currently single-phase systems such as air cooling, hot cooling, oil cooling, and water cooling are used.

しかし鋼のように、焼き入れのため500〜600℃の
急激な冷却また、熱歪、割れを防ぐために200°C付
近の緩漫々冷却が必要な場合には適当な単相冷却液は無
く次の方法が知られている。
However, in cases such as steel, where rapid cooling to 500-600°C is required for hardening, or slow cooling to around 200°C to prevent thermal distortion and cracking, there is no suitable single-phase cooling liquid. method is known.

■ 水に冷却能を抑える緩和剤(ビニル化合物の水溶性
樹脂、塩類、アルコール等の化合物など)を溶解したも
のを冷却液として用いる。
■ Use water with a softening agent (vinyl compound water-soluble resin, salts, alcohol compounds, etc.) dissolved in water as the coolant.

■ 水を微粒子としてノズルによシ噴霧する。■ Spray water as fine particles through a nozzle.

■ 浸漬焼入れ時材料の温度が200℃付近となったと
き、材料引上げによシ例えば空冷し、緩浸′冷却させる
段階冷却する方法をとる。
(2) When the temperature of the material during immersion quenching reaches around 200°C, the material is pulled up using a stepwise cooling method such as air cooling and slow immersion cooling.

これらの方法はいづれも、それぞれ次の様な欠点があっ
た。
Each of these methods had the following drawbacks.

■ 冷却能の変化小が小さく設定冷却能(濃度)の維持
管理が困難である。また冷却液が高価である。(化合物
によっては被冷却材料に付着するのでその洗浄を必要と
し、濃度も変化する)。
■ Changes in cooling capacity are small, making it difficult to maintain and manage the set cooling capacity (concentration). Also, the coolant is expensive. (Depending on the compound, it adheres to the material to be cooled and requires cleaning, and the concentration also changes).

■ 浸漬焼入れ法ではないので、多数のノズルを同心状
に配置し中心線上に被冷却材料を設置して噴霧するが、
その場合ノズルの噴出量、噴出圧を調整しても噴射条件
を同一にできないCまた軸対称単品でなくよシ複雑な形
状あるいは多量の材料を同時に冷却する場合には均一冷
却は困難である。したがって材料に冷却むらを生じ易く
、さらに冷却能を設定制御できるの紘実際上水側より空
気側に近く、いいかえれば冷却能(冷却する度合い)は
塩〉水〉油〉空気、であるが噴霧系では空気量〉水量の
ため水への浸漬と比べて冷却度合が低く、冷却能の選択
巾が小さい。
■ Since it is not an immersion quenching method, many nozzles are arranged concentrically and the material to be cooled is placed on the center line and sprayed.
In this case, even if the nozzle jet amount and jet pressure are adjusted, the jetting conditions cannot be made the same.Furthermore, uniform cooling is difficult when cooling not only an axially symmetrical single item but also a complicated shape or a large amount of material at the same time. Therefore, it is easy to cause uneven cooling of the material, and furthermore, the cooling capacity can be set and controlled closer to the air side than the water side.In other words, the cooling capacity (degree of cooling) is salt>water>oil>air, but spraying In the system, the amount of air is greater than the amount of water, so the degree of cooling is lower than that of immersion in water, and the range of cooling capacity options is narrow.

■ 材料引き上げの段階を正確に把えるのは困難であシ
、多数の材料を同−榮件に熱処理するのがむづかしい。
■ It is difficult to accurately grasp the stage of material withdrawal, and it is difficult to heat treat a large number of materials at the same time.

また熱処理工程が複雑となる。Moreover, the heat treatment process becomes complicated.

