JPS6055002A - Novel continuous polymerization - Google Patents

Novel continuous polymerization

Info

Publication number
JPS6055002A
JPS6055002A JP58163168A JP16316883A JPS6055002A JP S6055002 A JPS6055002 A JP S6055002A JP 58163168 A JP58163168 A JP 58163168A JP 16316883 A JP16316883 A JP 16316883A JP S6055002 A JPS6055002 A JP S6055002A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
aqueous solution
monomer
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58163168A
Other languages
Japanese (ja)
Other versions
JPH0214361B2 (en
Inventor
Tsuneo Tsubakimoto
椿本 恒雄
Tadao Shimomura
下村 忠生
Yoshio Irie
好夫 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58163168A priority Critical patent/JPS6055002A/en
Priority to GB08422380A priority patent/GB2146343B/en
Priority to DE3432690A priority patent/DE3432690C2/en
Priority to CA000462583A priority patent/CA1258338A/en
Priority to FR8413817A priority patent/FR2551445B1/en
Priority to KR1019840005480A priority patent/KR890004063B1/en
Publication of JPS6055002A publication Critical patent/JPS6055002A/en
Publication of JPH0214361B2 publication Critical patent/JPH0214361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To improve the production rate and workability in the production of a crosslinked polymer, by effecting a radical aqueous solution polymerization which finely dividing, with a shearing force, a hydrated gel-like crosslinked polymer formed with the progress in polymerization and continuously discharging the formed polymer. CONSTITUTION:A polymerization initiator and an aqueous solution of a monomer which, when polymerized in an aqueous solution, forms a hydrated gel-like polymer by the formation of a crosslinking structure are continuously fed to a vessel having a plurality of rotary agitator shafts. The radical aqueous solution polymerization is effected while the hydrated gel-like polymer formed with the progress in polymerization is being finely divided with a shearing force by the rotation of the agitator shafts. The formed divided hydrated gel-like polymer is continuously discharged from the vessel. It is preferable that the aqueous monomer solution fed to the polymerization vessel has a concentration of 10-80wt%. It is necessary that the vessel has a plurality of rotary agitator shafts, and examples of these vessels include double-arm kneader and three-screw kneader.

Description

【発明の詳細な説明】 本発明は、架橋重合体の新規連続重合方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel continuous polymerization method for crosslinked polymers.

従来、アクリルアミドやアクリル酸又はその塩などを主
成分とする架橋重合体は大量の水分を吸収し保持する作
用やイオン交換能やキレート能を有する事が知られてお
り、衛生用品、農園芸用土壌改良剤、脱水剤、イオン交
換樹脂、吸着剤などの広い用途に応用されている。これ
らの架橋重合体の製法としては、単量体水溶液を疎水性
溶媒中で逆相乳化又は懸濁させて重合する方法や、単量
体水溶液を注型重合する方法などが知られている。しか
しながら逆相乳化重合法や逆相懸濁重合法では多量の有
機溶剤を取り扱うために防災上危険であり、また作業員
に対する前件の問題も生じる。一方、単量体水溶液を注
型重合する方法では有機溶剤を用いない点は前者よりも
優れているが、重合中の反応熱の除去のために重合装置
が複雑かつ高価になる。また生成した含水ゲル状重合体
から水分を除き乾燥された状態の架橋重合体を得るため
には、含水ゲル状重合体を機械的に細分化して表面積を
増大させて乾燥させる工程を必要とする。この際含水ゲ
ル状重合体を機械的に細分化する方法と(〜ては切断、
押出等の方法があるが、いずれの場合も含水ゲル状重合
体が強いゴム状弾性を有するため多大のエネルギーを要
する等の問題がある。
Conventionally, crosslinked polymers mainly composed of acrylamide, acrylic acid, or their salts have been known to have the ability to absorb and retain large amounts of water, as well as have ion exchange and chelating abilities, and have been used for sanitary products and agricultural and horticultural purposes. It is used in a wide variety of applications, including soil conditioners, dehydrators, ion exchange resins, and adsorbents. Known methods for producing these crosslinked polymers include a method in which an aqueous monomer solution is polymerized by reverse phase emulsification or suspension in a hydrophobic solvent, and a method in which an aqueous monomer solution is subjected to cast polymerization. However, in the reverse-phase emulsion polymerization method and the reverse-phase suspension polymerization method, large amounts of organic solvents are handled, which is dangerous in terms of disaster prevention, and also poses problems for workers. On the other hand, the method of cast polymerization of an aqueous monomer solution is superior to the former in that it does not use an organic solvent, but the polymerization equipment becomes complicated and expensive due to the removal of reaction heat during polymerization. In addition, in order to remove water from the produced hydrogel polymer and obtain a dried crosslinked polymer, it is necessary to mechanically subdivide the hydrogel polymer to increase its surface area and dry it. . At this time, a method of mechanically dividing the hydrogel-like polymer (cutting,
There are methods such as extrusion, but in either case there are problems such as the need for a large amount of energy because the hydrogel polymer has strong rubber-like elasticity.

本発明者らは、上記問題点を解決すべく公開特許公報昭
57−34101号明細1.において複数の回転攪拌軸
を有する容器を用いた回分式のラジカル水溶液重合方法
を提案した。
In order to solve the above-mentioned problems, the inventors of the present invention have made the following points in Japanese Patent Publication No. 57-34101, Specification 1. proposed a batch-type radical aqueous solution polymerization method using a container with multiple rotating stirring shafts.

この方法により、従来技術と比較して生産性及び作業性
を大幅に改善することができたが、本発明者らは、さら
に生産性及び作業性を向上させるべく、鋭意研究を重ね
た結果、本発明に到達したものである。
With this method, we were able to significantly improve productivity and workability compared to conventional techniques, but the inventors of the present invention have conducted extensive research to further improve productivity and workability. This has led to the present invention.

即ち本発明は、水溶液重合により架橋構造を形成して含
水ゲル状重合体となる単量体の水溶液および重合開始剤
を複数の回転攪拌軸を有する容器内に連続的に供給し、
11合の進行に伴い生成する含水ゲル状重合体を該攪拌
軸の回転による剪断力により細分化しながらラジカル水
溶液重合を行ない、生成した細分化された含水ゲル状重
合体を連続的に容器外に排出することを特徴とする新規
連続重合方法に関するものである。
That is, the present invention continuously supplies an aqueous solution of monomers and a polymerization initiator that form a crosslinked structure to a hydrogel polymer by aqueous solution polymerization into a container having a plurality of rotating stirring shafts,
11. Radical aqueous polymerization is carried out while fragmenting the hydrous gel-like polymer produced as the 11th reaction progresses using the shearing force generated by the rotation of the stirring shaft, and the resulting fragmented hydrogel-like polymer is continuously discharged from the container. The present invention relates to a novel continuous polymerization method characterized by discharge.

本発明で用いられる単量体は、水溶液重合により架橋構
造を形成し含水ゲル状重合体とカるものである。架橋構
造としては水溶性単量体と分子内に重合性二重結合を2
個以上有する架橋性単量体との共重合による架橋構造で
もよく、デンプン、セルロース、ポリビニルアルコール
等の!水性高分子の存在下で水浴性単量体を水溶液重合
することによって重合と同時にグラフト結合やコンプレ
ックスを形成することによる架橋構造でもよい。
The monomer used in the present invention forms a crosslinked structure through aqueous polymerization and forms a crosslinked structure with the hydrogel polymer. The crosslinked structure consists of a water-soluble monomer and two polymerizable double bonds within the molecule.
A cross-linked structure formed by copolymerization with a cross-linkable monomer having at least 100% cross-linkable monomers may also be used, such as starch, cellulose, polyvinyl alcohol, etc. A crosslinked structure may be obtained by aqueous solution polymerization of a water bath monomer in the presence of an aqueous polymer to form a graft bond or a complex at the same time as the polymerization.

