DE19955861A1 - Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off - Google Patents

Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off

Info

Publication number
DE19955861A1
DE19955861A1 DE19955861A DE19955861A DE19955861A1 DE 19955861 A1 DE19955861 A1 DE 19955861A1 DE 19955861 A DE19955861 A DE 19955861A DE 19955861 A DE19955861 A DE 19955861A DE 19955861 A1 DE19955861 A1 DE 19955861A1
Authority
DE
Germany
Prior art keywords
monomers
water
reactor
reaction
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19955861A
Other languages
German (de)
Inventor
Wilfried Heide
Stefan Wickel
Thomas Daniel
Joachim Nilges
Juergen Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7929721&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19955861(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to DE19955861A priority Critical patent/DE19955861A1/en
Priority to CA002390871A priority patent/CA2390871A1/en
Priority to JP2001540164A priority patent/JP4511774B2/en
Priority to AT03022084T priority patent/ATE386057T1/en
Priority to US10/111,428 priority patent/US6710141B1/en
Priority to PCT/EP2000/011098 priority patent/WO2001038402A1/en
Priority to CNB008158509A priority patent/CN1142188C/en
Priority to AT00974512T priority patent/ATE260937T1/en
Priority to TR2004/00487T priority patent/TR200400487T4/en
Priority to MXPA02004034A priority patent/MXPA02004034A/en
Priority to BRPI0015680-9A priority patent/BR0015680B1/en
Priority to EP00974512A priority patent/EP1237937B1/en
Priority to DE50005555T priority patent/DE50005555D1/en
Priority to EP03022084A priority patent/EP1384728B8/en
Priority to ES00974512T priority patent/ES2216983T3/en
Priority to DE50014971T priority patent/DE50014971D1/en
Publication of DE19955861A1 publication Critical patent/DE19955861A1/en
Priority to US10/765,152 priority patent/US20040186229A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00128Controlling the temperature by direct heating or cooling by evaporation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel

Abstract

In a process for the continuous production of crosslinked, finely-divided gel polymers by co polymerisation of water-soluble mono-unsaturated monomers and poly-unsaturated comonomers in a multi-screw mixer-kneader, at least 5% of the heat of reaction is removed by evaporation of water, at least 25% with the product and the rest by cooling the reactor. A process for the continuous production of crosslinked, finely-divided gel polymers (I) involves the co polymerisation of (a) water-soluble mono-unsaturated monomers, (b) 0.001-5 mol% (based on a) monomers with at least two ethylenic double bonds and (c) 0-20 mol% water-insoluble mono-unsaturated monomers in 20-80 wt% aqueous solution in presence of initiators at 0-140 deg C, by feeding the monomer solution with the initiator and inert gas into a mixer-kneader with at least two parallel rotating shafts fitted with several kneading and transporting elements to move the materials through the mixer. In this process, at least 5% of the heat of reaction is removed by evaporation of water from the reaction mixture, at least 25% is removed with the product and the rest is removed by cooling the reactor walls.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur kontinuier­ lichen Herstellung von vernetzten feinteiligen gelförmigen Poly­ merisaten.The present invention relates to a method for continuous Lichen production of cross-linked fine gel-like poly merisates.

Aus der DE-OS 34 32 690 ist ein Verfahren zur kontinuierlichen Herstellung von vernetzten Polymerisaten bekannt, bei dem man wasserlösliche Monomere in Gegenwart eines Vernetzers und von In­ itiatoren in einem Kessel polymerisiert, der mit einer Mehrzahl von parallel zueinander angeordneten rotierenden Rührerwellen ausgerüstet ist, die mit Rührerblättern versehen sind. Die Polymerisation wird kontinuierlich in einem Zweiarm-Typkneter oder beispielsweise in einem Dreischaftkneter durchgeführt. Bei diesem Reaktortyp findet eine starke Rückvermischung statt, so daß die Monomerlösung auf das fein zerteilte wasserhaltige Gel­ polymere gegeben wird und die Polymerisation des Monomeren auf der Oberfläche des Polymergels abläuft. Die so herstellbaren feinteiligen Polymerisatgele haben einen relativ hohen Rest­ monomergehalt.DE-OS 34 32 690 describes a process for continuous Production of crosslinked polymers known, in which one water-soluble monomers in the presence of a crosslinker and of In itiators polymerized in a boiler with a plurality of rotating stirrer shafts arranged parallel to each other is equipped with stirrer blades. The Polymerization is carried out continuously in a two-arm type kneader or carried out, for example, in a three-shaft kneader. At this type of reactor is strongly mixed back, so that the monomer solution on the finely divided water-containing gel polymer is given and the polymerization of the monomer runs off the surface of the polymer gel. The so producible finely divided polymer gels have a relatively high residue monomer content.

