JPS6055463B2 - Manufacturing method of cordierite-based honeycomb for exhaust gas purification - Google Patents

Manufacturing method of cordierite-based honeycomb for exhaust gas purification

Info

Publication number
JPS6055463B2
JPS6055463B2 JP56068493A JP6849381A JPS6055463B2 JP S6055463 B2 JPS6055463 B2 JP S6055463B2 JP 56068493 A JP56068493 A JP 56068493A JP 6849381 A JP6849381 A JP 6849381A JP S6055463 B2 JPS6055463 B2 JP S6055463B2
Authority
JP
Japan
Prior art keywords
cordierite
honeycomb
exhaust gas
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56068493A
Other languages
Japanese (ja)
Other versions
JPS57183362A (en
Inventor
資郎 佐野
祐久 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nippon Tokushu Togyo KK
Original Assignee
Agency of Industrial Science and Technology
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Tokushu Togyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP56068493A priority Critical patent/JPS6055463B2/en
Publication of JPS57183362A publication Critical patent/JPS57183362A/en
Publication of JPS6055463B2 publication Critical patent/JPS6055463B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 この発明はコーデイエライトを主成分とした排ガス浄化
用ハニカムの改良された製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing an exhaust gas purifying honeycomb containing cordierite as a main component.

一般に、コーデイエライト (2MgOI拍』203・
5SiO、)は広い温度範囲に亘つて、非常に低い線熱
膨張係数を示すものであり、急激な温度変化を与えた時
の熱衝撃に対し優れた抵抗性を有する。このため、コー
デイエライトは耐熱性の良さを生カルてハニカム状に成
形し、自動車の排ガス浄化装置の触媒担体として使用さ
れる。近年触媒効率の向上、浄化装置の小型化を目ざし
、ハニカムのセル数の高密度化が検討されている。高密
度化によつて比表面積を増し、小型化を達成しようとす
るものであるが、従来のセル厚O、3mでは高密度化す
ると、開孔率が小さくなり圧力損失が大きくなるという
欠点が生じる。従つてセル厚を薄くする必要があるが、
薄くすると従来の材質では強度低下が大きく、浄化装置
への組込み時及び使用中の振動等で割れる恐れがあり、
あまり薄くできなかつた。本発明の目的は上述の欠点を
解消した薄くても機械的強度の充分あるコーデイエライ
ト系排ガス浄化用ハニカムの製法を提供することにあり
、かかる目的はコーデイエライト若しくはコーデイエラ
イトの組成となるように調合したコーデイエライト調合
物95〜85重量部に平均粒径が2〜30μmであるチ
タン酸アルミニウミ5 〜15重量部を添加して混合し
、しかる後ハニカム構造に成形し、1350〜1430
0cで焼結して焼結体を得ることによつて達成される。
In general, cordierite (2MgOI beats) 203.
5SiO, ) exhibits a very low coefficient of linear thermal expansion over a wide temperature range, and has excellent resistance to thermal shock when sudden temperature changes are applied. For this reason, cordierite, which has good heat resistance, is formed into a honeycomb shape and used as a catalyst carrier for automobile exhaust gas purification devices. In recent years, increasing the number of honeycomb cells has been studied with the aim of improving catalyst efficiency and downsizing purification equipment. The aim is to increase the specific surface area and achieve miniaturization by increasing the density, but with the conventional cell thickness of 3 m, increasing the density reduces the porosity and increases the pressure loss. arise. Therefore, it is necessary to reduce the cell thickness, but
When made thinner, the strength of conventional materials decreases significantly, and there is a risk of cracking due to vibrations, etc. when installed in a purification device or during use.
I couldn't make it too thin. The purpose of the present invention is to provide a method for manufacturing a cordierite-based honeycomb for exhaust gas purification that is thin but has sufficient mechanical strength and eliminates the above-mentioned drawbacks. 5 to 15 parts by weight of aluminum titanate having an average particle size of 2 to 30 μm are added and mixed to 95 to 85 parts by weight of the cordierite preparation prepared as follows, and then formed into a honeycomb structure. 1430
This is achieved by sintering at 0c to obtain a sintered body.