水溶性単量体としては、たとえばアクリル酸及びメタア
クリル酸並びにそれらのアルカリ金属塩又はアンモニウ
ム塩、アクリルアミド、メタアクリルアミド、アクリロ
ニトリル、2−ヒドロキシエチル(メタ)アクリl/ 
−ト、アクリル酸メチル、マレイン酸等を挙げることが
でき、これらのうちの1種又は2種以」二を用いること
ができる。
Examples of water-soluble monomers include acrylic acid and methacrylic acid and their alkali metal salts or ammonium salts, acrylamide, methacrylamide, acrylonitrile, 2-hydroxyethyl (meth)acryl/
methyl acrylate, maleic acid, etc., and one or more of these can be used.

架橋性単量体としては、たとえばエチレングリコール、
ジエチレングリコール、トリエチレングリコール、プロ
ピレングリコール、1.4−フタンジオール、1.5−
ベンタンジオール、1,6−ヘキサンジオール、ネオペ
ンチルグリコール、トリメチロールプロパン及びペンタ
エリスリトールのジアクリレート又はジメタアクリレー
ト、トリメチロールプロパン及びペンタエリスリトール
のトリアクリレート又はトリメタアクリレート、ペンタ
エリスリトールのテトラアクリレート又はテトラメタア
クリレート、N、 N’−メチレンビスアクリルアミド
、N、 N’−メチレンビスメタアクリルアミド、イソ
シアヌル酸トリアリル等を挙げることができ、これらの
うちの1種又Vi、2種以上を用いるととができる。
Examples of crosslinking monomers include ethylene glycol,
Diethylene glycol, triethylene glycol, propylene glycol, 1.4-phthanediol, 1.5-
Bentanediol, 1,6-hexanediol, neopentyl glycol, diacrylate or dimethacrylate of trimethylolpropane and pentaerythritol, triacrylate or trimethacrylate of trimethylolpropane and pentaerythritol, tetraacrylate or tetramethacrylate of pentaerythritol Examples include acrylate, N,N'-methylenebisacrylamide, N,N'-methylenebismethacrylamide, triallyl isocyanurate, etc., and one or more of these can be used.

= 5− このような単12体のなかでも本発明では、アクリル酸
及びメタアクリル酸並びにそれらのアルカリ金属塩又は
アンモニウム塩、アクリルアミド並びにメタアクリルア
ミドからなる群より選ばれた1種又は2種以上の単量体
囚と分子内に重合性二重結合を2個以上有する架橋性単
量体(B)とからなり、架橋性単量体03)が50モル
係以下の比率である単量体混合物が特に好ましいもので
ある。架橋性単量体(B)としては前記架橋性単量体の
中から1種又Fi2種を用いることができる。この際架
橋性単量体■)の使用量が単量体(5)に対して50モ
ル係を超える場合には、得られる架橋重合体の吸水性や
イオン交換能が低くなる。
= 5- Among such 12 compounds, in the present invention, one or more selected from the group consisting of acrylic acid and methacrylic acid, their alkali metal salts or ammonium salts, acrylamide, and methacrylamide. A monomer mixture consisting of a monomer and a crosslinkable monomer (B) having two or more polymerizable double bonds in the molecule, with a molar ratio of crosslinkable monomer 03) of 50 or less is particularly preferred. As the crosslinkable monomer (B), one type or two types of Fi from among the above crosslinkable monomers can be used. In this case, if the amount of crosslinkable monomer (1) used exceeds 50 molar ratio to monomer (5), the water absorbency and ion exchange ability of the resulting crosslinked polymer will be low.

架橋性単量休出)を全く用いない場合でも、過硫酸アン
モンを多量に用いる等により架橋構造の形成が起こる場
合には、本発明の連続重合を行なうことができる。
Even when no cross-linking monomers are used, if a cross-linked structure is formed due to the use of a large amount of ammonium persulfate, etc., the continuous polymerization of the present invention can be carried out.

本発明に用いられる単量体水溶液は、重合容器内に連続
的に供給されるのであるが、濃度は10〜80重量係で
あることが好ましい。この範囲内 6− の濃度であれば、重合の進行に伴い生成する含水ゲル状
重合体が攪拌軸の回転による剪断力により容易に細分化
される。
The aqueous monomer solution used in the present invention is continuously fed into the polymerization vessel, and preferably has a concentration of 10 to 80% by weight. If the concentration is within this range, the hydrogel-like polymer produced as the polymerization progresses will be easily fragmented by the shearing force caused by the rotation of the stirring shaft.

本発明で用いられる複数の回転攪拌軸を有する容器は、
単量体を水溶液重合する時に重合の進行に伴い生成する
含水ゲル状重合体に回転攪拌軸の回転により剪断力を与
え得るものである事が必要である。回転攪拌軸は複数個
である事が必要で、その様な容器としてたとえば双腕型
ニーダ−(以下単如ニーダ−という。)、三軸ニーダ−
の様な装置が挙げられる。ニーダ−を使用するに際して
は、二本の回転攪拌軸を互いに逆方向に等速又は不等速
で回転して使用する。等速の場合は二本の回転攪拌軸の
回転半径は互いに1!rなりあう部分を有する状態で使
用し、不等速の場合は二本の回転攪拌軸の回転半径は互
いに重ならない状態で使用する。回転攪拌軸はシグマ型
、S型、バンバリー型あるいは急用型などのいずれも使
用できる。
The container having a plurality of rotating stirring shafts used in the present invention is
It is necessary that the shearing force can be applied to the hydrogel-like polymer produced as the polymerization progresses when monomers are polymerized in aqueous solution by the rotation of the rotating stirring shaft. It is necessary to have a plurality of rotating stirring shafts, and such vessels include, for example, a double-arm kneader (hereinafter referred to as a simple kneader) and a three-shaft kneader.
Examples include devices such as: When using a kneader, two rotating stirring shafts are rotated in opposite directions at a constant or non-uniform speed. In the case of constant velocity, the rotation radius of the two rotating stirring shafts is 1! It is used in a state in which the stirring shafts have portions equal to r, and in the case of non-uniform speeds, the rotation radii of the two rotating stirring shafts do not overlap with each other. As the rotating stirring shaft, any of the Sigma type, S type, Banbury type, or emergency type can be used.

また、ニーダーを使用するに際しては、フッ素系樹脂で
内面をコーティングされたものが、生成ゲルの付着を防
ぐために好ましい。フッ素系樹脂としては、4フツ化エ
チレン樹脂、4フッ化エチレン−パーフロロプロピルビ
ニルエーテル共重合体、4フッ化エチレン−67フ化プ
ロピレン共重合体、3フツ化】塩化エチレン樹脂、エチ
レン−4フツ化エチレン共重合体等を用いることができ
る。
Further, when using a kneader, it is preferable to use one whose inner surface is coated with a fluororesin in order to prevent the produced gel from adhering. Examples of fluororesins include tetrafluoroethylene resin, tetrafluoroethylene-perfluoropropyl vinyl ether copolymer, tetrafluoroethylene-67fluoropropylene copolymer, trifluoroethylene chloride resin, and ethylene-4fluoroethylene resin. Polymerized ethylene copolymer or the like can be used.