特に、鋼(炭素鋼、合金鋼)の熱処理を行なう場合、材
質に応じた適切な温度に加熱し、適切な速度で冷却しな
ければならない。一般的には加熱炉から材料をすみやか
に取り出し500〜600℃付近では超速に冷却するこ
とが熱処理(焼入れ)として必要である。しかし180
〜200℃付近では焼入れ歪、割れを防ぐために徐々に
冷却することが望ましい。焼入れ性の悪い銅または質量
(寸法)の大きい材料の場合には、油あるいは場合によ
っては水を用いても冷却速度が小さすぎ、上述の焼き入
れ歪、割れが発生する場合がある。これを防止するため
に、水から塩ミ藩、塩藉から油といった冷却媒の変更、
あるいは油冷に′おいても・冷−能のIIいものから小
さいものへの変更(この場合には冷却能の選択巾が小さ
い)、あるいは水冷後200℃付近で冷却槽よシ引き出
し空冷するといった2段階の冷却が行なわれる。前者は
冷却能の小さいものへの置きかえであるため、高温域の
冷却速度も小さくなシ、目的とする焼入れが不十分とな
る場合が生じ、後者は材料取り出しのタイミングがむづ
かしく、同一の熱処理条件を維持管理することが困難で
ある。
In particular, when heat treating steel (carbon steel, alloy steel), the material must be heated to an appropriate temperature and cooled at an appropriate rate. Generally, it is necessary to quickly take out the material from the heating furnace and cool it extremely quickly at around 500 to 600° C. as a heat treatment (quenching). But 180
At around ~200°C, it is desirable to cool gradually to prevent quenching distortion and cracking. In the case of copper with poor hardenability or materials with large mass (dimensions), the cooling rate is too slow even if oil or, in some cases, water is used, and the above-mentioned hardening distortion and cracking may occur. In order to prevent this, we changed the cooling medium from water to salt, and from salt to oil.
Alternatively, in the case of oil cooling, changing from a low cooling capacity to a low cooling capacity (in this case, the selection range of cooling capacity is small), or removing it from the cooling tank at around 200℃ after water cooling and cooling in the air. Two-stage cooling is performed. The former involves replacing with one with a smaller cooling capacity, so the cooling rate in the high-temperature range is also slow, which may result in insufficient hardening, while the latter makes it difficult to take out the material at the same time. It is difficult to maintain and manage heat treatment conditions.

また、液体単相を冷却媒として用いる冷却法・において
は、高温の被処理金属と低温の液体との接触により該金
属表面上に不均一な蒸気膜が形成されるが、該蒸気膜は
断熱作用を有するため、安定した均一冷却が困難となる
In addition, in the cooling method that uses a single phase liquid as a cooling medium, a non-uniform vapor film is formed on the metal surface due to contact between the high temperature metal to be processed and the low temperature liquid, but the vapor film is adiabatic. This makes stable and uniform cooling difficult.

従って、本発明の目的゛は、前記■〜■の従来法の欠一
点を解消した、安価で簡便であシ、シかも所望9冷却能
に容易に制御できる、金属熱処理における均−且つ安定
した冷却法を提供することにある。特に本発明の目的は
、希望する熱処理を満足する初期冷却速度を有し、しか
もその後焼き歪、焼き割の少ない緩漫表冷却を可能にす
る冷却方法、およびそのための装置を提供することにあ
る。
Therefore, the object of the present invention is to provide a uniform and stable method for metal heat treatment that overcomes the drawbacks of the conventional methods (1) to (3) above, is inexpensive, simple, and can be easily controlled to a desired cooling capacity. The objective is to provide a cooling method. In particular, it is an object of the present invention to provide a cooling method that has an initial cooling rate that satisfies the desired heat treatment, and that allows for subsequent gradual surface cooling with less distortion and cracking, and an apparatus therefor. .

本発明の他の目的は、以下の記載から明らかであろう。Other objects of the invention will become apparent from the description below.

本発明者等は上記の目的が、冷却媒として、液体内に気
体の微小気泡を分散させた液体−気体混合液を用いるこ
とにより達成されることを見出し、本発明を完成するに
至った。
The present inventors have discovered that the above object can be achieved by using a liquid-gas mixture in which gas microbubbles are dispersed in a liquid as a cooling medium, and have completed the present invention.

即ち、前述したように、液体単相を冷却媒として用いた
場合、該液体と高温の被処理金属材との接触により被処
理材表面に空気泡からなる蒸気膜が形成され、該膜は被
処理金属の均−且つ安定した冷却を内錐するのであるが
、夕却媒として微小気泡が分散された液体−気体混合液
を用い驚且つ該微小気泡を均一に分散させた状態で冷却
を行うと被処理材を均一に安定した状態で冷却できる。
That is, as mentioned above, when a single phase liquid is used as a coolant, a vapor film consisting of air bubbles is formed on the surface of the metal material to be treated due to the contact between the liquid and the high temperature metal material to be treated, and the film is The aim is to uniformly and stably cool the metal to be processed. Using a liquid-gas mixture in which microbubbles are dispersed as a cooling medium, cooling is surprisingly performed in a state in which the microbubbles are evenly dispersed. The material to be processed can be cooled uniformly and stably.

更に本発明者は、気液混合液の冷却能が気体含有率によ
って著しく変化することを見出し、従って気体含有率(
ボイド率)を変化させることにより、気液混合液の冷却
能を冷却工程の任意の段階で変えることができることを
知見した。
Furthermore, the present inventor found that the cooling ability of a gas-liquid mixture changes significantly depending on the gas content, and therefore, the gas content (
It was discovered that the cooling ability of the gas-liquid mixture can be changed at any stage of the cooling process by changing the void ratio.

