JPS6055470B2 - Method for manufacturing oxide ceramics - Google Patents

Method for manufacturing oxide ceramics

Info

Publication number
JPS6055470B2
JPS6055470B2 JP57198392A JP19839282A JPS6055470B2 JP S6055470 B2 JPS6055470 B2 JP S6055470B2 JP 57198392 A JP57198392 A JP 57198392A JP 19839282 A JP19839282 A JP 19839282A JP S6055470 B2 JPS6055470 B2 JP S6055470B2
Authority
JP
Japan
Prior art keywords
hot isostatic
oxide ceramics
isostatic pressing
sintered body
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57198392A
Other languages
Japanese (ja)
Other versions
JPS5988376A (en
Inventor
啓 松本
茂 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57198392A priority Critical patent/JPS6055470B2/en
Publication of JPS5988376A publication Critical patent/JPS5988376A/en
Publication of JPS6055470B2 publication Critical patent/JPS6055470B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、ソフトフェライトや圧電磁器等の酸化物
セラミックスの熱間静水圧プレスを利用した製造方法に
係り、熱間静水圧プレス時に発生する割れを防止した製
造方法に関する。
Detailed Description of the Invention The present invention relates to a manufacturing method using hot isostatic pressing of oxide ceramics such as soft ferrite and piezoelectric ceramics, and relates to a manufacturing method that prevents cracks that occur during hot isostatic pressing. .

かかる酸化物セラミックスの製造には、その内部空孔
の除去、結晶成長による過度の結晶粒粗大化を防止し高
密度化を計るために、熱間静水圧プレス法が採られてい
る。
In the production of such oxide ceramics, a hot isostatic pressing method is adopted in order to remove internal pores, prevent excessive crystal grain coarsening due to crystal growth, and achieve high density.

この熱間静水圧プレス法には、カプセル法、ガラスモ
ールド法、前焼結法があるが、前2方法はコスト、生産
性の点で問題があるため、被処理材の密度を理論密度の
94%以上にし、被処理材の空孔が閉孔となるように、
被処理材成形体を予備焼結したのち、熱間静水圧プレス
する前焼結法が一般的である。
This hot isostatic pressing method includes the capsule method, glass mold method, and pre-sintering method, but the first two methods have problems in terms of cost and productivity, so the density of the material to be processed is adjusted to the theoretical density. 94% or more, so that the pores of the treated material become closed,
A common pre-sintering method is to pre-sinter the molded material to be treated and then hot isostatically press it.

この前焼結法において成形体を予備焼結すると、焼結
体の表面に表面歪層か形成され、焼結体の内部と表面層
部との組成成分の差異により内部歪が蓄積させ、焼結体
を熱間静水圧プレスする時に主表面に蓄積された大きな
応力により被処理材に割れが発生する。
When the compact is pre-sintered in this pre-sintering method, a surface strain layer is formed on the surface of the sintered body, and internal strain accumulates due to the difference in composition between the inside of the sintered body and the surface layer. When a compact is subjected to hot isostatic pressing, the large stress accumulated on the main surface causes cracks to occur in the processed material.

特に焼結体の寸法が各一辺がl0TfUft以上で容積
l5d以上の大型成形体の場合に上記の割れが顕著であ
る。 この発明は酸化物セラミックスを前焼結法で熱間
静水圧プレス処理する際に被処理材にかかる割れを発生
させない製造方法を目的としている。
The above cracking is particularly noticeable in the case of a large sintered body having dimensions of 10TfUft or more on each side and a volume of 15d or more. The object of the present invention is to provide a manufacturing method that does not cause cracks in the treated material when subjecting oxide ceramics to hot isostatic pressing using a pre-sintering method.

すなわち、この発明は、ソフトフェライト、圧電磁器
等の酸化物セラミックスからなり各一辺寸法10W7l
以上で容積15c7ll以上の成形体を予備焼結し、こ
の焼結体の少なくとも対向する2主表面の表面層を1面
当りO、Iwun以上研削除去したのち、熱間静水圧プ
レス処理することを要旨とする酸化物セラミックスの製
造方法である。 熱間静水圧プレスにおいて被処理材の
成形体の寸法を、各一辺が1−以上で容積が15d以上
の板状材料としたのは、上記の条件の成形体は予備焼結
時に内部歪が蓄積させ、熱間静水圧プレス処理時に焼結
体に割れが発生するためであり、成形体寸法、容積が大
きくなるほど焼結後の研削除去の必要な表面歪層は深く
なる。
That is, this invention is made of oxide ceramics such as soft ferrite and piezoelectric ceramics, each side having a dimension of 10W7l.
As described above, a molded body having a volume of 15c7ll or more is pre-sintered, the surface layers of at least two opposing main surfaces of this sintered body are polished away by at least O, Iwun per surface, and then subjected to hot isostatic pressing. This is a method for producing oxide ceramics. In hot isostatic pressing, the dimensions of the molded material to be processed are plate-shaped materials with each side of 1- or more and a volume of 15 d or more because the molded material under the above conditions has no internal strain during pre-sintering. This is because cracks occur in the sintered body during the hot isostatic pressing process due to accumulation of particles, and the larger the size and volume of the compact, the deeper the surface strain layer that needs to be removed by grinding after sintering.