本発明で用いられる重合容器は、重合中ラジカル重合反
応に対して不活性な雰囲気に保つ様に上部にフタを伺は
重合容器内を不活性気体で置換する事が好ましい。重合
中、重合反応熱のだめに蒸発する水分を凝縮するため還
流冷却器を重合容器上部に設けてもよく、あるいは不活
性ガスを重合容器内に導入して水分を系外に放出する様
にしてもよい。また単量体水溶液を加熱したり、重合中
の重合反応熱の一部を除去する目的で重合容器にジャケ
ットを設ける事が好ましい。
The polymerization container used in the present invention preferably has a lid on top to maintain an inert atmosphere against radical polymerization reactions during polymerization, and the inside of the polymerization container is preferably purged with an inert gas. During polymerization, a reflux condenser may be provided at the top of the polymerization vessel to condense moisture that evaporates due to the heat of the polymerization reaction, or an inert gas may be introduced into the polymerization vessel to release moisture from the system. Good too. Further, it is preferable to provide a jacket in the polymerization container for the purpose of heating the monomer aqueous solution and removing part of the heat of polymerization reaction during polymerization.

本発明で、細分化された含水ゲル状重合体を容器外に連
続的かつ自動的に排出するための機構としては、たとえ
は、第1(5)図に示すように、反応容器の複数の回転
攪拌軸より上部に設置した水平軸に1個ないし複数個の
かい型翼をとりつけた回転翼を有するもの:第2(A)
図に示すように、三軸ニーダーの如く反応器底部に排出
のだめのスクリューをもつもの:第3図に示すように、
単に容器の壁の一部を低くすることでオーバーフローさ
せるもの;あるいは、容器の一部の壁を、高さの調節で
きるせきとし、そのせきの高さを変化させることによっ
て間欠的にオーバーフローさせるもの等がある。
In the present invention, as a mechanism for continuously and automatically discharging the fragmented hydrogel polymer out of the container, for example, as shown in FIG. 1 (5), a plurality of Those with rotary blades with one or more paddle-shaped blades attached to a horizontal shaft installed above the rotating stirring shaft: 2nd (A)
As shown in the figure, a reactor with a discharge screw at the bottom of the reactor, such as a three-screw kneader: As shown in Figure 3,
Overflow is caused simply by lowering a portion of the wall of the container; alternatively, a portion of the wall of the container is formed into a weir whose height is adjustable and overflow is caused intermittently by varying the height of the weir. etc.

ここで、′連続的′とは厳密に定常的である必要はなく
、排出量が脈打つ様な状態でもよく、あるいは間欠的に
排出される状態でもよい。即ち、反応容器内の含水ゲル
状重合体の量がほぼ一定に保たれていればよい。
Here, 'continuous' does not necessarily have to be strictly steady, and may be a state where the amount of discharge is pulsating or a state where the discharge is intermittently. That is, it is sufficient that the amount of the hydrogel polymer in the reaction vessel is kept approximately constant.

本発明で単量体をラジカル水溶液重合するための水溶性
ラジカル重合開始剤としては公知のものを使用できる。
In the present invention, known water-soluble radical polymerization initiators can be used for radical aqueous solution polymerization of monomers.

例えば過備酸塩、過酸化水素、水溶性アゾ化合物等を挙
げることができ、これらを単独で用いてもよく、あるい
けこれらと亜硫酸塩、 9− 亜研酸水素塩、チオ硫酸塩、L−アスコルビン酸、第1
鉄塩等とを組みあわせてレドックス系開始剤として用い
てもよい。
For example, permic acid salts, hydrogen peroxide, water-soluble azo compounds, etc. can be mentioned, and these may be used alone, or they can be used together with sulfites, 9-hydrogensulfites, thiosulfates, L - Ascorbic acid, 1st
It may also be used as a redox initiator in combination with an iron salt or the like.

本発明の方法に従って重合する手順の一例を示すと、ふ
たおよび排出機構を有するニーダ−中に、単量体の水溶
液を仕込み、系を窒素等の不活性気体で置換し、ラジカ
ル重合開始剤を添加して重合を開始させ、重合の進行に
伴い生成する含水ゲル状重合体をニーダーの翼の回転に
よる剪断力で細分化しながら重合を行ない、更に重合開
始剤を含む単量体水溶液を連続的に供給して重合を行な
わしめ、同時に、系内のゲル量をほぼ一定に保つために
排出機構妬より含水ゲル状重合体の粒子を系外に排出し
、必要により、排出された含水ゲル状重合体を加熱する
ことにより重合を完結する方法をあげることができる。
An example of the polymerization procedure according to the method of the present invention is to charge an aqueous monomer solution into a kneader having a lid and a discharge mechanism, purge the system with an inert gas such as nitrogen, and add a radical polymerization initiator. The hydrogel polymer produced as the polymerization progresses is fragmented by the shear force generated by the rotation of the kneader blades, and the monomer aqueous solution containing the polymerization initiator is continuously added. At the same time, in order to keep the amount of gel in the system almost constant, particles of the hydrogel polymer are discharged from the system by a discharge mechanism, and if necessary, the discharged hydrogel polymer particles are One example is a method of completing polymerization by heating the polymer.

勿論、本発明の範囲がこの例により限定されるものでは
ない。
Of course, the scope of the present invention is not limited by this example.

このようにして、本発明の連続重合方法に基づいて重合
を行なえば、細分化てれ、そしてそれぞれの粒子内に架
橋構造を冶する含水ゲル状重合体 10− 粒子を連続的に容易に得ることができる。
In this way, if polymerization is carried out based on the continuous polymerization method of the present invention, it is easy to continuously obtain particles of hydrogel-like polymer 10- which are finely divided and have a crosslinked structure in each particle. be able to.

粒子径は、反応条件により異なるが、通常3 on以下
のものを得ることができる。
Although the particle size varies depending on the reaction conditions, particles of 3 on or less can usually be obtained.

本発明の方法では、連続的に単量体を容器に供給し生成
する含水ゲル状重合体を連続的に排出するので作業性が
極めて良好である。即ち、回分式に重合する方法で11
単量体の投入、重合、排出に各々人手を必要とするのに
比べ、本発明の連続式では、反応が定常状態に達したら
以後はとんど人手を必要としない利点がある。
In the method of the present invention, the monomer is continuously supplied to the container and the produced hydrogel polymer is continuously discharged, resulting in extremely good workability. That is, 11
Compared to the monomer injection, polymerization, and discharge, which each require manual labor, the continuous system of the present invention has the advantage of not requiring manual labor after the reaction reaches a steady state.