上述のようにして得られた焼結体は吸水率が15〜25
%で室温から10圓℃における線熱膨張係数が1.2×
10−’/℃以下となり、排ガス浄化用ハニカムとして
好ましいものとなる。
The sintered body obtained as described above has a water absorption rate of 15 to 25.
%, the coefficient of linear thermal expansion from room temperature to 10 degrees Celsius is 1.2
10-'/°C or less, making it preferable as a honeycomb for exhaust gas purification.

即ち、排ガス浄化j用ハニカムは、後工程で触媒等を担
持する必要があるために、吸水率15%以上が必要であ
り、又、強度の面から吸水率25%以下が必要とされ、
さらに耐熱衝撃性として上記線熱膨張係数が1.2×1
0−6/℃であることが必要なのである。; 以下に本
発明を更に詳細に説明するに、通常コーデイエライトを
得る配合組成は、MgO−71d203一SiO2系で
ムライトあるいはコランダムの生成領域にあるコーデイ
エライトの理論組成にできるだけ近い配合程、得られる
焼結体の熱膨張係数が小さくなることが知られており、
コーデイエライト含有量の多い配合は焼成に適する温度
の範囲が狭い。そしてコーデイエライト含有量の多い配
合のものは焼成温度が低い(135(代)以下)とコー
デイエライトの生成が行われず、反対に焼成温度の高い
、過焼(1450℃以上)状態では、焼成物が分解して
ムライト及びガラス等が生成される。しかしながら本発
明に使用し得るコーデイエライトとしては、一般に良好
とされている組成範囲であるMgOll〜16重量部、
Al2O333〜41重量部、SiO243〜56重量
部から゛なる比率の組成のものに限らず、MgOについ
ては前記組成範囲の下限値よりも更に低い場合でもよく
、又SiO)については前記組成範囲の上限値よりも高
い場”合でも良い。更にコーデイエライトはハ匂ρ・2
A1203′−゛5Si02の組成になるように、カオ
リン、木節粘土等を調合した生状態のコーデイエライト
調合物であつてもよいし、あるいはこれを仮焼して合成
したコーデイエライト調合物でも差支えない。上述のコ
ーデイエライト若しくはコーデイエライト調合物Cコー
デイエライト質ョと記す。)には、チタン酸アルミニウ
ムが添加される。チタン酸アルミニウムの添加量はコー
デイエライト質95〜85重量部に対し5〜15重量部
であることが必要である。添加量が5重量部よりも少な
いと機械的強度、及び耐熱衝撃性に改善が見られず、そ
の効一果が発揮されない。また15重量部よりも多いと
線熱膨張係数(室温〜10000C)が1.2刈0−6
/℃より大きくなり、耐熱衝撃性が無添加より低くなつ
てしまう。又、チタン酸アルミニウムの平均粒径は2〜
30μmである。この平均粒径が2μmよりニも小さい
と焼成時、チタン酸アルミニウムの分解が早く、分解に
より生じたチタンがコーデイエライトの原料と反応する
等の原因により吸水率が15%より小さくなり、多孔性
を維持することができなくなり、又、同様の原因により
上述の線熱膨張1係数が1.2×101/℃より大きく
なり、低膨張性の維持が困難となる。又30μmより大
きくなると、添加しても強度の増加が認められないし、
更には押出ダイスの排出溝の巾が0.20m以下では薄
壁に不連続な部分を起し易く、実質的に成形困難である
。尚、上述の如くチタン酸アルミニウムの平均粒径を小
さくするど吸水率が小さくなるのであるが、例えば摩砕
等によりチタン酸アルミニウムを微粒子としてコーデイ
エライト質に添加すると非常に緻密な、即ち吸水率のほ
とんどない焼結体を得ることができることが知られてい
る。コーデイエライト質にチタン酸アルミニウムを添加
後は、適宜手段により混合し、適宜に加圧しフてハニカ
ム形状に成形する。成形後は1350〜1430℃にて
焼成する。この温度範囲内で焼成する理由は次のようで
ある。即ち、1350℃よりも低いとコーデイエライト
質の生成が充分に促進されないため、優れた機械的強度
、耐熱衝撃性が得られな・い。又、1430Cよりも高
いと、一旦生成されたコーデイエライト質の一部が分解
し、ガラス質層を形成するため、充分な多孔性を持つた
ハニカム構造体が得られない。
That is, the honeycomb for exhaust gas purification needs to have a water absorption rate of 15% or more because it needs to support catalysts etc. in the subsequent process, and also needs to have a water absorption rate of 25% or less from the viewpoint of strength.
Furthermore, as thermal shock resistance, the linear thermal expansion coefficient is 1.2×1.
It is necessary that the temperature be 0-6/°C. To explain the present invention in more detail below, the blending composition for obtaining cordierite is as close as possible to the theoretical composition of cordierite, which is MgO-71d203-SiO2 and is in the production range of mullite or corundum. It is known that the coefficient of thermal expansion of the obtained sintered body becomes smaller,
A formulation with a high cordierite content has a narrow temperature range suitable for firing. For formulations with a high cordierite content, if the firing temperature is low (below 135 degrees), cordierite will not be produced, and on the other hand, if the firing temperature is high, overfired (1450°C or higher), The fired product decomposes to produce mullite, glass, etc. However, the cordierite that can be used in the present invention has a composition range of MgOll to 16 parts by weight, which is generally considered to be good.
