JPS6055601A - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JPS6055601A
JPS6055601A JP16452583A JP16452583A JPS6055601A JP S6055601 A JPS6055601 A JP S6055601A JP 16452583 A JP16452583 A JP 16452583A JP 16452583 A JP16452583 A JP 16452583A JP S6055601 A JPS6055601 A JP S6055601A
Authority
JP
Japan
Prior art keywords
magnetic
soft magnetic
amorphous
thin film
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16452583A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Inazumi
満広 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP16452583A priority Critical patent/JPS6055601A/en
Publication of JPS6055601A publication Critical patent/JPS6055601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a superior soft magnetic thin film in a wide area of use conditions by piling up respective one layer or more of a crystalline soft magnetic thin film and an amorphous soft magnetic thin film. CONSTITUTION:A crystalline soft magnetic thin film and an amorphous soft magnetic thin film are piled up. The magnetic wall having a thick amorphous has large mobility, but difficulty of forming a magnetic zone. The magnetic wall having a relatively thin crystalline material has small mobility, but easiness of forming a reverse magnetic zone. A parameter of a read-out characteristic, that is, an initial magnetic permeability and a parameter of a write characteristic, that is, a maximum magnetic permeability are denoted by mui and mumax respectively. Then, as to mui dependent on magnitude of mobility of a magnetic wall, an amorphous is superior and a crystalline material is inferior. On the contrary, as to mumax dependent on easiness of forming a reverse magnetic zone, a crystalline material is superior and an amorphous is inferior. Large mui and mumax characteristics which can not be realized in each single film can be obtained by piling up an amorphous soft magnetic film and a crystalline soft magnetic film.

Description

【発明の詳細な説明】 本発明は軟磁性薄膜に関するものである。[Detailed description of the invention] The present invention relates to a soft magnetic thin film.

最近の磁気記録の高密度化に伴い、軟磁性薄膜は日増し
にその重要性を増している。しかしながら、軟磁性薄膜
は軟磁性材料としての一般的な問題点の他に、その形状
が薄膜である事に起因する多くの問題点を持っている。
With the recent increase in the density of magnetic recording, the importance of soft magnetic thin films is increasing day by day. However, in addition to the general problems associated with soft magnetic materials, soft magnetic thin films have many problems due to their thin film shape.

それらは根本的には、軟磁性体の磁化過程において最も
重要である磁壁の移動度および磁壁の発生の問題に帰着
されるものである。具体的には、軟磁性材料について一
般的な 1)大きな磁気異方性 2)大きな磁歪 3)構造の結晶的、磁気的な欠陥 等、そして薄膜である事に起因するものとして4)基板
との物理的な結合 5)表面、界面の凹凸 6)磁区構造がバルクの場合と異なる。
These problems fundamentally come down to the problems of domain wall mobility and domain wall generation, which are most important in the magnetization process of soft magnetic materials. Specifically, we will discuss the common problems with soft magnetic materials: 1) large magnetic anisotropy, 2) large magnetostriction, 3) crystalline and magnetic defects in the structure, and 4) defects caused by the thin film. 5) Surface and interface irregularities 6) Magnetic domain structure is different from that of the bulk.

等がある。これらは薄膜の場合、より効果的に磁壁の移
動を阻害するため、軟磁性膜の軟磁気特性の改善はバル
ク材料に比べて困難なものとなっている。
etc. In the case of a thin film, these materials inhibit domain wall movement more effectively, making it more difficult to improve the soft magnetic properties of a soft magnetic film than with bulk materials.

さて物質の軟磁気特性を云々する際、その測定条件と言
うものは非常に重要になる。と言うのは物質の磁気特性
は非常に非線型的な部分が多く、例えばある状況ではA
はBより優れているが、別の状況ではそれが逆になると
言う事は容易に起こり得る事である。そのため物質の磁
気特性はその使用環境と同じ状況で云々しなければ意味
がない。またこれは一つの材料が複数の状況で使用され
る場合、その全ての状況において優れた材料を開発する
事が困難である事をも示している。
When discussing the soft magnetic properties of materials, the measurement conditions are extremely important. This is because the magnetic properties of materials are often highly nonlinear; for example, in certain situations, A
is better than B, but the opposite could easily happen in other situations. Therefore, the magnetic properties of a substance have no meaning unless they are evaluated under the same conditions as the environment in which it is used. This also shows that when one material is used in multiple situations, it is difficult to develop a material that is good in all situations.