次に、上記寸法の成形体を予備焼結するが、焼結条件は
成形体の材質により異なり、ソフトフェライトの場合、
被処理材がMn−Znフェライトのときは、酸素0.5
〜10%含有の不活性ガス雰囲気で1150素C〜13
500Cの温度条件が好ましく、Ni一Znフェライト
のときは酸素雰囲気中で1150℃〜1250′Cの温
度が好ましい。
Next, the compact with the above dimensions is pre-sintered, but the sintering conditions vary depending on the material of the compact; in the case of soft ferrite,
When the material to be treated is Mn-Zn ferrite, oxygen 0.5
~1150 elemental C~13 in an inert gas atmosphere containing ~10%
A temperature condition of 500C is preferred, and in the case of Ni-Zn ferrite, a temperature of 1150C to 1250'C in an oxygen atmosphere is preferred.

また、圧電磁器の場合は、酸素雰囲気中で1100゜C
〜1250′Cの温度条件が好ましい。この発明におい
て、予備焼結した焼結体の少なくとも対向する2主表面
を研削加工するが、材質により表面歪層の深さは異なる
ものの、少なくとも対向する2主表面の表面層を0.1
Tm以上除去する必要がある。すなわち、0.1Tn!
n未満の研削除去では表面歪層が残存して熱問静水圧ブ
レス時に割れ発生してしまう。ソフトフェライトの場合
は研削除去すべき表面歪層が深いため、0.2Tnm以
上の表面層の研削除去が好ましい。またさらに、表面層
の研削除去を焼結体の全表面に施こすと、熱間静水圧ブ
レス時の割れ発生防止に極めて有効となるが、少なくと
も、表面積が広く対向する2主表面の表面層を研削除去
すると熱間静水圧ブレス時の割れを防止てきる。ついて
表面層の研削除去を行なつた焼結体を熱間静水圧ブレス
処理するが、その条件は1000℃〜;1300゜Cの
温度、400kg/C7lf〜2000kg/dの圧力
条件が好ましい。
In addition, in the case of piezoelectric ceramics, the heating temperature is 1100°C in an oxygen atmosphere.
Temperature conditions of ~1250'C are preferred. In this invention, at least two opposing main surfaces of a pre-sintered sintered body are ground. Although the depth of the surface strain layer varies depending on the material, at least the surface layer of the two opposing main surfaces is ground by 0.1
It is necessary to remove more than Tm. That is, 0.1Tn!
If less than n is removed by polishing, a surface strain layer will remain and cracks will occur during hot isostatic pressing. In the case of soft ferrite, since the surface strain layer to be removed by polishing is deep, it is preferable to remove the surface layer with a thickness of 0.2 Tnm or more by polishing. Furthermore, polishing the surface layer over the entire surface of the sintered body is extremely effective in preventing cracking during hot isostatic pressing. Removing this will prevent cracking during hot isostatic pressing. The sintered body from which the surface layer has been ground is then subjected to hot isostatic pressing, preferably at a temperature of 1000° C. to 1300° C. and a pressure of 400 kg/C7lf to 2000 kg/d.

以下に、この発明による実施例を示しその効果を明らか
にする。
Examples according to the present invention will be shown below to clarify its effects.

実施例13Mn −Znフェライトの配合原料として、 MnCO326.8モル%、ZnO2l.2モル%、F
e2O352モル%を秤量配合し、混合して仮焼後に粉
砕し、60朗×ω順刈2mfn1容積43.2cf!l
のブロックにブレス成型した。
Example 13 The raw materials for Mn-Zn ferrite were MnCO326.8 mol%, ZnO2l. 2 mol%, F
Weighed and blended 52 mol% of e2O3, mixed, calcined and pulverized, 60 ro x ω Junkari 2 mfn 1 volume 43.2 cf! l
Breath molded into a block.