従って本発明の金属熱処理冷却方法は、冷却媒として液
体に気体の微小気泡を分散させた液体−気体混合液を用
い、該微小気泡の均一分散状態を保持することによシ被
冷゛却材の蒸気膜形成を阻止して均−且つ安定ガ冷却を
可能にすることを特徴とする。
Therefore, the metal heat treatment cooling method of the present invention uses a liquid-gas mixture liquid in which gas microbubbles are dispersed in a liquid as a cooling medium, and maintains a uniformly dispersed state of the microbubbles to cool the material to be cooled. It is characterized in that it prevents the formation of a vapor film and enables uniform and stable cooling.

液体−気体混合液の冷却能は、気体含有率および/又は
液温を制御することにより、制御し得る。
The cooling capacity of the liquid-gas mixture can be controlled by controlling the gas content and/or the liquid temperature.

気体含有率(ボイド率)と液体−気体混合液の冷却能と
の関係を第1〜3図に示す。
The relationship between the gas content (void ratio) and the cooling capacity of the liquid-gas mixture is shown in FIGS. 1 to 3.

第1図は20℃の一定の液温を有し且つ0〜10−の一
定の空気含有率(ボイド率)を有する水−空気混合液中
に、被処理材として、N2ガス雰囲気中で800℃に加
熱した径30龍×長さ120目の銅製円柱を浸漬冷却し
た場合の冷却曲線を示す。横軸は冷却時間、縦軸は無次
元表面温度を示す。縦軸0壺1刊F)において、Tt:
被処理材の温度、TO:被処理材の初期温度、Tinf
 : 液温を表わす。被処理材の測温は、径α5IIl
のCAシース熱電対(接地)を用いて被処理材表面下2
 IIIを測温するととにより行った。
Figure 1 shows a water-air mixture having a constant liquid temperature of 20°C and a constant air content rate (void rate) of 0 to 10-10°C as a material to be treated in an N2 gas atmosphere. A cooling curve is shown when a copper cylinder with a diameter of 30 mm and a length of 120 mm heated to ℃ is immersed and cooled. The horizontal axis shows the cooling time, and the vertical axis shows the dimensionless surface temperature. On the vertical axis 0 jar 1 issue F), Tt:
Temperature of the material to be treated, TO: Initial temperature of the material to be treated, Tinf
: Indicates liquid temperature. The temperature of the material to be treated is measured using the diameter α5IIl.
2 below the surface of the treated material using a CA sheathed thermocouple (grounded).
The temperature of III was measured as follows.

参考用にマルクエンチ油のコールド(Co/d )およ
びホラ) (HOT ) を冷却媒とした場合の冷却曲
線も合せて示す。
For reference, cooling curves when cold (Co/d) and hot (HOT) marquench oils are used as coolants are also shown.

第2図は、水−空気混合液の冷却能に及はす液温の影響
を示す冷却曲線である。被処理材は第1図における場合
と同様、N2雰囲気中800℃に加熱したJ30x12
0m銅円柱でチシ、測温法、Tt、To、およびTin
f は前述の通りである。
FIG. 2 is a cooling curve showing the influence of liquid temperature on the cooling capacity of a water-air mixture. The material to be treated was J30x12 heated to 800°C in a N2 atmosphere, as in the case in Fig. 1.
0m copper cylinder, temperature measurement method, Tt, To, and Tin
f is as described above.

第3図は、水−空気混合液の空気含有率(ボイド率)と
、g50x120mm銅円柱を800’0から400℃
まで冷却するのに要する時間との関係を示すグラフであ
る。
Figure 3 shows the air content (void fraction) of the water-air mixture and the g50x120mm copper cylinder at 800'0 to 400°C.
It is a graph which shows the relationship with the time required for cooling to.

第1〜3図かられかるように、被処理材の冷却曲線はボ
イド率および液温によってカーブが変る。従って、特定
の被処理材に適した冷却曲線となるようにボイド率およ
び液温を設定することにより、被処理材を所望の冷却過
程を経て冷却することができる。冷却過程においてボイ
ド率および場合によっては液温を変化させて冷却媒の冷
却能を変化させてもよい。
As can be seen from FIGS. 1 to 3, the cooling curve of the material to be treated changes depending on the void ratio and liquid temperature. Therefore, by setting the void ratio and liquid temperature so as to obtain a cooling curve suitable for a specific material to be processed, the material to be processed can be cooled through a desired cooling process. In the cooling process, the void ratio and, in some cases, the liquid temperature may be changed to change the cooling ability of the coolant.

