JPS605551B2 - Manufacturing method for highly thermally conductive ceramics - Google Patents

Manufacturing method for highly thermally conductive ceramics

Info

Publication number
JPS605551B2
JPS605551B2 JP57179096A JP17909682A JPS605551B2 JP S605551 B2 JPS605551 B2 JP S605551B2 JP 57179096 A JP57179096 A JP 57179096A JP 17909682 A JP17909682 A JP 17909682A JP S605551 B2 JPS605551 B2 JP S605551B2
Authority
JP
Japan
Prior art keywords
powder
thermally conductive
conductive ceramics
highly thermally
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57179096A
Other languages
Japanese (ja)
Other versions
JPS5969474A (en
Inventor
勝利 米屋
章彦 柘植
寛 井上
博康 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57179096A priority Critical patent/JPS605551B2/en
Priority to US06/443,955 priority patent/US4539298A/en
Priority to CA000416243A priority patent/CA1193618A/en
Priority to EP82110909A priority patent/EP0080213B1/en
Priority to DE8282110909T priority patent/DE3273238D1/en
Publication of JPS5969474A publication Critical patent/JPS5969474A/en
Publication of JPS605551B2 publication Critical patent/JPS605551B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高熱伝導性セラミックスの製造方法に関し、
更に詳しくは、放熱特性に殴れ、繊密で電気絶縁性に富
むセラミックスの製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing highly thermally conductive ceramics,
More specifically, the present invention relates to a method for producing ceramics that have excellent heat dissipation properties, are delicate, and have excellent electrical insulation properties.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

エレクトロニクス機器、エネルギー関連電子機器の分野
では、その高密度化、例えばIC、超LSIの集積化の
進展に伴い、放熱特性に優れた絶縁材料の開発が強く望
まれている。
In the field of electronic equipment and energy-related electronic equipment, as the density thereof increases, for example, the integration of ICs and VLSIs progresses, there is a strong desire for the development of insulating materials with excellent heat dissipation properties.

現在、このような絶縁材料としては各種のセラミックス
が賞用されており、例えば、IC基板を中心に山203
が主流となっている。
Currently, various types of ceramics are used as such insulating materials.
has become the mainstream.

その他にも&0が使用され、一部ではSiO、BN、A
INも利用され始めている。しかしながら、AI2Qは
熱伝導率に限界(最高約30W′のoK)があってその
放熱特性を充分に高めることができず、また茂0は毒性
物質であるので使用することは好ましくない。
&0 is also used, and in some cases SiO, BN, A
IN is also beginning to be used. However, AI2Q has a limited thermal conductivity (maximum oK of about 30 W') and cannot sufficiently enhance its heat dissipation properties, and since AI2Q is a toxic substance, its use is not preferable.

BNの場合、六方晶のものは強度が低く、立方晶のもの
はダイヤモンドと同機に高価であるため常用性に欠け工
業的ではない。また、AIN‘ま、理論的には高い熱伝
導率を備えているが、実際のものは不純物(例えば酸素
城いは微量のSi等)の混在が避けられず、その結果、
A!203の2〜3倍程度の値を示すのみである。更に
、SICも熱伝導率が高い材料であるが、通常「 その
電気低抗は低く絶縁材料としての適性には欠ける。最近
「大きな電気絶縁性と熱伝導性を併有するSIC−Be
○系の材料が開発(特関昭56−66086号、同57
−2591号、同57一15484号等を参照)されて
いるが、この材料はバリスタ特性を備えるため高電圧下
では使用不能であり「しかも、製造工程において毒性物
質たる氏○を用いるため不都合である。このように、従
来から知られている高熱伝導性のセラミックスには、そ
れぞれ一長一短があるため、更に優れた放熱特性を有し
「かつ電気絶縁性の高い材料が望まれている。
In the case of BN, hexagonal crystals have low strength, and cubic crystals are as expensive as diamonds, so they are not commonly used and are not suitable for industrial use. In addition, AIN's theoretically have high thermal conductivity, but in reality, impurities (such as oxygen or trace amounts of Si) are unavoidable, and as a result,
A! It only shows a value about 2 to 3 times that of 203. Furthermore, although SIC is also a material with high thermal conductivity, it usually has low electrical resistance and is not suitable as an insulating material.
○-based materials were developed (Special Seki No. 56-66086, No. 57)
2591, No. 57-15484, etc.), but because this material has varistor properties, it cannot be used under high voltage.Moreover, it is inconvenient because the manufacturing process uses toxic substances. As described above, each of the conventionally known highly thermally conductive ceramics has its advantages and disadvantages, so there is a desire for a material that has even better heat dissipation properties and is highly electrically insulating.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した産業上の要請に応えることができ、
放熱特性と電気絶縁性に優れたセラミックスの製造方法
の提供を目的とする。
The present invention can meet the above industrial demands,
The purpose is to provide a method for manufacturing ceramics with excellent heat dissipation properties and electrical insulation properties.