The composition is not limited to a composition with a ratio of 33 to 41 parts by weight of Al2O3 and 43 to 56 parts by weight of SiO2, but MgO may be even lower than the lower limit of the above composition range, and SiO) may be lower than the upper limit of the above composition range. It is OK even if the value is higher than the value.Furthermore, cordierite has a
It may be a green cordierite preparation prepared by blending kaolin, Kibushi clay, etc. so as to have the composition A1203'-゛5Si02, or a cordierite preparation synthesized by calcining this. But it doesn't matter. The above-mentioned cordierite or cordierite preparation is referred to as cordierite C. ) is added with aluminum titanate. The amount of aluminum titanate added must be 5 to 15 parts by weight based on 95 to 85 parts by weight of cordierite. If the amount added is less than 5 parts by weight, no improvement will be seen in mechanical strength and thermal shock resistance, and the effect will not be exhibited. If the amount exceeds 15 parts by weight, the coefficient of linear thermal expansion (room temperature to 10,000C) will be 1.2, 0-6.
/°C, and the thermal shock resistance becomes lower than that without additives. In addition, the average particle size of aluminum titanate is 2~
It is 30 μm. If this average particle size is smaller than 2 μm, the aluminum titanate decomposes quickly during firing, and the titanium produced by the decomposition reacts with the raw material of cordierite, resulting in a water absorption rate of less than 15% and porous Moreover, due to the same reason, the coefficient of linear thermal expansion mentioned above becomes larger than 1.2×10 1 /° C., making it difficult to maintain low expansion properties. Moreover, when the diameter is larger than 30 μm, no increase in strength is observed even if it is added.
Furthermore, if the width of the discharge groove of the extrusion die is less than 0.20 m, discontinuous portions are likely to occur in the thin wall, making molding substantially difficult. As mentioned above, the smaller the average particle size of aluminum titanate, the lower the water absorption rate. For example, when aluminum titanate is added to cordierite as fine particles by grinding, etc., it becomes extremely dense, that is, water absorption. It is known that it is possible to obtain sintered bodies with almost no porosity. After aluminum titanate is added to cordierite, it is mixed by an appropriate means and pressurized appropriately to form it into a honeycomb shape. After molding, it is fired at 1350 to 1430°C. The reason for firing within this temperature range is as follows. That is, if the temperature is lower than 1350°C, the formation of cordierite is not sufficiently promoted, and excellent mechanical strength and thermal shock resistance cannot be obtained. Moreover, if the temperature is higher than 1430C, a part of the cordierite once generated will decompose and form a glassy layer, making it impossible to obtain a honeycomb structure with sufficient porosity.