上述の磁気特性の測定条件による変化について最も大き
な要因は周波数と磁束密度である。例として3%81−
 F eと50%N i −F eの場合を第1図、第
2図に示す。第1図はロスの周波数依存性であり、第2
図は磁束密度に対する依存性である。図より明らかなよ
うに、ある点においてロスの大小、つまり軟磁気特性の
良否が逆転しているのがわかる。
The most important factors regarding the above-mentioned change in magnetic properties due to measurement conditions are frequency and magnetic flux density. As an example 3%81-
The cases of F e and 50% N i -F e are shown in FIGS. 1 and 2. Figure 1 shows the frequency dependence of loss, and the second
The figure shows the dependence on magnetic flux density. As is clear from the figure, at a certain point, the magnitude of the loss, that is, the quality of the soft magnetic properties, is reversed.

さて変圧器等に使用される軟磁性体は概して、一定周波
数、一定磁束密度で使用されるため、使用条件としては
比較的単純である。しかし磁気記録に使用される軟磁性
体は、例えば磁気ヘッドを例にとれば、書き込み時には
非常に大室な磁束密度で使用され、逆に読み出し時には
非常に小さな磁束密度で使用される事になり、使用状況
は2つの極端な面をもつ事になる。そのためその両方の
特性に優れた材料の開発は非常に困難なものとなる。
Now, since soft magnetic materials used in transformers and the like are generally used at a constant frequency and a constant magnetic flux density, the usage conditions are relatively simple. However, the soft magnetic materials used for magnetic recording, for example in magnetic heads, are used with a very large magnetic flux density when writing, and conversely with a very small magnetic flux density when reading. , the usage situation will have two extreme aspects. Therefore, it is extremely difficult to develop a material that is excellent in both properties.

現在磁気記録用軟磁性薄膜材料として研究されているも
のは大別して、結晶質材料とアモルファス状材料に二分
する事ができる。我々はこの二者の開発、研究の過程に
おいてそれらが相補的な磁気特性を持つ事を見出した。
The materials currently being researched as soft magnetic thin film materials for magnetic recording can be roughly divided into crystalline materials and amorphous materials. In the process of developing and researching these two materials, we discovered that they have complementary magnetic properties.

本発明はこの二者を積層する事により、総体として広範
囲の使用状況において優れた軟磁性薄膜を実現するもの
であるさて我々が見出した事実を第3図、第4図に例示
する。第3図は読み出し特性のパラメータであると考え
られる初透磁率)Jiの周波数依存性を示したものであ
る。また第4図は書き込み特性のパラメータであると考
えられる最大透磁率μm1LXの周波数依存性を示した
ものである。いずれも縦軸は相対目盛である。試料はい
ずれもパイレックスガラス上にスパッタ法で形成したも
ので、厚さは1μ餌である。この例ではアモルファスの
特性の代表的なものとしてOo −Z r −N bを
、また結晶質の代表的なものとしてセンダストの例を示
したが、他の物質の場合も同様の傾向を示す。図より明
らかなように、高密度磁気記録において使用される周波
数、(〜MHgl)においてμmはアモルファスが圧倒
的に優れているが、μmaXについては結晶質が優れて
いる事がわかる。この特性は我々が調査したアモルファ
ス、結晶質材料について普遍的に見出される現象である
ので、これはアモルファス膜、結晶質膜の根本に係る現
象であると考えられる。以下にそれについての一考察を
示さてμmとμxnaxの両方が大きく材料が軟磁性材
料の一つの理想である事は確かである。ところが我々の
実験において数100KHzから数MHssと言う周r
IjL数帯において、μmの大きなものはμmaXが小
さく、逆にμWaXの大きなものはμmが小さいと言う
結果しか得られなかった。これはμmとμmaxが両立
し難いと言う基本的な原理が存在し、かつアモルファス
と結晶質では逆の効果を示すのではないかと言う事を示
唆するものである。そこで何がμmとμmaxの大きさ
を決定する要因であるかを考えてみる。端的に言ってそ
の要因とは、μmについては磁壁の移動のしやすさであ
り、そしてμm1LXについては逆磁区の形成のしやす
さであると言う事ができる。そして更にその根本にある
ものは磁壁の厚さであると言う事ができる。ff1l&
iの厚さδは単純に言りて次のように表わされる。
By laminating these two materials, the present invention realizes a soft magnetic thin film that is excellent as a whole under a wide range of usage conditions.The facts we have discovered are illustrated in FIGS. 3 and 4. FIG. 3 shows the frequency dependence of the initial magnetic permeability (Ji), which is considered to be a parameter of the readout characteristics. Further, FIG. 4 shows the frequency dependence of the maximum magnetic permeability μm1LX, which is considered to be a parameter of the writing characteristics. In both cases, the vertical axis is a relative scale. All samples were formed on Pyrex glass by sputtering and had a thickness of 1 μm. In this example, Oo-Zr-Nb is shown as a representative example of amorphous properties, and sendust is shown as an example of a crystalline property, but other substances exhibit similar trends. As is clear from the figure, at the frequency (~MHgl) used in high-density magnetic recording, amorphous is overwhelmingly superior in μm, but crystalline is superior in μmaX. Since this characteristic is a phenomenon universally found in the amorphous and crystalline materials that we investigated, it is thought that this is a phenomenon related to the fundamentals of amorphous and crystalline films. A discussion on this will be presented below, and it is certain that both μm and μxnax are large and the material is an ideal soft magnetic material. However, in our experiments, the frequency range from several 100 KHz to several MHss
In the IjL number band, the only results obtained were that when the value of μm is large, μmaX is small, and conversely, when μWaX is large, μm is small. This suggests that there is a basic principle that μm and μmax are difficult to coexist, and that amorphous and crystalline materials exhibit opposite effects. Therefore, let us consider what is the factor that determines the size of μm and μmax. Simply put, the factors can be said to be the ease of movement of domain walls for μm, and the ease of forming reverse magnetic domains for μm1LX. Furthermore, it can be said that what lies at the root of this is the thickness of the domain wall. ff1l&
The thickness δ of i is simply expressed as follows.