例えば鋼(炭素鋼又は合金鋼)の浸漬焼入れにおいては
、500〜600℃にて急激な冷却、そして200℃付
近においては緩漫な冷却が必要であるから、液体−気体
(例えば水−空気)の冷却曲線が200℃付近において
緩漫となるように液温およびボイド率を設定又は制御す
ればよい。
For example, in immersion hardening of steel (carbon steel or alloy steel), rapid cooling at 500 to 600°C and slow cooling at around 200°C are required, so liquid-gas (e.g. water-air) is required. The liquid temperature and void ratio may be set or controlled so that the cooling curve becomes gentle around 200°C.

例えば水温20℃およびボイド率0〜10チに設定保持
した水−空気混合液を用いて冷却する。
For example, cooling is performed using a water-air mixture whose water temperature is set to 20° C. and the void ratio is set to 0 to 10 degrees.

或いはボイド率2〜10チの水−空気混合液にて約20
0℃付近まで冷却し、次に該混合液のポイド率を1%付
近に減少させて冷却能を低下させ、200℃付近にて緩
漫な冷却を行う(第3図参照)。或いはまた200℃付
近にて液温を上昇させて冷却能を低下させてもよい。し
かし、いずれの場合も微小気泡の均一分散状態を保持す
ることが必要である。
Or about 20 in a water-air mixture with a void ratio of 2 to 10
The mixture is cooled to around 0°C, and then the void ratio of the mixture is reduced to around 1% to lower the cooling ability, and the mixture is slowly cooled to around 200°C (see Figure 3). Alternatively, the cooling capacity may be lowered by raising the liquid temperature around 200°C. However, in either case, it is necessary to maintain a uniformly dispersed state of microbubbles.

次に冷却が浸漬冷却であり、冷却液が水−空気混合液で
ある場合について、具体的に説明する。
Next, a case where the cooling is immersion cooling and the cooling liquid is a water-air mixture will be specifically described.

あらかじめ空気泡混入率(ボイド率)および液温を設定
した水−空気混合液を冷却槽内に導入する。槽内の混合
液は、水の密度が空気のそ些の約1000倍であるため
、一定時間抜には必ず分離が発生する。従って一定のボ
イド率を保持するには、空気泡の浮上速度と同じかこれ
よシも僅かに大きい水位上昇となる流量で冷却槽内に該
槽の下部か゛ら上記水−空気混合液を導入する。該混合
液を該槽下部よシ槽内壁に沿い檜の接線方向に吐出させ
るか又はディフューザーを介して槽内に吐出させるか、
或いは攪拌にょシ檜内の気泡分布を一様に保持すること
ができる。
A water-air mixture liquid whose air bubble mixing rate (void rate) and liquid temperature are set in advance is introduced into the cooling tank. Since the density of water in the mixed liquid in the tank is approximately 1,000 times that of air, separation will inevitably occur after a certain period of time. Therefore, in order to maintain a constant void ratio, the water-air mixture is introduced into the cooling tank from the bottom of the tank at a flow rate that causes a rise in water level that is equal to or slightly greater than the floating speed of the air bubbles. . whether the mixed liquid is discharged from the lower part of the tank along the inner wall of the tank in the tangential direction of the cypress, or into the tank via a diffuser;
Alternatively, the bubble distribution within the agitated cypress can be maintained uniformly.

気泡径は1M程度よシ小さいのが好ましい。It is preferable that the bubble diameter is smaller than about 1M.

1B径より大きいと気泡の合体成長が起きて。If the diameter is larger than 1B, coalescence of bubbles will occur.

気泡を均一分散しに<<7zる。[L111m径程度の
場合、水中浮上速度は数1z秒であり、実用上充分であ
る。
Repeat 7 times to uniformly disperse the bubbles. [When the diameter of L is about 111 m, the underwater ascent speed is several z seconds, which is sufficient for practical use.

本発明による浸漬冷却に使用し得る装置の一態様を第4
〜5図に示す。
A fourth embodiment of the apparatus that can be used for immersion cooling according to the present invention
- Shown in Figure 5.