〔発明の概要〕[Summary of the invention]

本発明はSIC−AINをベースにしたセラミックスの
製造方法である。
The present invention is a method for manufacturing ceramics based on SIC-AIN.

すなわち、本発明方法は、炭化ケイ素の粉末0〜85重
量%(ただし、0は含まず。)と、酸化カルシウム、酸
化バリウム、酸化ストロンチウムの群から選ばれる少な
くとも1種の酸化物又は熱分解してそれぞれの該酸化物
に転化する少なくとも1種の化合物の粉末0.1〜5重
量%と、残部が窒化アルミニウムの粉末とから成る混合
粉末を、形成し、得られた成形体を1600〜1820
00の温度城で焼結することを特徴とする。本発明にか
かる混合粉末は配合成分として必ずSICを含んでおり
、その配合割合は混合粉末の全重量に対し85%以下(
ただし、0は含まない。)に設定される。好ましくは、
65重量%以下である。SICの配合割合が85重量%
を越えると、競結して得られたセラミックスの電気絶縁
性が低下して目的を逸脱する。用いるSICの粉末の粒
径は通常2仏肌程度以下である。また、該混合粉末には
、Ca○、Ba0、Sr○の1種若し〈は2種以上の酸
化物の粉末、又は糠緒時その温度で熱分解して上記酸化
物に転化する化合物、例えば、Ca0に関してはCaC
03、CaN03;故0に関してはBaC03、BaN
03;Sぬに関してはSに03、SrN03等の粉末が
配合される。
That is, the method of the present invention comprises 0 to 85% by weight (excluding 0%) of silicon carbide powder and at least one oxide selected from the group of calcium oxide, barium oxide, and strontium oxide or thermally decomposed powder. A mixed powder consisting of 0.1 to 5% by weight of powder of at least one compound that is converted into each of the oxides and the balance is aluminum nitride powder is formed, and the obtained molded body is heated to 1600 to 1820% by weight.
It is characterized by being sintered at a temperature of 0.00. The mixed powder according to the present invention always contains SIC as a blended component, and its blending ratio is 85% or less (
However, 0 is not included. ) is set. Preferably,
It is 65% by weight or less. SIC blending ratio is 85% by weight
If this value is exceeded, the electrical insulation properties of the ceramics obtained by competitive bonding will deteriorate, thereby defeating the purpose. The particle size of the SIC powder used is usually about 2 Buddha's size or less. In addition, the mixed powder includes a powder of one or more oxides of Ca○, BaO, Sr○, or a compound that is thermally decomposed at the temperature during brazing and converted into the above-mentioned oxide, For example, for Ca0, CaC
03, CaN03; Regarding 0, BaC03, BaN
Regarding 03; SrN03, powders such as 03 and SrN03 are blended with S.