Die EP-A-223 063 lehrt ein Verfahren zur kontinuierlichen Her­ stellung von vernetzten feinteiligen gelförmigen Polymerisaten in einem einwelligen zylindrischen Mischer, dessen Mischsegmente eine Förderung der Stoffe vom Anfang zum Ende des zylindrischen Mischers bewirken. Die Polymerisation wird bei einem Druck von 100 bis 800 mbar durchgeführt, was einen hohen apparativen Auf­ wand bedeutet, um den Druck zu regulieren. Die Monomere müssen über ein Druckhalteventil in den Reaktor dosiert werden, welches leicht zupolymerisiert. Darüberhinaus haben beide Verfahren ein unbefriedigend breites Verweilzeitspektrum und einen oszillieren­ den Produktaustrag.EP-A-223 063 teaches a process for continuous production position of cross-linked, finely divided gel-like polymers in a single-shaft cylindrical mixer, the mixing segments a promotion of fabrics from the beginning to the end of the cylindrical Effect mixer. The polymerization is carried out at a pressure of 100 to 800 mbar carried out, which is a high apparatus wall means to regulate the pressure. The monomers have to be metered into the reactor via a pressure control valve, which slightly polymerized. In addition, both procedures have one unsatisfactorily wide range of dwell times and an oscillate the product discharge.

Daher war es Aufgabe der vorliegenden Erfindung, ein apparativ einfaches Verfahren mit guter Raum/Zeit-Ausbeute zur Verfügung zu stellen, dessen Produkt ein gleichmäßiges Polymergel mit geringem Restmonomergehalt ist.It was therefore an object of the present invention to provide an apparatus simple process with good space / time yield available too ask whose product is a uniform polymer gel with low Residual monomer content.

Demgemäß wurde ein Verfahren zur kontinuierlichen Herstellung von vernetzten, feinteiligen, gelförmigen Polymerisaten durch Copoly­ merisieren von
Accordingly, a process for the continuous production of crosslinked, finely divided, gel-like polymers by copoly merize

  • a) wasserlöslichen, monoethylenisch ungesättigten Monomeren,a) water-soluble, monoethylenically unsaturated monomers,
  • b) 0,001 bis 5 Mol-% bezogen auf die Monomere (a), mindestens zwei ethylenisch ungesättigte Doppelbindungen enthaltenden Monomeren undb) 0.001 to 5 mol%, based on the monomers (a), at least containing two ethylenically unsaturated double bonds Monomers and
  • c) 0 bis 20 Mol-% bezogen auf die Monomere (a) wasserunlöslichen monoethylenisch ungesättigten Monomerenc) 0 to 20 mol% based on the monomers (a) water-insoluble monoethylenically unsaturated monomers

in 20 bis 80 gew.-%iger wäßriger Lösung in Gegenwart von Initia­ tor bei Temperaturen von 0 bis 140°C, wobei man die wäßrige Lösung der Monomeren zusammen mit dem Initiator und einem Inertgas kontinuierlich einem Mischkneter mit mindestens zwei achsparallel rotierenden Wellen zuführt, wobei sich auf den Wellen mehrere Knet- und Transportelemente befinden, die eine Förderung der am Anfang des Mischkneters zugegebenen Stoffe in axialer Richtung zum Ende des Mischers bewirken, gefunden, bei dem der Anteil der Wärmeabfuhr durch Verdampfung von Wasser aus dem Reaktionsgemisch mindestens 5% der Reaktionswärme und der Anteil der Wärmeabfuhr durch Produktaustrag mindestens 25% dar Reaktionswärme beträgt und die restliche Wärmeabfuhr über Kühlung der Reaktorwände er­ folgt.in 20 to 80 wt .-% aqueous solution in the presence of Initia tor at temperatures from 0 to 140 ° C, wherein the aqueous solution of the monomers together with the initiator and an inert gas continuously a mixer kneader with at least two axially parallel rotating shafts, with several on the shafts Kneading and transport elements are located, which promote the am Beginning of the mixer kneader added substances in the axial direction effect at the end of the mixer, found in which the proportion of Heat removal by evaporation of water from the reaction mixture at least 5% of the heat of reaction and the proportion of heat dissipation is at least 25% of the heat of reaction due to product discharge and the remaining heat dissipation via cooling the reactor walls follows.

Wasserlösliche monoethylenisch ungesättigte Monomere der Gruppe (a) sind beispielsweise ethylenisch ungesättigte C3- bis C6-Car­ bonsäuren, deren Amide und Ester mit Aminoalkoholen der Formel
Water-soluble monoethylenically unsaturated monomers of group (a) are, for example, ethylenically unsaturated C 3 -C 6 -carboxylic acids, their amides and esters with amino alcohols of the formula