冷却槽1は、空気−水混合液を収容するだめの内槽2と
該混合液を保温又は液温制御するための外Ia3とを有
する二重構造からなる。外槽3には水、油、エチレング
リコール等適当な液体が満されておシ、同じく外槽3内
に設置されたヒーター4により外槽3内の液体温度を制
御し、これにより上記混合液の保温又は液温制御を行っ
ている。該混合液は水−空気混合液作成装置5より、内
槽2下部に設けられた流入口6を通して、該流入口6に
設けられた絞り弁7にて流量制御されて内槽2下部内壁
に沿い円周接線方向に流入され、該混合液が槽2内に一
様に行きわたるようにされ、そして内槽2上部の溢流口
8より流出される。流入口6に設けたディフューザー(
図示されていない)を介して該混合液を流入してもよい
。その結果、空気泡は内槽水平断面内で均一分散すると
同時に、空気泡の浮上が抑制され、少ない混合液導入量
で槽内の冷却液の準靜定状態(静止冷却液中への浸漬冷
却)を得ることができる。逆に冷却液(混合液)の対流
を積極的に行うためには、絞り弁7により流入量を積極
的に増加するか、或いはモータ10により駆動される内
檜内の攪拌器9により、槽内に回流を形成することがで
きる。破冷却材11は内槽2のほぼ中央に置く。
The cooling tank 1 has a double structure including an inner tank 2 for storing an air-water mixture and an outer tank Ia3 for keeping the mixture warm or controlling the temperature of the mixture. The outer tank 3 is filled with a suitable liquid such as water, oil, ethylene glycol, etc., and the temperature of the liquid in the outer tank 3 is controlled by a heater 4, which is also installed inside the outer tank 3. The temperature of the liquid is maintained or the temperature of the liquid is controlled. The mixed liquid is passed from the water-air mixed liquid preparation device 5 through an inlet 6 provided at the lower part of the inner tank 2, the flow rate of which is controlled by a throttle valve 7 provided at the inlet 6, and is applied to the inner wall of the lower part of the inner tank 2. The mixed liquid flows in a tangential direction along the circumference, so that the mixed liquid is uniformly distributed in the tank 2, and then flows out from the overflow port 8 at the upper part of the inner tank 2. A diffuser installed at the inlet 6 (
The mixed liquid may be introduced through a tube (not shown). As a result, the air bubbles are uniformly dispersed within the horizontal cross section of the inner tank, and at the same time, the floating of air bubbles is suppressed, and with a small amount of mixed liquid introduced, the coolant in the tank is kept in a quasi-quiet state (immersion cooling in static coolant). ) can be obtained. On the other hand, in order to actively effect the convection of the cooling liquid (mixed liquid), the flow rate of the cooling liquid (mixed liquid) can be actively increased using the throttle valve 7, or the agitator 9 in the inner chamber driven by the motor 10 can be used to Circulation can be formed within. The broken coolant 11 is placed approximately in the center of the inner tank 2.

該混合液のボイド率を減少させるには、空気泡の浮上速
度よ#)遅い水位上昇速度となる流量にて該混合液を内
槽2内に導入すればよく、一方ボイド率を一定に保持す
るには、水位上昇速度を空気泡浮上速度以上、好ましく
は該浮上速度よりも僅かに大きい速度にすればよい。ボ
イド率を増加させるには、空気自有率の大きい水−空気
混合液を、空気泡の浮上速度より速い水位上昇速度とな
る流量で内槽に導入する。冷却液とする混合液の構成は
水−空気に限らず、水−窒素、油−空気、油−窒素など
任意の液体−気体に置き換えることも可能である。
In order to reduce the void ratio of the mixed liquid, it is sufficient to introduce the mixed liquid into the inner tank 2 at a flow rate that results in a water level rising speed that is slower than the floating speed of air bubbles, while keeping the void ratio constant. In order to achieve this, the water level rising speed should be set to be equal to or higher than the air bubble floating speed, preferably slightly higher than the air bubble floating speed. In order to increase the void ratio, a water-air mixture having a large air content ratio is introduced into the inner tank at a flow rate that causes the water level to rise faster than the floating speed of air bubbles. The composition of the mixed liquid used as the cooling liquid is not limited to water-air, but may be replaced with any liquid-gas such as water-nitrogen, oil-air, oil-nitrogen, etc.

金属の噴霧焼入れにおいては噴霧冷却液を例えば微小空
気泡を含む水−空気混合液とし、冷却液の冷却能を通常
の吐出水蓄(ノズル圧力)、水温のほかに、該混合液の
ボイド率により制御し、材料の周りにノズルを配置して
材料の均一冷却を行なわしめる。
In spray quenching of metals, the spray cooling liquid is, for example, a water-air mixture containing micro air bubbles, and the cooling capacity of the cooling liquid is determined not only by the normal discharge water storage (nozzle pressure) and water temperature, but also by the void ratio of the mixture. control, and the nozzles are placed around the material to ensure uniform cooling of the material.