また、本発明の方法では、反応容器中存在する細分化さ
れた含水ゲル状重合体と供給された単量体水溶液とが均
一に混合されてゲル表面で重合が起るために、1合反応
熱の発生が時間的に均一で、重合反応熱の除去および重
合系内の温度を一定に保つことが容易である。したがっ
て、重合速度を大きくして生産性を上げることも可能で
あるし、製品の品質を一定に保つことも容易である。ま
た回分式に比べ、吸収能の高いものを得ることができた
のは予期せざる結果であった。更に、排出される含水ゲ
ル状重合体の粒径もほぼそろっており、乾燥が容易であ
るという効果もある。これに対し回分式重合の場合は、
重合反応熱が一時に出るために比較的除熱が難しく、そ
のため重合速度を大きくして生産性を上げることは難し
く、また製品の品質のふれもあり、吸収能も比較的小さ
くなる。
In addition, in the method of the present invention, the finely divided hydrogel-like polymer present in the reaction vessel and the supplied aqueous monomer solution are uniformly mixed and polymerization occurs on the gel surface. Heat is generated uniformly over time, making it easy to remove the polymerization reaction heat and keep the temperature within the polymerization system constant. Therefore, it is possible to increase productivity by increasing the polymerization rate, and it is also easy to maintain constant product quality. Furthermore, it was an unexpected result that we were able to obtain a product with higher absorption capacity than the batch method. Furthermore, the particle size of the hydrogel-like polymer discharged is almost uniform, and there is also the effect that drying is easy. On the other hand, in the case of batch polymerization,
Since the heat of the polymerization reaction is released all at once, it is relatively difficult to remove the heat, which makes it difficult to increase the polymerization rate and increase productivity.Also, the quality of the product varies, and the absorption capacity is also relatively small.

さらに細分化された含水ゲル状重合体の粒径も不ぞろい
で、一部乾燥しにくいものがでることがある。
Furthermore, the particle size of the finely divided hydrogel-like polymer is uneven, and some particles may be difficult to dry.

本発明の方法は、例えば特開昭56−32514に示さ
れたように入口から出口方向にピストンフロー的に材料
が動くものとは全く異なっており、添加きれた単量体水
溶液は容器中の細分化された含水ゲル状重合体と均一に
混合され、重合しながらその一部が排出される。このた
め、反応器内の含水ゲル状重合体の量が発熱量に比して
多いので除熱が容易である。
The method of the present invention is completely different from the method in which the material moves like a piston flow from the inlet to the outlet, as shown in, for example, JP-A-56-32514. It is uniformly mixed with the finely divided hydrogel polymer, and a part of it is discharged while polymerizing. Therefore, since the amount of the hydrogel polymer in the reactor is large compared to the calorific value, heat removal is easy.

一方、上記のピストンフロー的に材料が動く方法では、
除熱が難しく、そのため生産性をあげようとすれば材料
温度が高くなって、性能の低下をまねくおそれがある。
On the other hand, in the above method where the material moves like a piston flow,
It is difficult to remove heat, so if you try to increase productivity, the temperature of the material will rise, which may lead to a decrease in performance.

本発明の重合方法によって得られだ含水ゲル状重合体の
粒子は、このままで吸収剤、保水剤、イオン交換樹脂、
吸着剤などと17で用いる11も充分可能であるが、乾
燥して水分を除いた方が取扱い上好ましい。本発明の重
合方法によって得られた含水ゲル状重合体の粒子は乾燥
を非常に容易に行なう事が出来る利点を有している。す
なわち、本発明によって得られた含水ゲル状重合体の粒
子は表面積が大きく、熱風乾燥婢により短時間で容易に
乾燥される。
The particles of the hydrogel polymer obtained by the polymerization method of the present invention can be used as absorbents, water retention agents, ion exchange resins, etc.
Although it is possible to use 11 in 17 with an adsorbent, it is preferable for handling to remove moisture by drying. The particles of the hydrogel polymer obtained by the polymerization method of the present invention have the advantage that they can be dried very easily. That is, the particles of the hydrogel polymer obtained by the present invention have a large surface area and can be easily dried in a short time by hot air drying.

本発明の連続重合方法では、乾燥機と17で連続式加熱
機を有効に用いることができるという利点がある。即ち
、回分式重合の場合、連続式加熱機へのつなぎのだめの
ホッパー等を必要とするのに対して、本発明でiJこれ
が不必要である。
The continuous polymerization method of the present invention has the advantage that a continuous heating device can be effectively used in place of the dryer and 17. That is, in the case of batch polymerization, a hopper or the like is required to connect to the continuous heating machine, but in the present invention, this is unnecessary.

本発明の実施に当たっては、重合容器から排出された含
水ゲル状重合体を、乾燥に先だって加熱するととにより
M(台率を上げることもできる。そのような実施態様と
j〜て、連続式加熱機と連続式 13− 乾燥機との連結が考えられる。
In carrying out the present invention, the water-containing gel polymer discharged from the polymerization container may be heated prior to drying, thereby increasing the M (unit ratio). It is possible to connect the dryer with a continuous type 13- dryer.

以下、本発明の方法を実施例により更に詳しく説明する
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

実施例 l 第1(A)図に示す内容積21.開口部160+nmX
150mm、深さ135+n+n、翼の回転径70論の
シグマ型攪拌翼を2本有する、接液部を4フッ化エチレ
ン−パーフロロプロピルビニルエーテル共重合体テコ−
ティングした、ジャケット付きステンレス製双腕型ねつ
か機(ニーグー)に排出装置およびふたを付け、このニ
ーグー中に75モル係が苛性ソーダによゆ中和された部
分中和アクリル酸399 y、N、N’−メチレンビス
アクリルアミド0.036 rおよび水6002からな
る単量体水溶液を送入し、窒素ガスを吹き込み反応系内
を仝素置換した。次いで、2本のシグマ型攪拌翼をそれ
ぞれ67および56rpmの速度で回転させ、ジャケッ
トに45℃の温水を通して加熱しながら、重合開始剤と
してV−so(和光紬薬■製、2.2’ −アゾビス(
2−アミジノプロパン)ハイドロクロリド) 0.23
 yを水]Orに溶解したものを添加した。重合開始剤
を添加して15分後に重合が開始した。単量体水溶液は
重合の進行に伴い柔らかい含水ゲルを生成]7、攪拌軸
の回転により次第に細分化された。重合開始剤を添加し
て35分後に反応系内の温度は80℃に達した。ここで
、ジャケットに通す温水を94℃にした。次いで、75
モル%が苛性ソーダにより中和てれた部分中和アクリル
酸14.36Kg、N、 N’−メチレンビスアクリル
アミド1.3 Fおよび水21.6Kgからなる単量体
水溶液に9素ガスを吹きこんで溶存酸素を追い出したも
のおよびV−508,29を水360CCに溶解したも
のをそれぞれ定量ポンプにより混合槽に送り、均一に混
合されたものをニーダ−内に24時間かけて供給した。
Example l Internal volume 21 shown in FIG. 1(A). Aperture 160+nmX
150mm, depth 135+n+n, two sigma-type stirring blades with a rotational diameter of 70mm, the wetted part is made of tetrafluoroethylene-perfluoropropyl vinyl ether copolymer lever.
A jacketed stainless steel double-arm lacquering machine (Nigu) was equipped with a discharge device and a lid, and in this Nigu, 75 moles of partially neutralized acrylic acid 399 y, N, which had been neutralized with caustic soda, was added. An aqueous monomer solution consisting of 0.036 r of N'-methylenebisacrylamide and 600 ml of water was introduced, and nitrogen gas was blown into the reaction system to purify the reaction system. Next, two sigma-type stirring blades were rotated at speeds of 67 and 56 rpm, respectively, and while heating 45°C hot water was passed through the jacket, V-so (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd., 2.2'- Azobis (
2-amidinopropane) hydrochloride) 0.23
A solution of y in water]Or was added. Polymerization started 15 minutes after adding the polymerization initiator. The aqueous monomer solution produced a soft hydrogel as the polymerization progressed]7, and was gradually divided into smaller pieces by rotation of the stirring shaft. 35 minutes after the addition of the polymerization initiator, the temperature inside the reaction system reached 80°C. Here, the hot water passed through the jacket was heated to 94°C. Then 75
A monomer aqueous solution consisting of 14.36 kg of partially neutralized acrylic acid whose mol% had been neutralized with caustic soda, 1.3 F of N,N'-methylenebisacrylamide, and 21.6 kg of water was blown with 9 elemental gas. The solution from which dissolved oxygen had been removed and the solution containing V-508,29 dissolved in 360 cc of water were each sent to a mixing tank by a metering pump, and the uniformly mixed solution was fed into a kneader over 24 hours.