これらの粉末は、凝結助剤である。配合割合は、全体の
重量に対し0.1〜5重量%、好ましくは0.5〜3重
量%で、0.1重量%未満では糠結敷剤としての効果が
発揮されず、また5重量%を越えると暁結助剤としての
効果は飽和状態に達して無意味となるばかりではなく、
かえって晩結して得られたセラミックスの熱伝導性が低
下してしまい不都合である。NNは混合粉末の残部を構
成する。
These powders are setting aids. The blending ratio is 0.1 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight. If it is less than 0.1% by weight, the effect as a bran binder will not be exhibited, and if it is less than 0.1% by weight, %, the effect as a dawn coagulation aid not only reaches a saturated state and becomes meaningless;
On the contrary, the thermal conductivity of the resulting ceramics deteriorates due to late setting, which is disadvantageous. NN constitutes the remainder of the mixed powder.

用いるMNの粉末の粒径は通常0.2〜2ぶれでよい。
混合粉末は、上記した各配合成分の粉末を、例えばボー
ルミルなどの粉砕混合機にいれて所定時間混合すること
によって調製される。この混合粉末を、つぎに、所定の
金型に充填して常法により加圧成形して成形体とする。
The particle size of the MN powder used may normally be 0.2 to 2 degrees.
The mixed powder is prepared by putting the powders of the above-mentioned ingredients into a grinding mixer such as a ball mill, and mixing them for a predetermined period of time. This mixed powder is then filled into a predetermined mold and press-molded by a conventional method to form a molded body.

このとき、混合粉末にパラフィン、ステアリン酸などの
有機バインダーを5〜1の重量%程度(バインダーの種
類と成形方法によって、いくぶん異なる)添加しておく
と、成形操作を円滑に行なうことができる。この成形体
を焼結して本発明のセラミックスとする。
At this time, if an organic binder such as paraffin or stearic acid is added to the mixed powder in an amount of about 5 to 1% by weight (varies somewhat depending on the type of binder and the molding method), the molding operation can be carried out smoothly. This molded body is sintered to form the ceramic of the present invention.

競緒に先立って、成形体を例えば窒素ガス中で約450
℃の温度で仮暁すると、バインダー成分を除去すること
ができる。競結時の雰囲気は、SIC「AINと反応し
ない非酸化性雰囲気であればよく、通常はアルゴンガス
雰囲気である。
Prior to compaction, the compact is heated, for example, in nitrogen gas for about 450 min.
The binder component can be removed by freezing at a temperature of °C. The atmosphere at the time of bidding may be any non-oxidizing atmosphere that does not react with SIC's AIN, and is usually an argon gas atmosphere.

競結の方法は、例えばカーボンの型に成形体を入れてこ
れを加熱加圧するホットプレス法が通常適用される。ホ
ットアィソスタティツク法を適用することもでき、この
場合には、均質で複雑形状のものも製造することができ
る。これらの場合、圧力は通常100〜3000k9/
めである。更には、NNの配合割合の大きい成形体の鱗
綾は、常圧下でも行なうことができる。本発明方法にあ
っては、この焼結過程における競絹温度が1600〜1
820qoの温度城に設定されることが必要である。
As a competitive binding method, a hot press method is usually applied, for example, in which a molded body is placed in a carbon mold and then heated and pressed. A hot isostatic method can also be applied, and in this case, homogeneous and complex shapes can also be manufactured. In these cases the pressure is usually 100-3000k9/
It's a good thing. Furthermore, scaling of a molded article containing a large proportion of NN can also be carried out under normal pressure. In the method of the present invention, the silk temperature in this sintering process is 1600 to 1
It is necessary to set the temperature to 820 qo.