第6図は噴a焼入れに使用し得る装置の一態様を示す。FIG. 6 shows one embodiment of an apparatus that can be used for blast a hardening.

即ち、あらかじめ気泡の混入率(体積ボイド率)および
液温を設定した、水中に微小空気を分散させた水−空気
混合液を任意の水−空気混合液作成装置夕により形成す
るか、もしくは例えば空気を溶解させた水を減圧法によ
り作成し、該混合液もしくは水を材料の周りに同心状に
配置された複数個のノズル12に供給し噴出吐出し、中
央に設置含れた材料15の冷却を行なう。
That is, a water-air mixture in which micro air is dispersed in water is formed with a preset bubble inclusion rate (volumetric void ratio) and liquid temperature using an arbitrary water-air mixture preparation device, or, for example, Water in which air is dissolved is created by a reduced pressure method, and the mixed liquid or water is supplied to a plurality of nozzles 12 arranged concentrically around the material and ejected. Cool down.

次に、被処理材として炭素鋼(845c)を用いて浸漬
焼入れした場合を、実施例によって例示する。
Next, a case where carbon steel (845c) is used as the material to be treated and is immersed and hardened will be illustrated by way of example.

実施例 直径30■、長さ1 B(ha+の中実円柱状の2個の
炭素鋼試片を窒素ガス雰囲気中、全体を800℃に加熱
した後、第4図に示す装置内の20℃に保持した2穐の
水−空気混合液(ボイド率1チおよび5チ)中にそれぞ
れ浸漬し、ボイド率および液温を一定に保持して液温(
20℃)まで冷却した。
Example Two solid cylindrical carbon steel specimens with a diameter of 30 cm and a length of 1 B (ha+) were heated to 800°C in a nitrogen gas atmosphere, and then heated at 20°C in the apparatus shown in Figure 4. The liquid temperature (void ratio: 1x and 5x) was immersed in two volumes of water-air mixture (void ratio of 1x and 5x) held at
20°C).

その結果、いずれの炭素鋼試片も表面硬度的700HV
であり、径方向中心部では約400HVであった。これ
は従来の水のみによる冷却とほぼ同様の硬度であった。
As a result, all carbon steel specimens had a surface hardness of 700HV.
It was about 400 HV at the radial center. This was almost the same hardness as conventional cooling using only water.

次に、上記2個の炭素鋼試片のそれぞれの軸方向中央部
に互の間隔が90簡の2本の環状V溝を設け、この溝間
の熱処理前後の寸法差を測定した。その結果、前駆硬度
の増加に対応する膨張及び熱変形に基づく歪変化の総和
としての長さ変化は、従来の水のみによる冷却の場合が
相対歪0.351であるのに対して、いずれの場合も0
.2チ程度と減少し、実用上良好な効果がもたらされた
Next, two annular V grooves with an interval of 90 grooves were provided in the axial center of each of the two carbon steel specimens, and the dimensional difference between the grooves before and after the heat treatment was measured. As a result, the length change as the sum of strain changes due to expansion and thermal deformation corresponding to an increase in precursor hardness is 0.351 relative strain in the case of conventional water-only cooling; case is also 0
.. The number decreased to about 2 inches, and a good effect was brought about in practical use.

本発明の冷却方法によれば、簡便に冷却能を変えること
ができ、また従来の液体を用いる冷却法における蒸気膜
の形成、従って不安定な冷却を回避するととができる。
According to the cooling method of the present invention, the cooling capacity can be easily changed, and the formation of a vapor film and therefore unstable cooling in conventional cooling methods using liquid can be avoided.