焼成時間は特に限定しないが、・温度が高い場合は短時
間(通常0.5〜1時間)、温度が低い場合は長時間(
通常1〜1時間)を要する。上述のように焼結すると吸
水率が15〜25%で、室温から1000℃での線熱膨
張係数が1.2刈0−6/℃以下の焼結体が得られる。
The firing time is not particularly limited, but ・If the temperature is high, it will be short (usually 0.5 to 1 hour), and if the temperature is low, it will be long (usually 0.5 to 1 hour).
Usually takes 1 to 1 hour). When sintered as described above, a sintered body having a water absorption rate of 15 to 25% and a linear thermal expansion coefficient of 1.2/0-6/°C or less from room temperature to 1000°C can be obtained.

この焼結体は、多孔質とするために粒子間の焼結を充分
行なわない従来のコーデイエライト系ハニカムと異なり
、粒子間の焼結は充分である。この焼結体の吸水率は、
成形用バインダーやチタン酸アルミニウムの粒度を調整
すること等によつて壁に形成された孔を反映しているの
であつて、焼結が不十分なために粒子間にできる孔を反
映しているのではない。この焼結体は機械的強度、特に
耐熱衝撃性が30〜50%向上する。この理由は次のよ
うに考えられる。即ち、熱衝撃によるワレの発生は、急
激な加熱や冷却の際に生じるハニカム内部と外周部及び
端面部との温度差により起こるものであるが、チタン酸
アルミニウムの添加は比重を高め熱容量の増大をもたら
し、この温度差を小さくする。加えて、ハニカム構造体
の熱衝撃抵抗係数RはR=KS/Eα(K熱伝導率、S
機械的強度、E弾性率、α線熱膨張係数)で示されるよ
うに強度の改善が耐熱衝撃性を向上させることは一般に
よく知られていることであり、これらの相乗効果により
耐熱衝撃性が改善されるものと考えられる。以上のよう
に本発明により得られるハニカムは粒子間の結合が充分
であるため強度が大きく、且つ耐熱衝撃性にも優れ従来
のコーデイエライト系ハニカムではセル厚0.2Wr1
nが薄さの限界と言われていたのが0.13順位まで可
能となる。
This sintered body differs from conventional cordierite honeycombs in which sintering between particles is not sufficiently performed to make the body porous, but sintering between particles is sufficient. The water absorption rate of this sintered body is
This reflects the pores formed in the wall by adjusting the particle size of the molding binder and aluminum titanate, and it also reflects the pores formed between particles due to insufficient sintering. It's not. This sintered body has improved mechanical strength, particularly thermal shock resistance, by 30 to 50%. The reason for this is thought to be as follows. In other words, the occurrence of cracking due to thermal shock is caused by the temperature difference between the inside of the honeycomb and the outer periphery and end faces that occur during rapid heating or cooling, but the addition of aluminum titanate increases the specific gravity and increases the heat capacity. to reduce this temperature difference. In addition, the thermal shock resistance coefficient R of the honeycomb structure is R=KS/Eα (K thermal conductivity, S
It is generally well known that improving strength improves thermal shock resistance, as shown by mechanical strength, E-modulus, α-ray thermal expansion coefficient, and the synergistic effect of these improves thermal shock resistance. This is expected to be improved. As described above, the honeycomb obtained by the present invention has a high strength due to sufficient bonding between particles, and also has excellent thermal shock resistance.
n, which was said to be the limit for thinness, can now be reduced to 0.13.

そのためセル数を高密度化しても開孔率はそれ程低下せ
す、それに伴い圧力損失も低下しない。このため本発明
は工業的実施に極めて適したコーデイエライト系排ガス
浄化用ハニカムの製法と言える。又、従来のハニカムは
粒子間の焼結が充分でないため、ハニカム構造体の壁の
一面から他面に連通する孔を有しており、ハニカム内部
を通るガスがハニカム構造体の壁を通してもれてしまつ
た。それに対して本発明によつて製造されるハニカムは
粒子間が充分焼結しているので、ハニカム構造体の壁の
一面から他面に連通する孔はなく、ハニカム内部を通る
ガ不がハニカム構造体の壁を通してもれることはない。
そのため本発明によつて製造されるハニカムを熱交換器
として使用する場合、高圧ガスまで使うことができる。
以下に実施例を述べる。
Therefore, even if the number of cells is increased to a higher density, the porosity will not decrease much, and the pressure loss will not decrease accordingly. Therefore, the present invention can be said to be a method for producing cordierite-based exhaust gas purifying honeycombs that is extremely suitable for industrial implementation. In addition, because conventional honeycombs do not have sufficient sintering between particles, they have holes that communicate from one side of the wall of the honeycomb structure to the other, which prevents gas passing inside the honeycomb from leaking through the wall of the honeycomb structure. It was. On the other hand, in the honeycomb manufactured by the present invention, the particles are sufficiently sintered, so there are no holes communicating from one side of the wall of the honeycomb structure to the other side, and the holes passing through the inside of the honeycomb form a honeycomb structure. It will not leak through the walls of your body.
Therefore, when the honeycomb produced according to the present invention is used as a heat exchanger, even high pressure gas can be used.
Examples will be described below.