該温度が1600oo未満の場合には、セラミックスを
繊密化することは困難でそのため強度、熱伝導などの特
性に難点が生じ、また、182000を超えると得られ
たセラミックス熱伝導率が急激に低下してしまう。〔発
明の実施例〕 実施例 1 平均粒径0.物肌のO型SIC粉末60夕と平均粒径1
.かののAIN粉末389と高純度CaC03粉末(試
薬級)2多とを秤量し、これらをボールミルポツトに入
れて充分に混合した。
When the temperature is less than 1,600 oo, it is difficult to make the ceramic densified, resulting in problems in properties such as strength and thermal conductivity, and when the temperature exceeds 182,000, the thermal conductivity of the obtained ceramic decreases rapidly. Resulting in. [Examples of the invention] Example 1 Average particle size: 0. Physical O-type SIC powder 60mm and average particle size 1
.. Kano's AIN powder 389 and two quantities of high purity CaC03 powder (reagent grade) were weighed, placed in a ball mill pot, and thoroughly mixed.

得られた混合粉末にパうフィンを7夕(約7重量%)分
散せしめ、これを37×37×100側の金型に充填し
て500k9′地の圧で加圧成形して成形体とした。こ
の成形体を窒素気流中、45000で仮嬢した。ついで
、これをカーボンの型にセットし、アルゴンガス流中で
、1800qo、300k9′流の条件で3び分間ホッ
トプレスした。
Powfin was dispersed in the obtained mixed powder (approximately 7% by weight), and this was filled into a mold on the 37 x 37 x 100 side and press-molded at a pressure of 500 k9' to form a compact. did. This molded body was subjected to temporary molding at a temperature of 45,000 in a nitrogen stream. Next, this was set in a carbon mold and hot pressed in an argon gas flow for 3 minutes under the conditions of 1800 qo and 300 k9' flow.

得られた競結体の電気抵抗は、10V′物の条件で1ぴ
60伽より大きく、また、熱伝導率は100W/仇oK
であった。
The electrical resistance of the obtained composite body is greater than 1.60V under the condition of 10V, and the thermal conductivity is 100W/20K.
Met.

実施例 2〜12 実施例1に準じて、表に示したように配合成分、配合割
合、隣縞条件を変えて18重類の競結体を製造した。
Examples 2 to 12 According to Example 1, 18-fold complexes were produced by changing the blended components, blending ratio, and adjacent stripe conditions as shown in the table.

これらにつき、密度、熱伝導率、電気抵抗を測定しその
結果を表に併記した。〔発明の効果〕 以上の説明で明らかなように本発明方法は、繊密であっ
て、電気抵抗が高く絶縁性に富み、熱伝導率が大きく放
熱特性に優れたセラミックス材料を製造することができ
るのでその工業的価値は大である。
The density, thermal conductivity, and electrical resistance of these were measured and the results are also listed in the table. [Effects of the Invention] As is clear from the above description, the method of the present invention is capable of producing a ceramic material that is delicate, has high electrical resistance, is rich in insulation, has high thermal conductivity, and has excellent heat dissipation properties. Therefore, its industrial value is great.

Claims (1)