δocPイ ここでムは交換定数、Kは異方性定数である。δocPi Here, mu is an exchange constant and K is an anisotropy constant.

また磁壁の易動度をσとすれば、σは移動速度をυ、外
部磁場をHとして V=σHと定義される。またσは先
述のAとKを用いて と表わされる。従って上の二式より明らかなように σ ■ δ つまり磁壁の易動度はWB壁の厚さに比例すると言う事
になる。
Furthermore, if the mobility of the domain wall is σ, then σ is defined as V=σH, where υ is the moving speed and H is the external magnetic field. Further, σ is expressed using A and K mentioned above. Therefore, as is clear from the above two equations, σ ■ δ In other words, the mobility of the domain wall is proportional to the thickness of the WB wall.

また逆磁区に関して言えば、磁壁の厚さが厚いほど逆磁
区は形成されにくくなると言える。
Regarding reverse magnetic domains, it can be said that the thicker the domain wall, the more difficult it is to form reverse magnetic domains.

それは一般に逆磁区の形成に際しては磁性材料中の欠陥
や不純物の周囲に形成されるスパイク磁区等、その形成
の茅となるものが必要である。しかしそれら欠陥や不純
物の大きさに分布がある場合、磁壁の厚さに比例したあ
る大きさ以下のものについては、その周囲にスパイク磁
区が発生し得ないために、逆磁区形成の茅となる事がで
きない。
Generally, when a reverse magnetic domain is formed, something that will support its formation, such as a spike magnetic domain formed around a defect or impurity in a magnetic material, is required. However, if there is a distribution in the size of these defects or impurities, if the size is smaller than a certain value proportional to the thickness of the domain wall, a spike domain cannot be generated around it, and this becomes a barrier for the formation of reverse magnetic domains. I can't do anything.

そのため、磁壁の厚さが厚くなると、逆磁区形成に際し
ての有効な茅の数が減る。そのために、磁壁の厚さδが
厚くなると逆磁区が形成されにくくなる。
Therefore, as the thickness of the domain wall increases, the number of grasses that are effective in forming reverse magnetic domains decreases. Therefore, as the thickness δ of the domain wall increases, it becomes difficult to form reverse magnetic domains.