実施例1 第1表に示す化学成分の各原料を用意し、これらをコー
デイエライトの組成(2Mg0−2A1203・5S1
02)となるように混合する。
Example 1 Each raw material with the chemical components shown in Table 1 was prepared, and these were mixed into the composition of cordierite (2Mg0-2A1203/5S1
02).

本例では朝鮮カオリン(水ひ物)51部、滑石(大石橋
産)37部、α−アルミナ(アルコア社製A−16)化
部を順次混合し、コーデイエライトの生の調合物とした
。一方、金剛カオリン69.3部、蛙目粘土10.8部
、滑石13.(2)、Mg(0H)26J部の2Mg0
−3A1203・るIO2の調台を行つた。しかして調
合物をSiC質発熱体電気炉に入れて1300℃、1時
間仮焼してコーデイエライトを合成した。
In this example, 51 parts of Korean kaolin (mizuhimono), 37 parts of talc (produced in Oishibashi), and a converted part of α-alumina (A-16 manufactured by Alcoa) were mixed in order to form a raw cordierite preparation. . On the other hand, 69.3 parts of Kongo kaolin, 10.8 parts of frog's eye clay, and 13 parts of talcum. (2), 2Mg0 of Mg(0H)26J part
- Prepared the 3A1203 IO2. The mixture was then placed in an electric furnace with a SiC heating element and calcined at 1300° C. for 1 hour to synthesize cordierite.

一方チタン酸アルミニウムは高純度(純度99%以上)
のγ−Al2O3と、試薬1級のTiO2(アナターゼ
型)をモル比で1:1に調合し、これをポットミル中に
入れ、水を加えて川時間混合摩砕した。
On the other hand, aluminum titanate is highly pure (over 99% purity).
γ-Al2O3 and primary reagent TiO2 (anatase type) were prepared in a molar ratio of 1:1, placed in a pot mill, water added, and mixed and ground for an hour.

しかる後、この摩砕物を濾紙で濾過して濾液を除去した
固定物を適宜乾燥させ、この乾燥物を前記電気炉に入れ
、1450℃で1時間仮焼し、この仮焼物の一部を用い
て、X線で調ベチタン酸アルミニウムが合成されている
ことを確認した。そこでコーデイエライトとなつた前記
仮焼物にチタン酸アルミニウムとなつた前記仮焼物を5
、10115重量%それぞれ含有するよう添加し、この
素地に成形用バインダーを加え充分混練後、ハニカム形
状に成形し、乾燥後1390℃で6時間焼成し、径95
×長さ120Tfn(600セル/i閣H2、セル厚0
.14wn)のハニカム構造体を得た。この構造体の1
000℃における線熱膨張係数α、ガス流方向の強度及
び吸水率を第2表及び第3表に示す。なお第2表におい
てチタン酸アルミニウム(AT)を10重量%含有した
場合には、平均粒径を1.2〜30μmの種々に分けて
焼結体を製造し、各物性値を測定した。*1:強度の測
定方法 試料寸法20m×2i×2抽に切出し、ガス流
方向に、材料試験機にて破壊するまで荷重し測定した。
After that, the ground material was filtered through a filter paper, the filtrate was removed, the fixed material was dried as appropriate, this dried material was placed in the electric furnace, and calcined at 1450° C. for 1 hour, and a part of this calcined material was used. It was confirmed by X-ray analysis that aluminum betitanate was synthesized. Therefore, 50% of the calcined material that became aluminum titanate was added to the calcined material that became cordierite.
, 10,115% by weight, respectively, a molding binder was added to this base material, and after thorough kneading, it was molded into a honeycomb shape. After drying, it was fired at 1390°C for 6 hours, and the diameter was 95%.
× Length 120Tfn (600 cells/i-kaku H2, cell thickness 0
.. 14wn) was obtained. 1 of this structure
Tables 2 and 3 show the linear thermal expansion coefficient α at 000°C, the strength in the gas flow direction, and the water absorption rate. In Table 2, when aluminum titanate (AT) was contained in an amount of 10% by weight, sintered bodies were produced with various average particle diameters ranging from 1.2 to 30 μm, and the respective physical property values were measured. *1: Method for measuring strength Samples were cut into 20m x 2i x 2 pieces, and measured by applying a load in the direction of gas flow until the sample broke using a material testing machine.