in der R4 C2- bis C5-Alkylen und R1, R2, R3 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Propyl bedeutet. Bei diesen Verbindungen handelt es sich beispielsweise um Acrylsäure, Meth­ acrylsäure, Crotonsäure, Itaconsäure, Maleinsäure, Fumarsäure sowie den Alkali- oder Ammoniumsalzen dieser Säuren, Acrylamid, Methacrylamid, Crotonsäureamid, Dimethylaminoethylacrylat, Diethylaminoethylacrylat, Dimethylaminopropylacrylat, Dimethyl­ aminobutylacrylat, Diethylaminoethylmethacrylat, Dimethylamino­ ethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminoneo­ pentylacrylat und Dimethylaminoneopentylmethacrylat. Die basi­ schen Acrylate und Methacrylate werden in Form der Salze mit starken Mineralsäuren, Sulfonsäuren oder Carbonsäuren oder in quaternisierter Form eingesetzt. Das Anion X für die Verbindungen der Formel I ist der Säurerest der Mineralsäuren bzw. der Carbonsäuren oder Methosulfat, Ethosulfat oder Halogenid aus einem Quaternierungsmittel.in which R 4 is C 2 to C 5 alkylene and R 1 , R 2 , R 3 independently of one another are hydrogen, methyl, ethyl or propyl. These compounds are, for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid and the alkali metal or ammonium salts of these acids, acrylamide, methacrylamide, crotonic acid amide, dimethylaminoethylacrylate, diethylaminoethylacrylate, dimethylaminopropylacrylate, dimethylaminoethylaminoethylamylamethylamylamethylamethylamylamethylamethylaminoethylamylamethylamethylamylamethylaminoethylamylamethylamethylaminoethylamylamethylaminoethylamylamethylaminoethylaminoamylamethylaminoethylamylaminoethylaminoethylamylamethylaminoethylaminoethylaminoethylamylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoamethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylaminoethylamylate Methylamino Acrylate as well , Dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate. The basic acrylates and methacrylates are used in the form of the salts with strong mineral acids, sulfonic acids or carboxylic acids or in quaternized form. The anion X for the compounds of formula I is the acid residue of the mineral acids or the carboxylic acids or methosulfate, ethosulfate or halide from a quaternizing agent.

Weitere wasserlösliche Monomere der Gruppe (a) sind N-Vinylpyrro­ lidon, Acrylamidopropansulfonsäure, Vinylphosphonsäure und/oder Alkali- bzw. Ammoniumsalze der Vinylsulfonsäure. Die anderen Säuren können ebenfalls entweder in nicht neutralisierter Form oder in partiell bzw. bis zu 100% neutralisierter Form bei der Polymerisation eingesetzt werden. Als wasserlösliche Monomere der Gruppe (a) eignen sich auch Diallylammoniumverbindungen, wie Di­ methyldiallylammoniumchlorid, Diethyldiallylammoniumchlorid oder Diallylpiperidiniumbromid, N-Vinylimidazoliumverbindungen, wie Salze oder Quaternisierungsprodukte von N-Vinylimidazol und 1-Vinyl-2-methylimidazol, und N-Vinylimidazoline, wie N-Vinylimi­ dazolin, 1-Vinyl-2-methylimidazolin, 1-Vinyl-2-ethylimidazolin oder 1-Vinyl-2-n-propylimidazolin, die ebenfalls in quaterni­ sierter Form oder als Salz bei der Polymerisation eingesetzt wer­ den.Other water-soluble monomers of group (a) are N-vinyl pyrro lidon, acrylamidopropanesulfonic acid, vinylphosphonic acid and / or Alkali or ammonium salts of vinyl sulfonic acid. The others Acids can also be used in either non-neutralized form or in partially or up to 100% neutralized form at Polymerization can be used. As water-soluble monomers the Group (a) are also suitable diallylammonium compounds, such as Di methyldiallylammonium chloride, diethyldiallylammonium chloride or Diallylpiperidinium bromide, N-vinylimidazolium compounds such as Salts or quaternization products of N-vinylimidazole and 1-vinyl-2-methylimidazole, and N-vinylimidazolines such as N-vinylimi dazolin, 1-vinyl-2-methylimidazoline, 1-vinyl-2-ethylimidazoline or 1-vinyl-2-n-propylimidazoline, also in quaterni form or used as a salt in the polymerization the.

Bevorzugte Monomere der Gruppe (a) sind Acrylsäure, Methacryl­ säure sowie die Alkali- oder Ammoniumsalze dieser Säuren, Acryl­ amid und/oder Methacrylamid. Diese Monomere können in jedem be­ liebigen Verhältnis miteinander copolymerisiert werden.Preferred monomers of group (a) are acrylic acid, methacrylic acid and the alkali or ammonium salts of these acids, acrylic amide and / or methacrylamide. These monomers can be in any any relationship can be copolymerized with each other.