さて上記の二つの事から、アモルファス。結晶質のμm
1μmax特性がどのように説明されるかを考えてみる
。まず、アモルファスと結晶質との大きな差は、その構
造に起因する異方性にの大きさの差にあると言える。軟
磁性材料は本来、小さなKをもつが薄膜はその製造方法
から見てその組成の微視的、巨視的な変動が起こりやす
い。巨視的な変動については種々の多元系合金膜におい
て、その組成が数%の程度で変動する事が現実に観測さ
れる。また微視的な変動については、形成される膜の多
くは柱状の構造を示し、その界面と内&1SII?:お
いて、やはり数%程度の組成変動が観測される。従って
薄膜状態には本来そのような組成変動が存在する事を踏
まえて考えなければならない。そのため巨視的には等方
的であるように見えても、結晶質軟磁性材料の薄膜は微
視的には組成変動による大きなKを持つと考えられる。
Now, from the above two things, it is amorphous. crystalline μm
Let us consider how the 1 μmax characteristic is explained. First, it can be said that the major difference between amorphous and crystalline materials is the difference in anisotropy caused by their structures. Soft magnetic materials inherently have a small K, but thin films are susceptible to microscopic and macroscopic variations in their composition due to their manufacturing methods. Regarding macroscopic fluctuations, it is actually observed that the composition of various multi-component alloy films varies by several percent. Regarding microscopic fluctuations, most of the films formed show a columnar structure, and the interface and inner &1SII? : Also, a compositional variation of about several percent is observed. Therefore, consideration must be given to the fact that such compositional fluctuations originally exist in a thin film state. Therefore, even if it appears macroscopically isotropic, a thin film of a crystalline soft magnetic material is considered to have a large K due to compositional fluctuations microscopically.

しかし、構造上異方性が発生しにくいアモルファス軟磁
性材料においては、上記の組成変動を考慮してもなお小
さなKを持つと考えられる。この結晶質材料の局所的に
は大きなKと、アモルファス材料の小さなKが磁壁の厚
さの差となりこの二種類の材料の特徴的なμmIμm&
Xの特性を決定していると考えられる。先に示したよう
に磁壁の厚さδはJ′に7KVC比例する。ここで交換
定数ムは大まかに言ってキュリ一温度に比例する量であ
り、結晶とアモルファスとでは大差がない。従って結晶
質とアモルファスとのKの差により、結晶質軟磁性材料
はアモルファス軟磁性材料に比して薄い磁壁をもち、逆
にアモルファスは厚い磁壁をもつ事になる。つまり先に
議論したように、アモルファスの厚い磁壁は易動度は大
きいが゛逆磁区は形成されにくい。また結晶質材料の相
対的に薄い磁壁は易動度は小さいが逆磁区は形成されや
すい。従って磁壁の易動度の大きさに依存するμmはア
モルファスが良く、結晶質が悪い。逆に逆磁区形成の容
易さに依存するμmaxは、結晶質が良く、アモルファ
スが悪い事になる。
However, in an amorphous soft magnetic material in which anisotropy is difficult to occur due to its structure, it is considered that it still has a small K even when the above-mentioned compositional variation is taken into account. The locally large K of this crystalline material and the small K of the amorphous material create a difference in domain wall thickness, which is the characteristic μmIμm&
It is thought that the characteristics of X are determined. As shown above, the thickness δ of the domain wall is proportional to J' by 7KVC. Here, the exchange constant M is roughly proportional to the Curie temperature, and there is no big difference between crystal and amorphous. Therefore, due to the difference in K between crystalline and amorphous materials, crystalline soft magnetic materials have thinner domain walls than amorphous soft magnetic materials, whereas amorphous materials have thicker domain walls. In other words, as discussed earlier, a thick amorphous domain wall has a high mobility, but it is difficult to form a reverse magnetic domain. Furthermore, although the relatively thin domain walls of crystalline materials have low mobility, reverse magnetic domains are likely to be formed. Therefore, μm, which depends on the degree of mobility of the domain wall, is good for amorphous and bad for crystalline. Conversely, μmax, which depends on the ease of forming reverse magnetic domains, is good for crystalline materials and bad for amorphous materials.

上記の考察は、結晶質とアモルファスの構造の差により
磁壁の厚さに差ができ、それがこの二種の物質の特徴的
なμmとμmaxの大きさを決定し。
The above consideration shows that the difference in structure between crystalline and amorphous causes a difference in the thickness of the domain wall, which determines the characteristic μm and μmax values of these two types of materials.