ニーダ−に連続的に供給された単量体水溶液は細分化さ
れた含水ゲル状重合体となって排出翼により連続的に排
出され、系内の温度はほぼ90’Cで一定であった。排
出された含水ゲル状重合体をさらに20分間、窒素雰囲
気下で90℃に保つこと傾より、重合を完結させた。
The monomer aqueous solution continuously supplied to the kneader became a finely divided hydrogel-like polymer and was continuously discharged by a discharge blade, and the temperature in the system was kept constant at approximately 90'C. The discharged hydrogel polymer was kept at 90° C. under a nitrogen atmosphere for another 20 minutes to complete the polymerization.

排出された含水ゲル状重合体は、2〜7ミリ径程度に細
分化されており、しかもサラサラして取扱いやすく、ま
た容易に乾燥することのできるものであった。
The discharged hydrogel polymer was finely divided into particles with a diameter of about 2 to 7 mm, and was smooth and easy to handle, and could be easily dried.

排出された含水ゲル状重合体を50メツシユ金網にのせ
、150℃熱風乾燥器で乾燥した後、振動式粉砕器によ
り粉砕した。
The discharged hydrogel polymer was placed on a 50-mesh wire gauze, dried in a hot air dryer at 150° C., and then pulverized in a vibrating pulverizer.

得られた粉砕物(以下、吸収剤(1)という。)の0.
22を不織布製のティーバッグ式袋(40mmX150
+el)に均一に入れ、0.9%食塩水に浸漬し、10
分後の重量を測定した。ティーパック式袋のみを浸漬し
た場合の重量をブランクとし、次式に従って吸収倍率を
めた。
The obtained pulverized material (hereinafter referred to as absorbent (1)) has a 0.
22 is a non-woven tea bag type bag (40mm x 150
+el), immersed in 0.9% saline solution,
The weight after minutes was measured. The weight of only the tea pack type bag immersed was used as a blank, and the absorption capacity was calculated according to the following formula.

その結果を第1表に示した。尚、この吸収倍率は、単量
体水溶液を連続的に供給を開始してから3時間毎にサン
プリングした含水ゲル状重合体から得られた粉砕物につ
いて各々求めた。
The results are shown in Table 1. The absorption capacity was determined for each pulverized product obtained from the hydrogel polymer sampled every 3 hours after the continuous supply of the monomer aqueous solution was started.

第 1 表 ■ この結果から、本発明の方法で得られた架橋重合体が吸
収剤として有効に利用されるものであることがわかる。
Table 1 ■ From these results, it can be seen that the crosslinked polymer obtained by the method of the present invention can be effectively used as an absorbent.

実施例 2 内容積10t1開口部240簡×220節、深さ260
鰭で舅の回転径11 (1w+nのバンバリー型攪拌翼
2本、径35簡の排出用スクリュー1本を有するジャケ
ット利きステンレス製三軸ニーダ−に−ダールーダー)
の内面に3フツ化1塩化エチレン樹脂でコーティングを
はどこした。このニーダ−に%M素素人入管単量体導入
管および温度計をとりつけた。
Example 2 Internal volume 10t1 opening 240x220 sections, depth 260
Rotational diameter of the fin and the tail is 11 (in a jacket-handed stainless steel triaxial kneader with two 1W+N Banbury-type stirring blades and one discharge screw with a diameter of 35 mm - Darruder)
The inner surface of the tube was coated with trifluoromonochloroethylene resin. This kneader was equipped with a %M amateur monomer introduction tube and a thermometer.

このニーダ−中に75モル%が苛性ソーダにより中和さ
れた部分中和アクリル酸1995り、トリメチロールプ
ロパントリアクリレート3.3りお 17 − よび水3000fからなる単量体水溶液を送入し、窒素
ガスを吹き込み反応系内を窒素置換した。次いでバンバ
リー型攪拌翼を30rpmの速度で回転させ、ジャケッ
トに40℃の温水を通して加熱しながら、重合開始剤と
して過硫酸アンモン2.252と亜硫酸水素ナトリウム
2.259とを添加した。
A monomer aqueous solution consisting of 1995% partially neutralized acrylic acid, 75% by mole of which had been neutralized with caustic soda, 3.3% trimethylolpropane triacrylate, and 3000f water was introduced into this kneader, and nitrogen gas was introduced into the kneader. was blown into the reaction system to purify it with nitrogen. Next, a Banbury-type stirring blade was rotated at a speed of 30 rpm, and 2.252 kg of ammonium persulfate and 2.259 kg of sodium bisulfite were added as polymerization initiators while heating the jacket by passing hot water at 40°C.

重合開始剤を添加して15分後に重合が開始した。Polymerization started 15 minutes after adding the polymerization initiator.

単量体水溶液は、重合の進行に伴い柔らかい含水ゲルを
生成し、攪拌軸の回転によシ次第に細分化された。重合
開始剤を添加して25分後に反応系内の温度は90℃に
達した。ここで、ジャケットに通す温水を87℃にした
。次いで、75モル%が苛性ソーダによシ中和された部
分中和アクリル酸359に9、)リメチロールプロパン
トリアクリレー)594fおよび水540 K9からな
る単量体水溶液に窒素ガスを吹きこんで溶存酸素を追い
出したもの、過硫酸アンモン4051Fを水10に9に
溶解したもの、並びに亜硫酸水素ナトリウム4052を
水10Kqに溶解したものをそれぞれニーグー内に5日
間かけて供給した。単量体の添加を始め 18− てから、排出用スクリューの回転をニーダ−内に滞留す
る含水ゲル状重合体の針が一定になるように調整した。
As the polymerization progressed, the monomer aqueous solution produced a soft hydrogel, which was gradually divided into smaller pieces by rotation of the stirring shaft. 25 minutes after adding the polymerization initiator, the temperature inside the reaction system reached 90°C. Here, the hot water passed through the jacket was heated to 87°C. Next, nitrogen gas was blown into a monomer aqueous solution consisting of partially neutralized acrylic acid 359, in which 75 mol % had been neutralized with caustic soda, 9), trimethylolpropane triacrylate 594f, and water 540 K9. A solution from which oxygen had been removed, a solution of ammonium persulfate 4051F dissolved in 9 parts to 10 parts of water, and a solution of sodium hydrogen sulfite 4052 dissolved in 10 Kq of water were each fed into a Nigu over a period of 5 days. After starting the addition of the monomer, the rotation of the discharge screw was adjusted so that the needle of the hydrogel polymer staying in the kneader remained constant.

ニーダ−に連続的に送り込まれた雫量体水溶液は、細分
化された含水ゲル状■″合体となって連続的に排出され
、系内の温度は、はぼ83℃で一定であった。
The drop mass aqueous solution continuously fed into the kneader was continuously discharged in the form of fragmented hydrogel-like aggregates, and the temperature in the system was constant at approximately 83°C.