Die Polymerisation der Monomere der Gruppe (a) erfolgt in Gegen­ wart von Vernetzern (Monomere der Gruppe (b)). Die Vernetzer ent­ halten mindestens zwei ethylenisch ungesättigte Doppelbindungen. Geeignete Vernetzer sind beispielsweise N,N'-Methylenbisacryl­ amid, Polyethylenglykoldiacrylate und Polyethylenglykoldimeth­ acrylate, die sich jeweils von Polyethylenglykolen eines Moleku­ largewichts von 126 bis 8500, vorzugsweise 400 bis 2000, ableiten, Trimethylolpropantriacrylat, Trimethylolpropantrimeth­ acrylat, Ethylenglykoldiacrylat, Propylenglykoldiacrylat, Butan­ dioldiacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Diacrylate und Dimethacrylate von Blockcopolymerisaten aus Ethylenoxid und Propylenoxid, zweifach bzw. dreifach mit Acryl­ säure oder Methacrylsäure veresterte mehrwertige Alkohole, wie Glycerin oder Pentaerythrit, Triallylamin, Tetraallylethylen­ diamin, Divinylbenzol, Diallylphthalat, Polyethylenglykoldivinyl­ ether von Polyethylenglykolen eines Molekulargewichts von 126 bis 4000, Trimethylolpropandiallylether, Butandioldivinyl­ ether, Pentaerythrittriallylether und/oder Divinylethylenharn­ stoff. Vorzugsweise setzt man wasserlösliche Vernetzer ein, z. B. N,N-Methylenbisacrylamid, Polyethylenglykoldiacrylat, Poly­ ethylenglykoldimethacrylate, Pentaerythrittriallylether und/oder Divinylharnstoff. Die Monomere der Gruppe (b) werden in Mengen von 0,001 bis 5, vorzugsweise 0,005 bis 0,5 Mol-% bezogen auf die Monomere (a) bei der Copolymerisation eingesetzt.The monomers of group (a) are polymerized in counter were from crosslinkers (monomers of group (b)). The crosslinkers ent hold at least two ethylenically unsaturated double bonds. Suitable crosslinkers are, for example, N, N'-methylene bisacrylic amide, polyethylene glycol diacrylates and polyethylene glycol dimeth acrylates, each of polyethylene glycols of a molecule lar weight from 126 to 8500, preferably 400 to 2000, deduce trimethylolpropane triacrylate, trimethylolpropane trimeth acrylate, ethylene glycol diacrylate, propylene glycol diacrylate, butane diol diacrylate, hexanediol diacrylate, hexanediol dimethacrylate, Diacrylates and dimethacrylates from block copolymers Ethylene oxide and propylene oxide, two or three times with acrylic acid or methacrylic acid esterified polyhydric alcohols, such as Glycerin or pentaerythritol, triallylamine, tetraallylethylene diamine, divinylbenzene, diallyl phthalate, polyethylene glycol divinyl ethers of polyethylene glycols with a molecular weight of 126 to 4000, trimethylol propanediallyl ether, butanediol divinyl ether, pentaerythritol triallyl ether and / or divinylethylene urine material. Preferably, water-soluble crosslinking agents are used, e.g. B. N, N-methylene bisacrylamide, polyethylene glycol diacrylate, poly ethylene glycol dimethacrylates, pentaerythritol triallyl ether and / or  Divinyl urea. The monomers of group (b) are in quantities from 0.001 to 5, preferably 0.005 to 0.5 mol% based on the Monomers (a) used in the copolymerization.

Die Copolymerisation der Monomere der Gruppen (a) und (b) kann - sofern eine Änderung der Eigenschaften der Copolymerisate ge­ wünscht wird - zusätzlich noch in Gegenwart von Monomeren der Gruppe (c) durchgeführt werden. Als Monomere der Gruppe (c) kom­ men beispielsweise Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Acrylnitril und/oder Methacrylnitril in Betracht. Außerdem eignen sich Ester der Acrylsäure oder Methacrylsäure mit 1 bis 18 Kohlenstoffatome enthaltenden einwertigen Alkoholen, z. B. Methylacrylat, Ethyl­ acrylat, Propylacrylat, Isopropylacrylat, n-Butylacrylat, Iso­ butylacrylat, Hexylacrylat, 2-Ethylhexylacrylat, Stearylacrylat, die entsprechenden Ester der Methacrylsäure, Fumarsäurediethyl­ ester, Maleinsäurediethylester, Maleinsäuredimethylester, Malein­ säuredibutylester, Vinylacetat und Vinylpropionat. Sofern die Monomere der Gruppe (c) zur Modifizierung der wasserlöslichen Polymerisate verwendet werden, setzt man 0,5 bis 20, vorzugsweise 2 bis 10 Mol-% bezogen auf die Monomere (a) ein.The copolymerization of the monomers of groups (a) and (b) can - if a change in the properties of the copolymers ge is desired - additionally in the presence of monomers Group (c) are carried out. Comonomers as group (c) monomers For example, hydroxyethyl acrylate, hydroxypropyl acrylate, Hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylonitrile and / or methacrylonitrile. Esters are also suitable acrylic acid or methacrylic acid with 1 to 18 carbon atoms containing monohydric alcohols, e.g. B. methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, iso butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, the corresponding esters of methacrylic acid, fumaric acid diethyl esters, diethyl maleate, dimethyl maleate, malein acid dibutyl ester, vinyl acetate and vinyl propionate. If the Monomers of group (c) to modify the water-soluble Polymers are used, 0.5 to 20, preferably 2 to 10 mol% based on the monomers (a).

Die wasserunlöslichen Monomere können, falls sie bei der Copoly­ merisation miteingesetzt werden, mit Hilfe von Emulgatoren in der wäßrigen Lösung fein verteilt werden. Geeignete Emulgatoren sind beispielsweise ethoxylierte Nonylphenole, ethoxyliertes Ricinusöl, Alkylsulfate, Sorbitanfettsäureester, ethoxylierte Sorbite, ethoxylierte Sorbitanfettsäureester und Alkylsulfonate. Die Emulgatoren werden in einer Menge von 0 bis 3 Gew.-% bezogen auf die Monomere (a) eingesetzt.The water-insoluble monomers, if they are copoly be used with the help of emulsifiers in the aqueous solution can be finely divided. Suitable emulsifiers are for example ethoxylated nonylphenols, ethoxylated Castor oil, alkyl sulfates, sorbitan fatty acid esters, ethoxylated Sorbites, ethoxylated sorbitan fatty acid esters and alkyl sulfonates. The emulsifiers are obtained in an amount of 0 to 3% by weight used on the monomers (a).