3この成形体1
0媚を、脱バインダー処理したのち、酸素1%含有の窒
素ガス中で、130(代)、2時間の焼結を行なつた。
得られた焼結体の60T10n×607127!の2主
表面を片面当り0.5m研削除去した。
3 This molded body 1
After the binder was removed from the sample, it was sintered for 2 hours at 130 liters in nitrogen gas containing 1% oxygen.
The obtained sintered body is 60T10n×607127! The two main surfaces of the specimen were ground down by 0.5 m per side.

4・ついで、研削後の焼結体を
温度1100℃、圧力1200k9/dの条件で熱間静
水圧ブレス処理した。つぎに、焼結後に表面の研削除去
しない焼結体を同じ条件て熱間静水圧ブレス処理した従
来の製造方法によるソフトフェライトと、上記のこの発
明方法で得られたソフトフェライトとを、発生した割れ
個数で評価試験した。その結果を第1表に示す。)〔実
施例2〕 Ni−Znフェライトの配合原料として、NiOl3.
5モル%、ZnO32モル%、Fe2O349.5モル
%を秤量配合し、混合して仮焼後に粉砕し、48Tnf
nX6−×12顛、容積?.56dのブロックにブレス
成型した。
4.Then, the ground sintered body was subjected to hot isostatic pressing at a temperature of 1100° C. and a pressure of 1200 k9/d. Next, soft ferrite obtained by the conventional manufacturing method in which a sintered body whose surface was not polished after sintering was subjected to hot isostatic pressing under the same conditions, and soft ferrite obtained by the above-mentioned method of the present invention were generated. An evaluation test was conducted based on the number of cracks. The results are shown in Table 1. ) [Example 2] NiOl3.
Weighed and blended 5 mol% of ZnO, 2 mol% of ZnO, and 49.5 mol% of Fe2O3, mixed and pulverized after calcining, 48Tnf
nX6-x12 pieces, volume? .. Breath molded into a 56d block.

この成形体10−を、脱バインダー処理したのち、酸素
雰囲気で、1200′Cl2時間の焼結を行なつた。
After the molded body 10- was subjected to a binder removal treatment, it was sintered for 2 hours at 1200'Cl in an oxygen atmosphere.

得られた焼結体の48wt×60T!Stの2主表面を
片面当り0.4Tt01t研削除去した。
The obtained sintered body is 48wt x 60T! The two main surfaces of St were polished by 0.4Tt01t per side.

ついで、研削後の焼結体を温度1200℃、圧力100
0k9/c#fの条件で熱間静水圧ブレス処理した。
Next, the sintered body after grinding was heated at a temperature of 1200°C and a pressure of 100°C.
Hot isostatic pressing was performed under the conditions of 0k9/c#f.

つぎに、焼結後に表面の研削除去しない焼結体を同じ条
件て熱間静水圧ブレス処理した従来の製造方法によるソ
フトフェライトと、上記のこの発明方法で得られたソフ
トフェライトを、発生した割れ個数で評価試験した。そ
の結果を第2表に示す。〔実施例3〕 圧電磁器の配合原料として、PbTiO,53モル%、
PbZrO347モル%を秤量配合し、混合成型して仮
焼後に微粉砕し、60?×6h×12?、容積43.2
a1のブロックにブレス成型した。
Next, soft ferrite obtained by the conventional manufacturing method in which a sintered body whose surface was not polished after sintering was subjected to hot isostatic pressing under the same conditions, and soft ferrite obtained by the above-mentioned method of the present invention were examined for cracks that occurred. An evaluation test was conducted based on the number of pieces. The results are shown in Table 2. [Example 3] PbTiO, 53 mol%, as a raw material for piezoelectric ceramics,
Weighed and blended 47 mol% of PbZrO3, mixed and molded it, calcined it, then finely pulverized it to a powder of 60% by weight. ×6h×12? , volume 43.2
Breath molding was done on block a1.

この成形体10媚を、脱バインダー処理したのち、酸素
雰囲気で、1230′Cl2時間の焼結を行なつた。得
られた焼結体の6Cym×6hの2主表面を片面当り0
.2wrm研削除去した。
After the binder was removed from this molded body, 1230'Cl was sintered for 2 hours in an oxygen atmosphere. Two main surfaces of 6 Cym x 6 h of the obtained sintered body were
.. 2wrm group was deleted.

ついで、研削後の焼結体を温度1200℃、圧力100
0k9/clの条件て熱間静水圧ブレス処理した。
Next, the sintered body after grinding was heated at a temperature of 1200°C and a pressure of 100°C.
Hot isostatic pressing was performed under the condition of 0k9/cl.