ていると考えた。磁壁の厚さと言う量は直接的には測定
しに(い量であるが、上記の考察を支持するデータとし
て第5図を示す。縦軸は磁壁の数を横軸は磁束密度を示
す。試料は■、■がアモルファスで■Oo−11’ e
−81−]j、■F e −N i −81−Bである
。■は結晶質で3%81− F eである。図より明ら
かであるようにアモルファスはいずれも、磁束密度を大
きくしても磁壁数は増加していず、つまり逆磁区が形成
されにくい事を示している。以上の考察から薄膜軟磁性
材料には薄膜特有の問題が存在し、そのためμm特性と
μmax特性とは両立し難い事が明らかとなった。
I thought it was. Although it is difficult to directly measure the thickness of a domain wall, FIG. 5 is shown as data supporting the above consideration. The vertical axis shows the number of domain walls, and the horizontal axis shows the magnetic flux density. The sample ■ and ■ are amorphous and ■ Oo-11' e
-81-]j, ■F e -N i -81-B. ■ is crystalline and has 3% 81-Fe. As is clear from the figure, in all amorphous materials, the number of domain walls does not increase even when the magnetic flux density is increased, indicating that reverse magnetic domains are difficult to form. From the above considerations, it has become clear that thin film soft magnetic materials have problems specific to thin films, and that it is therefore difficult to achieve both μm characteristics and μmax characteristics.

本発明はアモルファス軟磁性膜と結晶質軟磁性膜を積層
する事により、それぞれ単独の膜では実現し得ない、大
きなμm9μma!特性を得るものである。
By laminating an amorphous soft magnetic film and a crystalline soft magnetic film, the present invention has a large μm of 9 μma, which cannot be achieved with each film alone! It is something that acquires characteristics.

本発明によるμm1μma!特性の例をそれぞれ第6図
、第7@に示す。縦軸はそれぞれ任意目盛であり横軸は
周波数を示す。試料は1μ鍋のc。
μm1μma according to the present invention! Examples of characteristics are shown in Figures 6 and 7, respectively. The vertical axes are arbitrary scales, and the horizontal axes indicate frequencies. The sample is c in a 1μ pot.

−z r −N b figの上に、1μ愼のセンダス
ト膜をスパッタ法で形成したものである。第3図、第4
図とを比較すれば明らかなように、μm1μmaXのい
ずれもが良い特性を示している。
-z r -N b A sendust film with a thickness of 1 μm was formed by sputtering on the fig. Figures 3 and 4
As is clear from the comparison with the figure, both of μm and 1 μmaX exhibit good characteristics.

上記の例はアモルファス、結晶質を各一層積層した例で
あるが、それを更に複数回積層した構造も可能である。
Although the above example is an example in which a single layer of amorphous material and a single layer of crystalline material are laminated, a structure in which amorphous and crystalline materials are laminated multiple times is also possible.

また、磁性膜の表面状Mによっては積層した膜間に相互
作用が働き磁気特性を悪化させる場合もあるので、各々
の磁性層の間に非磁性層を設けた構造も可能である。
Further, depending on the surface condition M of the magnetic film, interaction may occur between the laminated films and deteriorate the magnetic properties, so a structure in which a nonmagnetic layer is provided between each magnetic layer is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

81図は磁性体のロスの周波数依存性を示す。 縦軸はロスを、横軸は周波数を示す。 第2図は磁性体のロスの磁束密度依存性を示す。縦軸は
ロスを、横軸は磁束密度である。 第3図、第4図はそれぞれアモルファスと結晶質軟磁性
材料の初透磁率μと最大透磁率μmaXの周波数依存性
を示す。縦軸は、第3図はμm、第4図はμmfLXで
それぞれ任意目盛であり、横軸はそれぞれ周波数である
。 第5図はアモルファス■Oo −F a −B i −
B、■F e −N i −B i −B 、および結
晶質軟磁性材料、■!1%B i −F eの磁壁数の
磁束密度依存性を示す。縦軸は磁壁数5を、横軸は磁束
密度である。 第6図、第7図は本発明による一つの実施例として、ア
モルファスOo −Z r −N b膜ト結晶であるセ
ンダストを積層した膜のμm1μmaxの周波数依存性
を示す。縦軸は第6図はμm、第7図はμmaxであり
、それぞれ任意目盛である。また横軸は周波数である。 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務 (1’/、A″) JL (4−の1 予(?lz) /ρ2 /ρイ lσ′ B 4丁) frCHX) 第4図 102/θ4 /θ6 ’rc)−1yrン 第6図
Figure 81 shows the frequency dependence of magnetic loss. The vertical axis shows loss, and the horizontal axis shows frequency. FIG. 2 shows the dependence of magnetic loss on magnetic flux density. The vertical axis represents loss, and the horizontal axis represents magnetic flux density. FIGS. 3 and 4 show the frequency dependence of the initial magnetic permeability μ and the maximum magnetic permeability μmaX of amorphous and crystalline soft magnetic materials, respectively. The vertical axes are μm in FIG. 3 and μmfLX in FIG. 4, which are arbitrary scales, and the horizontal axes are frequencies. Figure 5 shows amorphous ■Oo -F a -B i -
B, ■F e -N i -B i -B, and crystalline soft magnetic material, ■! The dependence of the number of domain walls on magnetic flux density for 1% B i -Fe is shown. The vertical axis represents the number of domain walls, 5, and the horizontal axis represents the magnetic flux density. FIGS. 6 and 7 show the frequency dependence of μm 1 μmax of a film in which sendust, which is an amorphous Oo-Zr-Nb film, is laminated as an example according to the present invention. The vertical axis is μm in FIG. 6 and μmax in FIG. 7, and each is an arbitrary scale. Also, the horizontal axis is frequency. Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami Tsutomu (1'/, A'') JL (4-1 YO (?lz) /ρ2 /ρI lσ' B 4-cho) frCHX) Figure 4 102/θ4 /θ6 'rc)-1yr Figure 6