Die Polymerisation kann gegebenenfalls in Gegenwart der üblichen Polymerisationsregler erfolgen. Geeignete Polymerisationsregler sind beispielsweise Thioverbindungen, wie Thioglykolsäure, Mer­ captoalkohole, z. B. 2-Mercaptoethanol, Mercaptopropanol und Mercaptobutanol, Dodecylmercaptan, Ameisensäure, Ammoniak und Amine, z. B. Ethanolamin, Diethanolamin, Triethanolamin, Triethyl­ amin, Morpholin und Piperidin.The polymerization can optionally in the presence of the usual Polymerization regulators take place. Suitable polymerization regulators are, for example, thio compounds, such as thioglycolic acid, Mer capto alcohols, e.g. B. 2-mercaptoethanol, mercaptopropanol and Mercaptobutanol, dodecyl mercaptan, formic acid, ammonia and Amines, e.g. B. ethanolamine, diethanolamine, triethanolamine, triethyl amine, morpholine and piperidine.

Die Monomere (a), (b) und gegebenenfalls (c) werden in 20 bis 80, vorzugsweise 20 bis 50, insbesondere 30 bis 45 gew.-%iger wäßri­ ger Lösung in Gegenwart von Polymerisationsinitiatoren miteinan­ der copolymerisiert. Als Polymerisationsinitiatoren können sämt­ liche unter den Polymerisationsbedingungen in Radikale zerfal­ lende Verbindungen eingesetzt werden, z. B. Peroxide, Hydroper­ oxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die sogenannten Redoxkatalysatoren. Bevorzugt ist der Einsatz von wasserlöslichen Katalysatoren. In manchen Fällen ist es vorteil­ haft, Mischungen verschiedener Polymerisationsinitiatoren zu ver­ wenden, z. B. Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischungen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden. Geeignete organische Peroxide sind beispiels­ weise Acetylacetonperoxid, Methylethylketonperoxid, tert.-Butyl­ hydroperoxid, Cumolhydroperoxid, tert.-Amylperpivalat, tert.-Bu­ tylperpivalat, tert.-Butylperneohexanoat, tert.-Butylperisobuty­ rat, tert.-Butylper-2-ethylhexanoat, tert.-Butylperisononanoat, tert.-Butylpermaleat, tert.-Butylperbenzoat, tert.-Butyl­ per-3,5,5-tri-methylhexanoat und tert.-Amylperneodekanoat. Wei­ tere geeignete Polymerisationsinitiatoren sind Azostarter, z. B. 2,2'-Azobis-(2-amidinopropan)dihydrochlorid, 2,2'-Azobis-(N,N-di­ methylen)isobutyramidin-dihydrochlorid, 2-(Carbamoylazo)iso­ butyronitril und 4,4'-Azobis-(4-cyanovaleriansäure). Die genann­ ten Polymerisationsinitiatoren werden in üblichen Mengen einge­ setzt, z. B. in Mengen von 0,01 bis 5, vorzugsweise 0,1 bis 2 Mol%, bezogen auf die zu polymerisierenden Monomere.Monomers (a), (b) and optionally (c) are in 20 to 80, preferably 20 to 50, in particular 30 to 45 wt .-% aqueous ger solution together in the presence of polymerization initiators which copolymerizes. All of them can be used as polymerization initiators decompose into radicals under the polymerization conditions lend connections are used, for. B. peroxides, hydroper oxides, hydrogen peroxide, persulfates, azo compounds and the so-called redox catalysts. The use of is preferred  water-soluble catalysts. In some cases it is an advantage liable to ver mixtures of different polymerization initiators turn, e.g. B. mixtures of hydrogen peroxide and sodium or Potassium peroxodisulfate. Mixtures of hydrogen peroxide and Sodium peroxodisulfate can be in any ratio be used. Suitable organic peroxides are examples wise acetylacetone peroxide, methyl ethyl ketone peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-amyl perpivalate, tert-Bu tylperpivalate, tert-butyl perneohexanoate, tert-butyl perisobuty rat, tert-butyl per-2-ethylhexanoate, tert-butyl perisononanoate, tert-butyl permaleate, tert-butyl perbenzoate, tert-butyl per-3,5,5-tri-methylhexanoate and tert-amyl perneodecanoate. Wei Other suitable polymerization initiators are azo starters, e.g. B. 2,2'-azobis- (2-amidinopropane) dihydrochloride, 2,2'-azobis- (N, N-di methylene) isobutyramidine dihydrochloride, 2- (carbamoylazo) iso butyronitrile and 4,4'-azobis (4-cyanovaleric acid). The called Polymerization initiators are used in conventional amounts sets, e.g. B. in amounts of 0.01 to 5, preferably 0.1 to 2 mol%, based on the monomers to be polymerized.