つぎに、焼結後に表面の研削除去しない焼結体を同じ条
件で熱間静水圧ブレス処理した従来の製造方法による圧
電磁器と、上記のこの発明方法で得られた圧電磁器とを
、発生した割れ個数で評価試験した。その結果を第3表
に示す。第1表〜第3表より明らかな如く、この発明に
より、熱間静水圧ブレス時の割れ発生を防止でき歩留向
上、その効果は極めて大である。
Next, a piezoelectric ceramic obtained by the conventional manufacturing method in which a sintered body whose surface was not polished after sintering was subjected to hot isostatic pressing under the same conditions, and a piezoelectric ceramic obtained by the above-mentioned method of the present invention were produced. An evaluation test was conducted based on the number of cracks. The results are shown in Table 3. As is clear from Tables 1 to 3, the present invention can prevent the occurrence of cracks during hot isostatic pressing and improve yield, which is extremely effective.

Claims (1)

【特許請求の範囲】 1 酸化物セラミックスからなる各一辺寸法10mm以
上で容積15cm^3以上の成形体を予備焼結し、この
焼結体の少なくとも対向する2主表面の表面層を1面当
り0.1mm以上研削除去したのち、熱間静水圧プレス
処理することを特徴とする酸化物セラミックスの製造方
法。 2 ソフトフェライトからなる成形体の予備焼結後に行
なう表面層の研削除去を1面当り0.2mm以上とした
特許請求の範囲第1項記載の酸化物セラミックスの製造
方法。
[Claims] 1. A molded body made of oxide ceramics with each side dimension of 10 mm or more and a volume of 15 cm^3 or more is pre-sintered, and the surface layers of at least two opposing main surfaces of this sintered body are coated per surface. A method for producing oxide ceramics, which comprises performing a hot isostatic press treatment after grinding away 0.1 mm or more. 2. The method for producing oxide ceramics according to claim 1, wherein the surface layer is removed by polishing to a depth of 0.2 mm or more per surface after preliminary sintering of the molded body made of soft ferrite.
JP57198392A 1982-11-11 1982-11-11 Method for manufacturing oxide ceramics Expired JPS6055470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57198392A JPS6055470B2 (en) 1982-11-11 1982-11-11 Method for manufacturing oxide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198392A JPS6055470B2 (en) 1982-11-11 1982-11-11 Method for manufacturing oxide ceramics

Publications (2)

Publication Number Publication Date
JPS5988376A JPS5988376A (en) 1984-05-22
JPS6055470B2 true JPS6055470B2 (en) 1985-12-05

Family

ID=16390360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198392A Expired JPS6055470B2 (en) 1982-11-11 1982-11-11 Method for manufacturing oxide ceramics

Country Status (1)

Country Link
JP (1) JPS6055470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153867A (en) * 1988-12-03 1990-06-13 Ngk Insulators Ltd Production of uniform sintered compact

Also Published As

Publication number Publication date
JPS5988376A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
ATE16275T1 (en) DENSE MOLDINGS OF POLYCRYSTALLINE HEXAGONAL BORON NITRIDE AND PROCESS FOR THEIR PRODUCTION BY ISOSTATIC HOT PRESSING.
US11198648B2 (en) Cordierite-based sintered body, method for producing the same, and composite substrate
JP3693191B2 (en) Indium oxide-based sintered body, method for producing the same, and indium oxide-based target
JPS60186475A (en) Silicon nitride sintered body and manufacture
JPS6055470B2 (en) Method for manufacturing oxide ceramics
JPH06182732A (en) Manufacture of ceramic target
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
KR100503352B1 (en) A method for preparing dense silicon carbide ceramics
JPH04298085A (en) Manufacturing piezoelectric procelain
JPS63236757A (en) Polycrystal ceramic product and manufacture
JPH022824B2 (en)
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JP2862692B2 (en) Manufacturing method of single crystal ferrite
JP2936828B2 (en) Method for manufacturing piezoelectric element for laminated piezoelectric actuator
JPS6054795B2 (en) Manufacturing method for high-density piezoelectric ceramics
JPH0742172B2 (en) Method for manufacturing piezoelectric ceramics
JPH05170512A (en) Production of piezoelectric element
JP4017226B2 (en) Method for producing porous alumina sintered body for gas flow restriction material
JPH05117032A (en) Production of silicon nitride sintered compact
KR970009415B1 (en) High density ferrite processing method
JPS59111982A (en) Thermally hydrostatic press for piezoelectric ceramics
JPH01152707A (en) Manufacture of ferrite
JPH0230671A (en) Production of sintered material of silicon carbide
JPH0474764A (en) Light transmitting sintered material of yttria and production thereof
JPS63100061A (en) Manufacture of light permeable ceramics