史に冷却能を抑える緩和剤の使用が省かれるので、被処
理材への該緩和剤の付着、濃度維持などにわずられされ
ることがない。更にまた気液混合液が水−空気の場合、
安価である。
Since the use of a relaxation agent that suppresses the cooling ability is omitted, there is no need to worry about adhesion of the relaxation agent to the material to be treated and maintenance of the concentration. Furthermore, when the gas-liquid mixture is water-air,
It's cheap.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、種々のボイド率(体積チ)を有する空気−水
混合液(液温:約20℃)を冷却媒とした場合の鋼試料
の冷却曲線を示すグラフであり、 第2図は、種々の液温を有する空気−水混合液を冷却媒
とした場合の鋼試料の冷却曲線を示すグラフであり、 第3図は、空気−水混合液のボイド率を変化させ几場合
の鋼試料の800℃から400℃への冷却時間の変化を
示すグラフであり、 第4図は、浸漬焼入れ法の冷却方法に使用し得る装置の
縦断面図であり、 第5図は、第4図のA−Aにおける部分断面図であり、
そして 第6図は噴霧焼入れ法の冷却方法に使用し得る装置の部
分平面図である。 1・・・冷却槽 2・・・内槽 3・・・外槽5・・・
空気−水混合液作成装置−7・・・絞り弁12・・・ノ
ズル 特許出願人 株式会社 豊田中央研究所代理人 弁理士
 萼 優 美(ほか1名)才3 図 ホ゛′イ ド 率 (0ム) ヰ4 図 0 ヤ5 円 屋
Figure 1 is a graph showing the cooling curve of a steel sample when an air-water mixture (liquid temperature: approximately 20°C) having various void ratios (volume ratio) is used as a cooling medium. , is a graph showing cooling curves of steel samples when air-water mixtures having various liquid temperatures are used as coolants. 4 is a graph showing the change in cooling time of the sample from 800°C to 400°C; FIG. 4 is a vertical cross-sectional view of an apparatus that can be used in the cooling method of immersion quenching; It is a partial sectional view taken along A-A of
FIG. 6 is a partial plan view of an apparatus that can be used in the cooling method of the spray hardening method. 1...Cooling tank 2...Inner tank 3...Outer tank 5...
Air-water mixed liquid preparation device - 7... Throttle valve 12... Nozzle Patent applicant Toyota Central Research Institute Co., Ltd. Representative Patent attorney Yumi Kaede (and 1 other person) 3 years old Fig. M) ヰ4 Figure 0 Y5 Enya

Claims (8)

【特許請求の範囲】[Claims] (1)金I!4熱処理の冷却工程において、冷却媒とし
て液体に気体の微小気泡を分散させた液体−気体混合液
を用い、該微小気泡の均一分散状態を保持することによ
シ被冷却材の蒸気膜形成を阻止して均−且つ安定な冷却
を可能にすることを特徴とする金属熱処理の冷却方法。
(1) Gold I! 4. In the cooling process of heat treatment, a liquid-gas mixture in which gas microbubbles are dispersed in a liquid is used as a cooling medium, and by maintaining a uniformly dispersed state of the microbubbles, the formation of a vapor film on the material to be cooled is prevented. 1. A cooling method for metal heat treatment, which is characterized in that it enables uniform and stable cooling.
(2) 液体−気体混合液の気体含有率および/又は液
温を制御することによシ該混合液の冷却能を制御するこ
とを特徴とする特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, characterized in that the cooling capacity of the liquid-gas mixture is controlled by controlling the gas content and/or temperature of the liquid-gas mixture.
(3)冷却媒が10(体積序までの量の空気泡を含む空
気−水混合液である特許請求の範囲第1又は槙2項記載
の方法。
(3) The method according to claim 1 or 2, wherein the cooling medium is an air-water mixture containing air bubbles in an amount of up to 10 volumes.
(4)金属熱処理が銅の浸漬焼入れである特許請求の範
囲第1、第2又は第3項記載の方法。
(4) The method according to claim 1, 2 or 3, wherein the metal heat treatment is immersion hardening of copper.
(5)空気−水混合液を、空気泡の浮上速度と同じ又は
それより僅かに大きい冷却槽の水位上昇速度となる流量
で、該冷却槽の下部より槽内壁に沿い接融方向に流入さ
せることによシ空気泡の含有率を一定に保持し且つ空気
泡の均一分散状態を保持することを特徴とする特許請求
の範囲第4項記載の方法。
(5) The air-water mixture is caused to flow from the lower part of the cooling tank in the melting direction along the tank inner wall at a flow rate that is equal to or slightly higher than the floating speed of the air bubbles and the water level rise speed in the cooling tank. 5. A method as claimed in claim 4, characterized in that the air bubble content is kept constant and the air bubbles are uniformly distributed.
(6)空気泡径がα1ないし1關の範囲にある特許請求
の範囲第3ないし5項のいずれか1項記載の方法。
(6) The method according to any one of claims 3 to 5, wherein the air bubble diameter is in the range of α1 to α1.
(7) 金属熱処理が鋼のpjt霧焼入れであり、冷却
媒が10(体積)優までの微小空気泡を含む空気−水混
合液であシ、そして冷却能を噴出液量、液温および空気
泡含有率を調節することにより制御し、そして被冷却材
の周シの複数個のノズルから該冷却媒を噴秘することに
よシ被冷却材の均一冷却を行うことを特徴とする特#!
I−梢求の範囲第1項記載の方法。
(7) The metal heat treatment is PJT mist quenching of steel, the coolant is an air-water mixture containing up to 10 (by volume) micro air bubbles, and the cooling capacity is controlled by the amount of ejected liquid, liquid temperature and air A feature characterized in that the material to be cooled is uniformly cooled by controlling the bubble content and injecting the coolant from a plurality of nozzles around the circumference of the material to be cooled. !
I- The method according to item 1.
(8)液体−気体混合液を収容するための内槽と骸混合
液を保温又は液温制御するための外槽の二重N構造を有
する冷却槽:該内槽下部に設けられた、該混合液を内槽
下部内壁に沿って円周接線方向に流入するよう構成され
た流入口と流量制御のための絞り弁;および該内槽の上
部に設けられた溢流口を含むことを特徴とする金属浸漬
焼入の冷却用装置。
(8) Cooling tank with a double N structure consisting of an inner tank for storing the liquid-gas mixture and an outer tank for keeping the liquid-gas mixture warm or controlling the liquid temperature: A cooling tank provided at the bottom of the inner tank. It is characterized by comprising an inlet configured to allow the mixed liquid to flow in a circumferential tangential direction along the inner wall of the lower part of the inner tank, a throttle valve for controlling the flow rate, and an overflow port provided at the upper part of the inner tank. Cooling equipment for metal immersion quenching.
JP16457383A 1983-09-07 1983-09-07 Method and device for cooling in heat treatment of metal Pending JPS6056014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16457383A JPS6056014A (en) 1983-09-07 1983-09-07 Method and device for cooling in heat treatment of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16457383A JPS6056014A (en) 1983-09-07 1983-09-07 Method and device for cooling in heat treatment of metal