Die Redoxkatalysatoren enthalten als oxidierende Komponente min­ destens eine der oben angegebenen Perverbindungen und als redu­ zierende Komponente beispielsweise Ascorbinsäure, Glukose, Sor­ bose, Ammonium- oder Alkalimetall-hydrogensulfit, -sulfit, -thio­ sulfat, -hyposulfit, -pyrosulfit oder -sulfid, Metallsalze, wie Eisen-II-ionen oder Silberionen oder Natriumhydroxymethylsulfoxy­ lat. Vorzugsweise verwendet man als reduzierende Komponente des Redoxkatalysators Ascorbinsäure oder Natriumpyrosulfit. Bezogen auf die bei der Polymerisation eingesetzte Menge an Monomeren verwendet man 1.10-5 bis 1 Mol.-% der reduzierenden Komponente des Redoxkatalysatorsystems und 1.10-5 bis 5 Mol.-% der oxidierenden Komponente des Redoxkatalysators. Anstelle der oxidierenden Kom­ ponente des Redoxkatalysators oder zusätzlich kann man auch einen oder mehrere wasserlösliche Azostarter verwenden.The redox catalysts contain at least one of the above per-compounds as the oxidizing component and as reducing component, for example ascorbic acid, glucose, sorbose, ammonium or alkali metal hydrogen sulfite, sulfite, thiosulfate, hyposulfite, pyrosulfite or sulfide, metal salts , such as iron (II) ions or silver ions or sodium hydroxymethylsulfoxy lat. Ascorbic acid or sodium pyrosulfite is preferably used as the reducing component of the redox catalyst. Based on the amount of monomers used in the polymerization, 1.10 -5 to 1 mol% of the reducing component of the redox catalyst system and 1.10 -5 to 5 mol% of the oxidizing component of the redox catalyst are used. Instead of the oxidizing component of the redox catalyst or in addition, one or more water-soluble azo starters can also be used.

Bevorzugt wird im erfindungsgemäßen Verfahren ein Redoxsystem be­ stehend aus Wasserstoffperoxid, Natriumperoxodisulfat und Ascor­ binsäure eingesetzt. In einer üblichen Ausführungsform werden diese Komponenten in den Konzentrationen 1.10-2 Mol.-% Wasser­ stoffperoxid, 0,084 Mol.-% Natriumperoxodisulfat und 2,5.10-3 Mol.-% Ascorbinsäure bezogen auf die Monomere eingesetzt.A redox system consisting of hydrogen peroxide, sodium peroxodisulfate and ascorbic acid is preferably used in the process according to the invention. In a conventional embodiment, these components are used in concentrations of 1.10 -2 mol% of hydrogen peroxide, 0.084 mol% of sodium peroxodisulfate and 2.5.10 -3 mol% of ascorbic acid, based on the monomers.

Die wäßrige Monomerlösung kann den Initiator gelöst oder disper­ giert enthalten. Die Initiatoren können jedoch auch getrennt von der Monomerlösung dem Mischkneter zugeführt werden. The aqueous monomer solution can dissolve or disperse the initiator greed included. However, the initiators can also be separated from the monomer solution are fed to the mixer kneader.  

Die Monomerlösung wird vor der Polymerisation von Restsauerstoff befreit. Dies geschieht mittels Inertgas, welches im Gleichstrom, Gegenstrom oder dazwischenliegenden Eintrittswinkeln eingeleitet werden kann. Eine gute Durchmischung kann beispielsweise mit Dü­ sen, statischen oder dynamischen Mischern oder Blasensäulen er­ zielt werden.The monomer solution is left over from the polymerization of residual oxygen exempted. This is done using inert gas, which is in cocurrent, Countercurrent or intermediate entry angles initiated can be. Good mixing can be done, for example, with Dü static or dynamic mixers or bubble columns aims to be.

Die Monomerlösung wird ebenfalls mit einem Inertgasstrom durch den Reaktor geführt. Bevorzugt beträgt der Massendurchsatz an Monomerlösung mindestens 1000, besonders bevorzugt mindestens 2000 und insbesondere mindestens 3000 kg/hm3 (Reaktorvolumen) und der Inertgasstrom mindestens 100 l/hm3 (Reaktorvolumen).The monomer solution is also passed through the reactor with an inert gas stream. The mass throughput of monomer solution is preferably at least 1000, particularly preferably at least 2000 and in particular at least 3000 kg / hm 3 (reactor volume) and the inert gas stream is at least 100 l / hm 3 (reactor volume).

Als Inertgase können unabhängig voneinander Stickstoff, ein Edel­ gas wie Argon, Kohlenmonoxid, Kohlendioxid, Schwefelhexafluorid oder Mischungen dieser Gase verwendet werden. Dabei ist es möglich das Inertgas ganz oder teilweise durch eine chemische Reaktion im Mischkneter zu erzeugen. Bevorzugt wird Stickstoff als Inertgas eingesetzt.Nitrogen, a noble, can be used independently of one another as inert gases gas such as argon, carbon monoxide, carbon dioxide, sulfur hexafluoride or mixtures of these gases can be used. It is the inert gas can be wholly or partly by a chemical To produce reaction in the mixer kneader. Nitrogen is preferred used as inert gas.

Das Reaktorvolumen kann je nach gewünschtem Umsatz variieren. Vorzugsweise beträgt das Reaktorvolumen mindestens 0,1 m3 beson­ ders bevorzugt 0,2 bis 20 m3 und insbesondere 0,2 bis 12 m3.The reactor volume can vary depending on the desired conversion. The reactor volume is preferably at least 0.1 m 3, particularly preferably 0.2 to 20 m 3 and in particular 0.2 to 12 m 3 .