排出用スクリューを回転することにより排出された含水
ゲル状重合体は、90℃の温水でジャケットから加熱さ
れた二軸のパドルフィーダー(■奈良機械製作断裂)K
導かれ、平均滞留時間で15分間加熱きれた。次いで、
パドルフィーダーから排出された含水ゲル状重合体は、
連続式通気バンド乾燥機で160℃の熱風で乾燥された
。乾燥物を半日に1度サンプリング1〜、実施例】と同
様に粉砕後、得られた粉砕物(以下、吸収剤(2)とい
う。
The hydrogel-like polymer discharged by rotating the discharge screw is fed to a biaxial paddle feeder (■Nara Kikai Manufactured by K) heated through a jacket with 90°C hot water.
The heating was completed for 15 minutes with an average residence time. Then,
The hydrogel polymer discharged from the paddle feeder is
It was dried with hot air at 160°C in a continuous ventilation band dryer. The dried material was sampled once every half day from 1 to 1, and ground in the same manner as in Example], and the obtained pulverized product (hereinafter referred to as absorbent (2)).

の吸収倍率を測定した。その結果を第2表に示した。The absorption capacity was measured. The results are shown in Table 2.

第 2 表 吸収剤(2)も吸収剤として優れているものであった。Table 2 Absorbent (2) was also excellent as an absorbent.

実施例 3 連続的に供給した単量体水溶液の挙動を観察するために
、ピンク色の蛍光顔料(商品名 工ボカラー、日本触媒
化学工業■製) 0.2 yを脱気したのち開始剤を混
合した単量体水溶液SCC中に分散したものを実施例1
の連続重合の途中で添加してその行方を観察した。
Example 3 In order to observe the behavior of a monomer aqueous solution that was continuously supplied, 0.2 y of a pink fluorescent pigment (trade name Kobocolor, manufactured by Nippon Shokubai Chemical Co., Ltd.) was degassed, and then an initiator was added. Example 1 Dispersed in the mixed monomer aqueous solution SCC
It was added during the continuous polymerization and its behavior was observed.

着色した単量体水溶液を添加すると、直ちに系) 全体
がピンク色になった。このことから、単量体水溶液は、
解砕をれた含水ゲル状重合体と均一に混合され、含水ゲ
ル状重合体表面にうすくコーティングされることがわか
る。
When the colored monomer aqueous solution was added, the entire system immediately turned pink. From this, the monomer aqueous solution is
It can be seen that it is uniformly mixed with the crushed hydrogel polymer and is thinly coated on the surface of the hydrogel polymer.

続いて無着色の単量体水溶液を添加しながら重合を続け
ると、中心部がピンク色で外側が透明な含水ゲル状重合
体粒子が得られた。このことから、含水ゲル状重合体が
ニーダ−中で砕かれてその表面に単量体水溶液がついて
重合し7、そのためにゲル粒径が大きくなり、それがま
た砕かれることを繰り返しでいることが分かる。
Subsequently, polymerization was continued while adding an uncolored monomer aqueous solution, and hydrogel-like polymer particles with a pink center and a transparent outside were obtained. From this, the hydrous gel-like polymer is crushed in the kneader, and the aqueous monomer solution is attached to its surface and polymerized7, thereby increasing the gel particle size, which is then crushed again. I understand.

実施例 4 実施例1で用いたニーダ−の−辺の上部を150mmX
50−にわたって切りとり、含水ゲル状重合体をオーバ
ーフローしやすくした。
Example 4 The upper side of the kneader used in Example 1 was 150 mm
It was cut over 50 mm to make it easier for the hydrogel polymer to overflow.

このニーダ−にふたをつけ、アクリルアミド250g、
アクリル酸カリウム97W、N、N’−メチレンビスア
クリルアミド3vおよび水650tからなる単量体水溶
液(水溶液濃度35重量係)を送入し、♀素ガスを吹き
込み反応系内を窒素借換した。
Put a lid on this kneader, add 250g of acrylamide,
An aqueous monomer solution (aqueous solution concentration: 35% by weight) consisting of 97W of potassium acrylate, 3v of N,N'-methylenebisacrylamide and 650t of water was introduced, and nitrogen gas was blown into the reaction system to replace the inside of the reaction system with nitrogen.

次に2本のシグマ型攪拌翼をそれぞれ44および24r
pmの速度で回転させ、ジャケットに40℃の温水を通
しで加熱しながら重合開始剤として35cI)過酸化水
素水溶液0.51とL−アスコルビン酸0.0065’
を添加した。重合開始剤添加後1分で重合が開始し、単
量体水溶液は重合の進行に伴い柔らかい含水ゲルを形成
し、攪拌軸の回転により次第に細分化された。重合開始
剤を添加して15分後に反応系内の温度は64℃に達し
、含水ゲル状重合体は約3vPの径の細粒に細分化てれ
ていた。ここでジャケットに通す温水を90℃にした。
Next, two sigma type stirring blades of 44 and 24 r were installed.
pm, and while heating by passing 40°C hot water through the jacket, add 35cI) hydrogen peroxide aqueous solution 0.51 and L-ascorbic acid 0.0065' as a polymerization initiator.
was added. Polymerization started 1 minute after the addition of the polymerization initiator, and as the polymerization progressed, the monomer aqueous solution formed a soft hydrogel, which was gradually divided into smaller pieces by rotation of the stirring shaft. Fifteen minutes after adding the polymerization initiator, the temperature in the reaction system reached 64° C., and the hydrogel polymer had been subdivided into fine particles with a diameter of about 3 vP. Here, the hot water passed through the jacket was heated to 90°C.

次いで、アクリルアミド12にハアクリル酸カリウム4
.66 Kり、N、N′−メチレンビスアクリルアミド
1447および水29.2Kr/からなる単量体水溶液
に窒素ガスを吹きこんで溶存酸素を追い出したもの、3
5幅過酸化水素水247を水I K9に溶解したもの、
並びにt−アスコルビン酸0.288 Fを水1にりに
溶解したものをそれぞれ定楡ポンプにより混合槽に送り
、均一に混合されたものをニーダ−内に24時間かけて
供給した。
Next, potassium acrylate 4 was added to acrylamide 12.
.. 66 Nitrogen gas was blown into a monomer aqueous solution consisting of 1447 Kr, N, N'-methylenebisacrylamide and 29.2 Kr/water to drive out dissolved oxygen, 3
5-width hydrogen peroxide solution 247 dissolved in water I K9,
A solution of 0.288 F of t-ascorbic acid dissolved in one part of water was sent to a mixing tank using a fixed pump, and the uniformly mixed solution was fed into a kneader over a period of 24 hours.

ニーダ−に連続的に供給きれた単量体水溶液は、細分化
された含水ゲル状重合体となってニーダ−からオーバー
フローして連続的に排出された。系内の温度は終始はぼ
85℃であった。
The monomer aqueous solution that had been continuously supplied to the kneader became a finely divided hydrogel-like polymer that overflowed from the kneader and was continuously discharged. The temperature in the system was approximately 85°C throughout.

排出された含水ゲル状重合体をさらに20分間、空素W
囲気下で85℃に保つことにより重合を完結させた。排
出された含水ゲル状重合体は1〜15ミリ径程L1に解
砕されており、]7かもザラザラ1゜て取扱いやすく、
首だ容易に乾燥することのできるものであった。この含
水ゲル状重合体を50メツシユ金網上におき、180℃
で1時間熱風乾燥した。得られた乾燥物(以下保水剤1
1)という)は粒状で、含水率ij、571j 444
°%テあった。
The discharged hydrogel polymer was heated with air W for another 20 minutes.
Polymerization was completed by maintaining the temperature at 85° C. under ambient atmosphere. The discharged water-containing gel polymer is crushed into pieces L1 with a diameter of 1 to 15 mm, and is easy to handle as it has a rough texture of 1°.
The neck was something that could be easily dried. This hydrogel polymer was placed on a 50-mesh wire mesh and heated to 180°C.
It was dried with hot air for 1 hour. The obtained dried product (hereinafter referred to as water retention agent 1)
1)) is granular and has a moisture content ij, 571j 444
°%te was there.