*2:吸水率の測定方法 予め乾燥重量を測定した試料
(径95×長さ120?)を水面下に沈め真空中で1時
間吸水させた後、余分な水分を圧縮工.アー(2k9/
Cil)にて吹きとばし飽水重量を測定する。
*2: Method for measuring water absorption A sample (diameter 95 x length 120?) whose dry weight has been measured in advance is submerged under water and allowed to absorb water in a vacuum for 1 hour, and excess water is removed by compression. Ah (2k9/
Measure the saturated water weight by blowing it off.

この乾燥重量ど飽水重量より算出する。*3:熱衝撃割
れ温度測定法 排ガス模擬装置を用い、一定時間の繰り
返しで800℃の燃焼ガス(18@)と25℃の冷たい
空気(120秒)をハニカーム構造体に通過させる。同
一温度で5回繰り返し割れなければ50C上げて同様に
試験し割れるまでフ続ける。第2、3表より明らかな如
くチタン酸アルミニウム(AT)を添加すると強度が増
し、αは変わらないか若しくは若干上がる程度であるこ
とが判る。
Calculate from this dry weight and saturated water weight. *3: Thermal shock cracking temperature measurement method Using an exhaust gas simulator, 800°C combustion gas (18@) and 25°C cold air (120 seconds) are passed through the honeycomb structure repeatedly over a fixed period of time. Repeat the test 5 times at the same temperature and if it does not break, raise the temperature to 50C and repeat the test until it breaks. As is clear from Tables 2 and 3, adding aluminum titanate (AT) increases the strength, and α remains the same or increases slightly.

7 またATを1哩量%含有(平均粒径8μm)して製
造したハニカム構造体と、無添加で製造したハニカム構
造体について、それぞれ加熱冷却し中央部の温度変化を
測定し第1図のような結果を得た。
7 In addition, a honeycomb structure manufactured with 1% AT (average particle size 8 μm) and a honeycomb structure manufactured without additives were respectively heated and cooled and the temperature change at the center was measured, as shown in Figure 1. I got similar results.

同図においてATを添加したものが無添加のノものに比
較し温度勾配が緩かであるのは熱容量の差によるもので
ある。熱容量は次式で表わされることはよく知られてい
る。熱容量=比熱×嵩密度×体積 比熱と体積は両者同一であるので、熱容量の差は嵩密度
に起因するものと考えられ、両者の嵩密度を測定した。
In the same figure, the temperature gradient of the specimen with AT added is gentler than that of the specimen without the addition of AT, which is due to the difference in heat capacity. It is well known that heat capacity is expressed by the following formula. Heat capacity = specific heat x bulk density x volume Since the specific heat and volume are the same for both, the difference in heat capacity is thought to be due to bulk density, and the bulk density of both was measured.

結果を第4表に示す。The results are shown in Table 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で得たハニカム構造体の加熱冷却時の温
度変化を示すグラフである。
FIG. 1 is a graph showing the temperature change during heating and cooling of the honeycomb structure obtained in the example.