Claims (1)

【特許請求の範囲】 1、 結晶質軟磁性薄膜とアモルファス軟磁性薄膜とを
、それぞれ一層以上積層した事を特徴とする軟磁性薄膜
。 2 磁性膜の間に非磁性層を設けた事を特徴とする特許
請求の範囲第1項に記載の軟磁性薄膜。
[Claims] 1. A soft magnetic thin film characterized by laminating one or more crystalline soft magnetic thin films and one or more amorphous soft magnetic thin films. 2. The soft magnetic thin film according to claim 1, characterized in that a nonmagnetic layer is provided between the magnetic films.
JP16452583A 1983-09-07 1983-09-07 Soft magnetic thin film Pending JPS6055601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16452583A JPS6055601A (en) 1983-09-07 1983-09-07 Soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16452583A JPS6055601A (en) 1983-09-07 1983-09-07 Soft magnetic thin film

Publications (1)

Publication Number Publication Date
JPS6055601A true JPS6055601A (en) 1985-03-30

Family

ID=15794818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16452583A Pending JPS6055601A (en) 1983-09-07 1983-09-07 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPS6055601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128605A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Amorphous magnetic alloy multilayer film and magnetic head using the same
US5083320A (en) * 1990-12-24 1992-01-28 Athletic Helmet, Inc. Protective helmet with self-contained air pump
JPH0516174Y2 (en) * 1987-11-25 1993-04-28

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868211A (en) * 1981-10-16 1983-04-23 Fujitsu Ltd Thin film magnetic head
JPS59130408A (en) * 1983-01-17 1984-07-27 Hitachi Ltd Magnetic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868211A (en) * 1981-10-16 1983-04-23 Fujitsu Ltd Thin film magnetic head
JPS59130408A (en) * 1983-01-17 1984-07-27 Hitachi Ltd Magnetic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128605A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Amorphous magnetic alloy multilayer film and magnetic head using the same
JPH0516174Y2 (en) * 1987-11-25 1993-04-28
US5083320A (en) * 1990-12-24 1992-01-28 Athletic Helmet, Inc. Protective helmet with self-contained air pump

Similar Documents

Publication Publication Date Title
JPH0157408B2 (en)
JPS6055601A (en) Soft magnetic thin film
Hornreich et al. Magnetostrictive phenomena in metallic materials and some of their device applications
EP1598834A2 (en) Nanomagnetic materials
US4571652A (en) Magnetic recording and reproducing apparatus
Tianen et al. Cellular magnetic domains in Fe–Ga alloys
KR890003038B1 (en) Magnetic recording carrier
JPS6111455B2 (en)
JPS59159510A (en) Magnetooptical recording medium
JPH0352202B2 (en)
Saito Characteristics of laminated alloy films heads for high frequency recording
Jia et al. Domain switching in bismuth layer-structured multiferroic films
Berkowitz et al. Interactions between Ni and NiO
JPS6120954B2 (en)
JPS6110210A (en) Ferrite magnetic grain for magnetic recording
JPS5996714A (en) Magnetic recording medium
JPH0312369B2 (en)
JP3977344B2 (en) Information recording medium, information recording medium manufacturing method, and recording medium processing apparatus
Moreno‐Hernández et al. Spin Coupling in the Initial Stages of the Zinc‐Blende MnN Growth on the CrN (111) Surface
JPS61115259A (en) Photomagnetic recording medium
Moore Thin ferromagnetic films
JPS61120408A (en) Photomagnetic recording medium
JPH03104104A (en) Magnetic garnet material
JPH04367205A (en) Soft magnetic thin film
JP3628859B2 (en) Magneto-optical element and optical apparatus