保水剤fiI O,59と硅砂7号1002とを混合(
−7,100メツシユ金網上にのせ、この混合物が飽和
するまで水道水を注水し、2 Q U、 65 %RH
の条件下に放置し、保水1−°の経[1変化を調べた。
Mix water retention agent fiI O, 59 and silica sand No. 7 1002 (
-7,100 mesh Place on a wire mesh, pour tap water until the mixture is saturated, 2QU, 65%RH
The samples were left under the following conditions and the changes were investigated over the course of 1-° water retention.

この混合物の保水量変化を第3表に示した。Table 3 shows the change in water retention of this mixture.

第 3 表 本発明の方法で得られた架橋重合体は、保水剤としても
有効に利用されるものであることが明らかである。
Table 3 It is clear that the crosslinked polymer obtained by the method of the present invention can also be effectively used as a water retention agent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1(A)図は、本発明の実施例1における反応容器と
排出した含水ゲル状重合体の加熱装置の正面説明図、第
1(B)図は排出翼の側面図である。 第2(A)図は、本発明の実施例2における反応容器の
正面説明図である。 第2の)図は、本発明の実施例2における反応容器と加
熱装置およびベルト乾燥機の側面説明図である。 第3図は、本発明の実施例4における反応容器と加熱装
置の正面説明図である。 1、淵 度 計 2. 単量体と開始剤との混合水溶液
導入管 3、窒素ガス導入管 4. ジャケット5、 双腕型ニ
ーダ−6,シグマ型攪拌翼7、バ ッ ト 8. 加 
熱 浴  23− 9、排 出 翼 10.ポリエチレンフィルムでできた
おおい 11、三軸ニーダ−】2.バンバリー型橿拌翼13、排
出用スクリュー ]4.ダブルパドルフィーダー15、
ベルト乾燥機 16.−辺の上部を切リドた双腕型ニー
ダ− 特許出願人 日本触媒化学工業株式会社 25− 24− 第2図(A) デ * 2 [! (B) 3暦=フL肝−一し、1 第3図 −7−−1
FIG. 1(A) is a front explanatory view of a reaction vessel and a heating device for the discharged hydrogel polymer in Example 1 of the present invention, and FIG. 1(B) is a side view of a discharge blade. FIG. 2(A) is an explanatory front view of a reaction container in Example 2 of the present invention. The second) figure is an explanatory side view of a reaction vessel, a heating device, and a belt dryer in Example 2 of the present invention. FIG. 3 is an explanatory front view of a reaction vessel and a heating device in Example 4 of the present invention. 1. Toki Fuchi 2. Mixed aqueous solution inlet tube of monomer and initiator 3, nitrogen gas inlet tube 4. Jacket 5, double-arm kneader 6, sigma stirring blade 7, butt 8. Canada
Heat bath 23-9, discharge blade 10. Canopy made of polyethylene film 11, triaxial kneader】2. Banbury type stirrer blade 13, discharge screw ]4. double paddle feeder 15,
Belt dryer 16. -Double-arm kneader with cut-off upper sides- Patent applicant Nippon Shokubai Chemical Co., Ltd. 25- 24- Figure 2 (A) De * 2 [! (B) 3 calendars = F L liver - 1, 1 Figure 3-7--1

Claims (1)

【特許請求の範囲】 1、水溶液重合により架橋構造を形成して含水ゲル状重
合体となる単一側体の水溶液および重合開始剤を複数の
回転攪拌軸を有する容器内に連続的rc供給し、重合の
進行に伴い生成する含水ゲル状重合体を該攪拌軸の回転
による剪断力により細分化しながらラジカル水溶液重合
を行ない、生成(〜た細分化された含水ゲル状重合体を
連続的に容器外に排出するととを特徴とする新規連続重
合方法。 2、単量体の水溶液濃度が10〜80重t%である特許
請求の範囲第1項記賊の新規連続重合方法。 3、複数の回転攪拌1141を有する容器が双腕型ニー
ダ−である特許請求の範囲第1項記載の新規連続重合方
法。 4、双腕型ニーダ−が、フッ素系樹脂で内面をコーティ
ングされたものである特許請求の範囲第3項記載の新規
連続重合方法。
[Claims] 1. An aqueous solution of a single-sided polymer that forms a crosslinked structure to become a hydrogel polymer by aqueous solution polymerization and a polymerization initiator are continuously supplied by rc into a container having a plurality of rotating stirring shafts. , radical aqueous solution polymerization is carried out while fragmenting the hydrogel-like polymer produced as the polymerization progresses by the shear force generated by the rotation of the stirring shaft, and the fragmented hydrogel-like polymer produced (~) is continuously poured into a container. A novel continuous polymerization method characterized by: discharging to the outside. 2. A novel continuous polymerization method according to claim 1, wherein the monomer aqueous solution concentration is 10 to 80% by weight. 3. A plurality of A novel continuous polymerization method according to claim 1, wherein the container having the rotary agitation 1141 is a double-arm kneader. 4. A patent in which the double-arm kneader has an inner surface coated with a fluororesin. A novel continuous polymerization method according to claim 3.
JP58163168A 1983-09-07 1983-09-07 Novel continuous polymerization Granted JPS6055002A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58163168A JPS6055002A (en) 1983-09-07 1983-09-07 Novel continuous polymerization
GB08422380A GB2146343B (en) 1983-09-07 1984-09-05 Cross-linked polymers
DE3432690A DE3432690C2 (en) 1983-09-07 1984-09-06 Process for the continuous production of crosslinked polymers and apparatus for carrying out the same
CA000462583A CA1258338A (en) 1983-09-07 1984-09-06 Continuous solution polymerisation to water-containing cross-linked gel polymer
FR8413817A FR2551445B1 (en) 1983-09-07 1984-09-07 PROCESS FOR THE CONTINUOUS MANUFACTURE OF A CROSSLINKED POLYMER
KR1019840005480A KR890004063B1 (en) 1983-09-07 1984-09-07 Cross-linked polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163168A JPS6055002A (en) 1983-09-07 1983-09-07 Novel continuous polymerization

Publications (2)

Publication Number Publication Date
JPS6055002A true JPS6055002A (en) 1985-03-29
JPH0214361B2 JPH0214361B2 (en) 1990-04-06

Family

ID=15768525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163168A Granted JPS6055002A (en) 1983-09-07 1983-09-07 Novel continuous polymerization

Country Status (6)