Publications (1)

Publication Number Publication Date
JPS6056014A true JPS6056014A (en) 1985-04-01

Family

ID=15795733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16457383A Pending JPS6056014A (en) 1983-09-07 1983-09-07 Method and device for cooling in heat treatment of metal

Country Status (1)

Country Link
JP (1) JPS6056014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131897A (en) * 2005-11-09 2007-05-31 Chuo Motor Wheel Co Ltd Heat treatment method for metallic member, and heat treatment apparatus therefor
KR101150650B1 (en) 2010-04-15 2012-05-25 이화다이아몬드공업 주식회사 Cryogenic treatment apparatus by continuous cooling and method of treatment using the same
JP2020104074A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Fine bubble supply device, cooling device and supply method and cooling method of fine bubble

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131897A (en) * 2005-11-09 2007-05-31 Chuo Motor Wheel Co Ltd Heat treatment method for metallic member, and heat treatment apparatus therefor
KR101150650B1 (en) 2010-04-15 2012-05-25 이화다이아몬드공업 주식회사 Cryogenic treatment apparatus by continuous cooling and method of treatment using the same
JP2020104074A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Fine bubble supply device, cooling device and supply method and cooling method of fine bubble

Similar Documents

Publication Publication Date Title
US3246761A (en) Liquid treating apparatus
US4426068A (en) Rotary gas dispersion device for the treatment of a bath of liquid metal
US3549695A (en) Method for downflow leaching
RU2018354C1 (en) Plant for treatment of fluid with gas
US4888956A (en) Cryogenic apparatus and cryogenic methods
US3405920A (en) Process and device for stirring and methodically circulating liquid masses by blowing gases therethrough
US2126164A (en) Apparatus for and process of treatment of liquid
US3891593A (en) Method and apparatus for dissolution of polymer in solvent
JPS6056014A (en) Method and device for cooling in heat treatment of metal
FI75867C (en) Method and apparatus for direct heat treatment of a medium or high carbon steel bar
JP2007056300A (en) Direct heat treatment method and apparatus for hot-rolled wire rod
Mandal et al. Gas holdup and entrainment characteristics in a modified downflow bubble column with Newtonian and non-Newtonian liquid
JPS61526A (en) Method and apparatus for heat treating metal or the like
US2151126A (en) Aeration apparatus
US698184A (en) Method of refining, aging, mellowing, and purifying alcoholic liquors.
JPH07289867A (en) Method and device for mixing cold gas with high temperature liquid
SU852341A1 (en) Reactor
US202886A (en) Improvement in soap-crutching machines
US2176473A (en) System for heat treatment
US3791984A (en) Method and apparatus for the manufacture of an emulsion
SU600178A1 (en) Device for ripening wine materials
US694584A (en) Process of converting wort into beer.
US1131339A (en) Hydrogenizing fatty matter.
US2012165A (en) Heat treating in circulatory gases
US500979A (en) Apparatus for hardening steel