Claims (1)

【特許請求の範囲】[Claims] 1 コーデイエライト若しくはコーデイエライトの組成
となるように調合したコーデイエライト調合物95〜8
5重量部に平均粒径が2〜30μmであるチタン酸アル
ミニウム5〜15重量部を添加して混合し、しかる後ハ
ニカム構造に成形し、1350〜1430℃で焼結し、
焼結体を得ることを特徴とするコーデイエライト系排ガ
ス浄化用ハニカムの製法。
1 Cordierite or cordierite formulation 95-8 prepared to have the composition of cordierite
5 to 15 parts by weight of aluminum titanate having an average particle size of 2 to 30 μm are added and mixed to 5 parts by weight, and then formed into a honeycomb structure and sintered at 1350 to 1430 ° C.
A method for producing a cordierite-based honeycomb for purifying exhaust gas, which is characterized by obtaining a sintered body.
JP56068493A 1981-05-07 1981-05-07 Manufacturing method of cordierite-based honeycomb for exhaust gas purification Expired JPS6055463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56068493A JPS6055463B2 (en) 1981-05-07 1981-05-07 Manufacturing method of cordierite-based honeycomb for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56068493A JPS6055463B2 (en) 1981-05-07 1981-05-07 Manufacturing method of cordierite-based honeycomb for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPS57183362A JPS57183362A (en) 1982-11-11
JPS6055463B2 true JPS6055463B2 (en) 1985-12-05

Family

ID=13375267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56068493A Expired JPS6055463B2 (en) 1981-05-07 1981-05-07 Manufacturing method of cordierite-based honeycomb for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPS6055463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447468U (en) * 1990-08-28 1992-04-22

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565830A (en) * 1963-02-07 1971-02-23 Engelhard Min & Chem Coated film of catalytically active oxide on a refractory support
JPS5075611A (en) * 1973-11-05 1975-06-20
JPS5527871A (en) * 1978-08-18 1980-02-28 Kogyo Gijutsuin Manufacture of cordierite sintering article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565830A (en) * 1963-02-07 1971-02-23 Engelhard Min & Chem Coated film of catalytically active oxide on a refractory support
JPS5075611A (en) * 1973-11-05 1975-06-20
JPS5527871A (en) * 1978-08-18 1980-02-28 Kogyo Gijutsuin Manufacture of cordierite sintering article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447468U (en) * 1990-08-28 1992-04-22

Also Published As

Publication number Publication date
JPS57183362A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
JP5411851B2 (en) High porosity ceramic honeycomb article containing rare earth oxide and method for producing the same
JP3150928B2 (en) Method for manufacturing thin-walled cordierite-based honeycomb structure
JP5178715B2 (en) Cordierite aluminum magnesium titanate composition and ceramic product containing the composition
JP6043340B2 (en) Porous material, honeycomb structure, and method for producing porous material
KR100931755B1 (en) Strontium Feldspa Aluminum Titanate for High Temperature
US5030398A (en) Method of producing a cordierite honeycomb structural body
US4772580A (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
US20190300447A1 (en) High-temperature Resistant Lightweight Thermal Insulation Material with Dual-pore Structure and Preparation Method Thereof
US9023270B2 (en) Method for producing ceramic honeycomb structure
JP5719377B2 (en) Reticulated cordierite composition, article and production thereof
JP6263198B2 (en) Cordierite aluminum magnesium titanate composition and ceramic article comprising the same
KR20050026053A (en) Mullite-aluminum titanate diesel exhaust filter
EP0232621B1 (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
JP6125869B2 (en) Porous material, honeycomb structure, and method for producing porous material
JP2010501467A (en) Low back pressure porous cordierite ceramic honeycomb article and manufacturing method thereof
US9457345B2 (en) Silicon carbide porous material, honeycomb structure and electric heating-type catalyst carrier
JP2012509841A (en) Cordierite-forming batch composition and cordierite body produced therefrom
US6291379B1 (en) Process for production of cordierite-based ceramic honeycomb structure
JP4960453B2 (en) Improved diesel particulate filter
US11214521B2 (en) Porous material, cell structure, and method of producing porous material
JPH0582343B2 (en)
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
JPS6055463B2 (en) Manufacturing method of cordierite-based honeycomb for exhaust gas purification
US11731911B2 (en) Porous material, cell structure, and method of producing porous material
JPS62182158A (en) Cordierite honeycom structure and manufacture