Country Link
JP (1) JPS6055002A (en)
KR (1) KR890004063B1 (en)
CA (1) CA1258338A (en)
DE (1) DE3432690C2 (en)
FR (1) FR2551445B1 (en)
GB (1) GB2146343B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100507A (en) * 1985-10-19 1987-05-11 バスフ アクチェンゲゼルシャフト Continuous manufacture of bridged fine grain gel polymer
JPH0253U (en) * 1988-06-03 1990-01-05
US5728792A (en) * 1995-07-18 1998-03-17 Sanyo Chemical Industries, Ltd. Method for preparing water absorbent resin
US7265190B2 (en) * 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
JP2008255366A (en) * 2001-09-12 2008-10-23 Stockhausen Gmbh Continuous polymerization process for production of superabsorbent polymer
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
JP2009518484A (en) * 2005-12-07 2009-05-07 ビーエーエスエフ ソシエタス・ヨーロピア Method for continuous mixing of polymer particles
JP2010521580A (en) * 2007-03-23 2010-06-24 ビーエーエスエフ ソシエタス・ヨーロピア Transport of the monomer composition into the transport means or pipeline
JP2010523305A (en) * 2007-04-03 2010-07-15 ホルガー ブラム Apparatus for treating ballast water with aqueous acrolein solution
US8513364B2 (en) 2005-01-21 2013-08-20 Nippon Shokubai Co., Ltd. Production method of water-absorbent resin
WO2015030128A1 (en) * 2013-08-28 2015-03-05 株式会社日本触媒 Method for producing water-absorbing resin
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
WO2022065365A1 (en) 2020-09-25 2022-03-31 株式会社日本触媒 Method for producing water-absorbing resin powder
JP2022108734A (en) * 2021-01-13 2022-07-26 ランクセス・ドイチュランド・ゲーエムベーハー Acrylonitrile-based cation exchangers
WO2022163849A1 (en) 2021-01-29 2022-08-04 株式会社日本触媒 Method for producing water-absorbent resin

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2013023A1 (en) * 1989-04-17 1990-10-17 Milan F. Sojka Method of making highly adsorptive copolymers
US5258473A (en) * 1989-11-20 1993-11-02 Basf Aktiengesellschaft Preparation of finely divided, water-soluble polymers
DE19955861A1 (en) * 1999-11-20 2001-05-23 Basf Ag Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off
DE10041392A1 (en) 2000-08-23 2002-03-07 Stockhausen Chem Fab Gmbh Water-soluble homopolymers and copolymers with improved environmental compatibility
US7270853B2 (en) 2003-06-12 2007-09-18 National Starch And Chemical Investment Holding Corporation Glass adhesion promoter
EP1799721B1 (en) * 2004-09-28 2011-11-23 Basf Se Method for the continuous production of crosslinked particulate gel-type polymers
US8048942B2 (en) 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
CN110773106A (en) * 2019-12-14 2020-02-11 江西辙炜新材料科技有限公司 Paddle-free reaction device of intelligent water-based acrylic emulsion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734101A (en) * 1980-08-11 1982-02-24 Nippon Shokubai Kagaku Kogyo Co Ltd Novel polymerization process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172066A (en) * 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734101A (en) * 1980-08-11 1982-02-24 Nippon Shokubai Kagaku Kogyo Co Ltd Novel polymerization process

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100507A (en) * 1985-10-19 1987-05-11 バスフ アクチェンゲゼルシャフト Continuous manufacture of bridged fine grain gel polymer
JPH0253U (en) * 1988-06-03 1990-01-05
US5728792A (en) * 1995-07-18 1998-03-17 Sanyo Chemical Industries, Ltd. Method for preparing water absorbent resin
US5886120A (en) * 1995-07-18 1999-03-23 Sanyo Chemical Industries, Ltd. Method for preparing water absorbent resin
JP2008255366A (en) * 2001-09-12 2008-10-23 Stockhausen Gmbh Continuous polymerization process for production of superabsorbent polymer
JP2013241623A (en) * 2001-09-12 2013-12-05 Evonik Degussa Gmbh Continuous polymerization process for manufacture of superabsorbent polymer
US7265190B2 (en) * 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US7582705B2 (en) 2004-02-05 2009-09-01 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US8513364B2 (en) 2005-01-21 2013-08-20 Nippon Shokubai Co., Ltd. Production method of water-absorbent resin
JP2009518484A (en) * 2005-12-07 2009-05-07 ビーエーエスエフ ソシエタス・ヨーロピア Method for continuous mixing of polymer particles
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US10358558B2 (en) 2005-12-22 2019-07-23 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
JP2010521580A (en) * 2007-03-23 2010-06-24 ビーエーエスエフ ソシエタス・ヨーロピア Transport of the monomer composition into the transport means or pipeline
JP2010523305A (en) * 2007-04-03 2010-07-15 ホルガー ブラム Apparatus for treating ballast water with aqueous acrolein solution
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
JP5989912B2 (en) * 2013-08-28 2016-09-07 株式会社日本触媒 Method for producing water absorbent resin
WO2015030128A1 (en) * 2013-08-28 2015-03-05 株式会社日本触媒 Method for producing water-absorbing resin
WO2022065365A1 (en) 2020-09-25 2022-03-31 株式会社日本触媒 Method for producing water-absorbing resin powder
KR20230057408A (en) 2020-09-25 2023-04-28 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent resin powder
JP2022108734A (en) * 2021-01-13 2022-07-26 ランクセス・ドイチュランド・ゲーエムベーハー Acrylonitrile-based cation exchangers
WO2022163849A1 (en) 2021-01-29 2022-08-04 株式会社日本触媒 Method for producing water-absorbent resin
KR20230125045A (en) 2021-01-29 2023-08-28 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent polymer

Also Published As

Publication number Publication date
DE3432690A1 (en) 1985-03-21
KR890004063B1 (en) 1989-10-18
CA1258338A (en) 1989-08-08
KR850002570A (en) 1985-05-15
DE3432690C2 (en) 1986-12-04
GB2146343A (en) 1985-04-17
GB8422380D0 (en) 1984-10-10
FR2551445B1 (en) 1988-11-04
FR2551445A1 (en) 1985-03-08
JPH0214361B2 (en) 1990-04-06
GB2146343B (en) 1987-07-29

Similar Documents

Publication Publication Date Title
JPS6055002A (en) Novel continuous polymerization
JP5629688B2 (en) Polyacrylic acid (salt) water-absorbing resin and method for producing the same
JP5600670B2 (en) Polyacrylic acid water-absorbing resin powder and method for producing the same
AU2010362811B2 (en) Method for producing water-absorbent resin particles and water-absorbent resin particles
EP2539382B1 (en) Method for producing water-absorbing polymer particles
WO2019221154A1 (en) Method for producing water-absorbent resin particles
CN1016873B (en) Method for production of water absorbent resin
JPH07242709A (en) Preparation of water-absorbent resin
EP2550304B2 (en) Method for removing residual monomers from water-absorbent polymer particles
JPH0219122B2 (en)
WO2012014749A1 (en) Process for production of water-absorbable resin
JP5805639B2 (en) Method for producing water absorbent resin
WO2020067311A1 (en) Method for producing water-absorbing resin and water-absorbing resin
WO2012014750A1 (en) Process for production of water-absorbable resin
WO2014005860A1 (en) Method for producing water-absorbent polymer particles with improved properties
WO2011117245A1 (en) Method for producing water-absorbing polymer particles
JP6890190B2 (en) Water-absorbent resin powder for heating element composition, and heating element composition
WO2014118025A1 (en) Method for removal of residual monomers from water-absorbing polymer particles
BR102015023698B1 (en) process for the production of water-absorbing polymer particles
JP2005081204A (en) Method for manufacturing water absorbing resin composition
EP2861633B1 (en) Method for the production of water-absorbing polymer particles
JP2005247931A (en) Method for producing water-absorbing resin particle
JP2016060764A (en) Method for producing polyacrylic acid (salt)-based water-absorbing resin
WO2019154652A1 (en) Method for the pneumatic delivery of superabsorbent particles
JP4582402B2 (en) Method for producing liquid absorbent resin