【特許請求の範囲】 1 炭化ケイ素の粉末0〜85重量%(ただし、0は含
まず。 )と、酸化カルシウム、酸化バリウム、酸化ストロンチ
ウムの群から選ばれる少なくとも1種の酸化物又は熱分
解してそれぞれの該酸化物に転化する少なくとも1種の
化合物の粉末0.1〜5重量%と、残部が窒化アルミニ
ウムの粉末とから成る混合粉末を、成形し、得られた成
形体を1600〜1820℃の温度域で焼結することを
特徴とする高熱伝導性セラミツクスの製造方法。2 該
酸化物の粉末又は該化合物の粉末の量が0.5〜3重量
%である特許請求の範囲第1項記載の高熱伝導性セラミ
ツクスの製造方法。3 該焼結がホツトプレス法で行な
われる特許請求の範囲第1項記載の高熱伝導性セラミツ
クスの製造方法。 4 該焼結がホツトアイソスタテイツクプレス(HIP
)法で行なわれる特許請求の範囲第1項又は第3項記載
の高熱伝導性セラミツクスの製造方法。 5 該焼結が常圧下で行なわれる特許請求の範囲第1項
記載の高熱伝導性セラミツクスの製造方法。
[Scope of Claims] 1. 0 to 85% by weight (excluding 0) of silicon carbide powder and at least one oxide or thermally decomposed material selected from the group of calcium oxide, barium oxide, and strontium oxide. A mixed powder consisting of 0.1 to 5% by weight of powder of at least one compound that is converted into each of the oxides and the balance being aluminum nitride powder is molded, and the resulting molded body is heated to 1600 to 1820% by weight. A method for producing highly thermally conductive ceramics characterized by sintering in a temperature range of °C. 2. The method for producing highly thermally conductive ceramics according to claim 1, wherein the amount of the oxide powder or the compound powder is 0.5 to 3% by weight. 3. The method for producing highly thermally conductive ceramics according to claim 1, wherein the sintering is performed by a hot press method. 4 The sintering is performed using a hot isostatic press (HIP).
) A method for producing highly thermally conductive ceramics according to claim 1 or 3, which is carried out by the method. 5. The method for producing highly thermally conductive ceramics according to claim 1, wherein the sintering is performed under normal pressure.
JP57179096A 1981-11-25 1982-10-14 Manufacturing method for highly thermally conductive ceramics Expired JPS605551B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57179096A JPS605551B2 (en) 1982-10-14 1982-10-14 Manufacturing method for highly thermally conductive ceramics
US06/443,955 US4539298A (en) 1981-11-25 1982-11-23 Highly heat-conductive ceramic material
CA000416243A CA1193618A (en) 1981-11-25 1982-11-24 Highly heat-conductive ceramic material
EP82110909A EP0080213B1 (en) 1981-11-25 1982-11-25 Highly heat-conductive ceramic material
DE8282110909T DE3273238D1 (en) 1981-11-25 1982-11-25 Highly heat-conductive ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179096A JPS605551B2 (en) 1982-10-14 1982-10-14 Manufacturing method for highly thermally conductive ceramics

Publications (2)

Publication Number Publication Date
JPS5969474A JPS5969474A (en) 1984-04-19
JPS605551B2 true JPS605551B2 (en) 1985-02-12

Family

ID=16059971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179096A Expired JPS605551B2 (en) 1981-11-25 1982-10-14 Manufacturing method for highly thermally conductive ceramics

Country Status (1)

Country Link
JP (1) JPS605551B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796077A (en) * 1986-08-13 1989-01-03 Hitachi, Ltd. Electrical insulating, sintered aluminum nitride body having a high thermal conductivity and process for preparing the same
JPH0653614B2 (en) * 1988-03-30 1994-07-20 日本原子力研究所 Ceramic material for fusion reactor

Also Published As

Publication number Publication date
JPS5969474A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
JPS5849510B2 (en) Chitsuka Aluminum Shouketsutaino
EP0080213B1 (en) Highly heat-conductive ceramic material
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JPS605551B2 (en) Manufacturing method for highly thermally conductive ceramics
WO1989008077A1 (en) PROCESS FOR PRODUCING SUPERCONDUCTING (Bi, Tl)-Ca-(Sr, Ba)-Cu-O CERAMIC
JPS6337072B2 (en)
JP3580778B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP2666942B2 (en) Aluminum nitride sintered body
JPH02124772A (en) Aluminum nitride sintered compact and its production
US3489532A (en) Sintered silicon carbide varistors
JPH10291857A (en) High specific resistance sic sintered compact
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPS5891059A (en) Composite ceramic sintered body and manufacture
JP2735645B2 (en) Black aluminum nitride sintered body
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JPS63166765A (en) Aluminum nitride base sintered body and manufacture
JPH01164731A (en) Superconducting material and its production
JPS61146764A (en) Aluminum nitride sintered body and manufacture
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS59136938A (en) Material of semiconductor substrate
JP2704194B2 (en) Black aluminum nitride sintered body
JPS61146766A (en) Aluminum nitride sintered body and manufacture
JPS61183174A (en) Aluminum nitride aintered body