Während an der Zugabestelle der Monomeren in den Mischer die Stoffe in flüssiger Form vorliegen geht die Konsistenz der Reak­ tionsmischung über einen hochviskosen Zustand in ein krümeliges Gel über, das durch die kontinuierliche Förderwirkung des Mischers am Ende des Mischers ausgetragen wird. Bei der Polymeri­ sation entsteht ein Gel, das im Mischer zu einem feinteiligen krümeligen Gel zerteilt und als solches dann ausgetragen wird. Wichtig ist dabei, daß während der Polymerisation im Mischer ein Teil des Wasser entfernt wird, so daß am Ende des Mischers krüme­ lige Gelteilchen mit einem Feststoffgehalt von 20 bis 100 Gew.-% anfallen.While at the addition point of the monomers in the mixer the Substances in liquid form are the consistency of the reak tion mixture over a highly viscous state into a crumbly one Gel over that through the continuous promotional effect of the Mixer is discharged at the end of the mixer. At the Polymeri a gel is formed which becomes a fine particle in the mixer crumbled gel and then discharged as such. It is important that during the polymerization in the mixer Part of the water is removed so that at the end of the mixer bends lige gel particles with a solids content of 20 to 100 wt .-% attack.

Im erfindungsgemäßen Verfahren einsetzbare Mischkneter sind von der Firma List erhältlich und beispielsweise in der CH-A-664 704, EP-A-517 068, WO 97/12666, DE-A-21 23 956, EP-A-603 525, DE-A-195 36 944 und DE-A-41 18 884 beschrieben.Mixing kneaders which can be used in the process according to the invention are from available from List and for example in CH-A-664 704, EP-A-517 068, WO 97/12666, DE-A-21 23 956, EP-A-603 525, DE-A-195 36 944 and DE-A-41 18 884.

Solche Kneter mit 2 Wellen erzielen durch die Anordnung der Knet- und Transportelemente eine hohe Selbstreinigung, die für eine kontinuierliche Polymerisation eine wichtige Anforderung ist. Vorzugsweise rotieren die beiden Wellen gegenläufig zueinander. Such kneaders with 2 shafts achieve by the arrangement of the kneading and transport elements a high level of self-cleaning, which is essential for a continuous polymerization is an important requirement. The two shafts preferably rotate in opposite directions to one another.  

Auf der Rührwelle sind die Scheibensegmente propellerartig an­ geordnet. Als Knet- und Transportelemente sind z. B. wandgängige Mischbarren sowie L- oder U-förmig ausgeformte Aufsätze geeignet.The disk segments on the agitator shaft are propeller-like orderly. As kneading and transport elements such. B. wall-mounted Mixed bars as well as L- or U-shaped attachments are suitable.

Der Mischkneter kann nach Bedarf beheizt oder gekühlt werden. Die Monomerlösung wird darin bei einer Temperatur in dem Bereich von 0 bis 140°C und unter Normaldruck polymerisiert. Bevorzugt beträgt die Temperatur 20 bis 120°C und insbesondere 40 bis 120°C. Die maximale Temperatur beträgt bei einer bevorzugten Verfahrens­ variante mindestens 70°C, besonders bevorzugt mindestens 80°C und insbesondere mindestens 90°C, die Abgastemperatur mindestens 60°C, besonders bevorzugt mindestens 80°C und insbesondere mindestens 90°C und die Produkttemperatur beim Austrag aus dem Reaktor min­ destens 60°C, besonders bevorzugt mindestens 75°C und insbesondere mindestens 85°C.The mixer kneader can be heated or cooled as required. The Monomer solution is therein at a temperature in the range of 0 to 140 ° C and polymerized under normal pressure. Is preferably the temperature 20 to 120 ° C and in particular 40 to 120 ° C. The maximum temperature is in a preferred method variant at least 70 ° C, particularly preferably at least 80 ° C and in particular at least 90 ° C, the exhaust gas temperature at least 60 ° C, particularly preferably at least 80 ° C. and in particular at least 90 ° C and the product temperature when discharging from the reactor min at least 60 ° C, particularly preferably at least 75 ° C and in particular at least 85 ° C.

Bevorzugt wird das erfindungsgemäße Verfahren so durchgeführt, daß der Anteil der Wärmeabfuhr durch Verdampfung von Wasser aus dem Reaktionsgemisch mindestens 15% und besonders bevorzugt min­ destens 25% der Reaktionswärme beträgt.The method according to the invention is preferably carried out in such a way that that the share of heat dissipation from water evaporation the reaction mixture at least 15% and particularly preferably min is at least 25% of the heat of reaction.

Ferner werden Verfahrensvarianten bevorzugt bei denen der Anteil der Wärmeabfuhr durch den Produktaustrag mindestens 45% und ins­ besondere mindestens 55% der Reaktionswärme beträgt.Process variants are also preferred in which the proportion heat dissipation through the product discharge at least 45% and ins especially at least 55% of the heat of reaction.

Bevorzugt werden Verfahren, bei denen die Reaktionswärme zu ins­ gesamt mindestens 50%, besonders bevorzugt zu mindestens 70% und insbesondere zu mindestens 90% durch Produktaustrag und Wasserverdampfung abgeführt wird.Methods are preferred in which the heat of reaction is ins total at least 50%, particularly preferably at least 70% and in particular at least 90% through product discharge and Evaporation of water is carried away.

Nach einer ganz besonders bevorzugten Verfahrensvariante findet keine Wärmeabfuhr über die Kühlung der Reaktorwände statt.According to a very particularly preferred process variant no heat dissipation takes place via the cooling of the reactor walls.

Das bei der Polymerisation anfallende Gel hat einen Wassergehalt von 0 bis 80 Gew.-%, bevorzugt von 40 bis 70 Gew.-%. Dieser rela­ tiv geringe Feuchtigkeitsgehalt bei bereits rieselfähigem Gel, das nicht verklumpt, senkt die anschließend zur Trocknung aufzu­ bringende Energie.The gel obtained during the polymerization has a water content from 0 to 80% by weight, preferably from 40 to 70% by weight. This rela tiv low moisture content of free-flowing gel, that does not clump together, then lowers it for drying bringing energy.

Das Herstellverfahren zeichnet sich durch geringe Verweilzeiten im Reaktor und damit eine gute Raum/Zeit Ausbeute aus. So werden selbst bei Verweilzeiten unter 30 Minuten bei einem Reaktor­ volumen von 300 l feinteilige gelförmige Polymerisate mit einem sehr geringen Restmonomergehalt gefunden. Dies erspart die sonst aufwendigen Abtrennverfahren und erhöht die Ausbeute. Besonders bevorzugt werden Verfahrensvarianten mit einem hohen Massendurch­ satz, der Verweilzeiten unter 20 Minuten und sogar unter 10 Minu­ ten ermöglicht.The manufacturing process is characterized by short residence times in the reactor and thus a good space / time yield. So be even with residence times of less than 30 minutes in a reactor volume of 300 l of finely divided gel-like polymers with a very low residual monomer content found. This saves them otherwise elaborate separation process and increases the yield. Especially process variants with a high mass diameter are preferred  set, the dwell times under 20 minutes and even under 10 minutes enables.

Das den Reaktor verlassende Polymergel wird im Anschluß in einem Verweilbehälter bei Temperaturen von 50 bis 120°C vorzugsweise 80 bis 100°C gelagert. Die Verweilzeit beträgt in der Regel 0 bis 3 Stunden, vorzugsweise 5 bis 30 Minuten. Der Behälter kann ein nach oben offener Behälter sein, möglich ist jedoch auch ein ver­ schlossener Behälter, an den ein leichtes Vakuum angelegt wird.The polymer gel leaving the reactor is then in a Retention tanks at temperatures from 50 to 120 ° C, preferably 80 stored up to 100 ° C. The dwell time is usually 0 to 3 Hours, preferably 5 to 30 minutes. The container can be a be open container upwards, but a ver is also possible closed container to which a slight vacuum is applied.

Der Trocknungsschritt kann nach allen bekannten Verfahrensweisen erfolgen, z. B. in einer Wirbelschicht, auf einem Umlufttrock­ nungsband, Vakuumtrocknungsband oder mit Hilfe einer Mikrowellen­ trocknung, oder bevorzugt unter vermindertem Druck in einem ein­ welligen Kneter unter intensivem Durchkneten des Polymergels. Dieser Trocknungsschritt wird vorzugsweise in einem ein- oder mehrwelligen Kneter bei einem Druck von 5 bis 300, vorzugsweise 20 bis 70 mbar und Temperaturen von 30 bis 170°C durchgeführt. Nach dem Trocknen erhält man ein rieselfähiges Polymergel, das eine sehr hohe Wasseraufnahme hat und als Bodenverbesserungs­ mittel bzw. als Absorptionsmittel in Hygieneartikeln, z. B. Win­ deln Verwendung finden kann. Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Angaben in Prozent beziehen sich auf das Gewicht der Stoffe.The drying step can be carried out according to all known procedures take place, e.g. B. in a fluidized bed, on a circulating air dryer belt, vacuum drying belt or using a microwave drying, or preferably under reduced pressure in one wavy kneader with intensive kneading of the polymer gel. This drying step is preferably carried out in one or multi-shaft kneader at a pressure of 5 to 300, preferably 20 to 70 mbar and temperatures of 30 to 170 ° C carried out. After drying, a free-flowing polymer gel is obtained has a very high water absorption and as a soil improvement medium or as an absorbent in hygiene articles, e.g. B. Win can be used. The given in the examples Parts are parts by weight, the percentages are based on on the weight of the fabrics.

Beschreibung der TestmethodenDescription of the test methods Zentrifugenretentionskapazität CRCCentrifuge retention capacity CRC

Zu Bestimmung der CRC wurden 0,2 g hydrogel-formendes Polymer (Kornfraktion 106-850 µm) in einem 60 × 85 mm großen Teebeutel eingewogen, der anschließend verschweißt wurde. Der Teebeutel wurde dann in einen Überschuß von 0,9 gew.-%iger Kochsalzlösung gegeben (mindestens 0,83 l Kochsalz Lösung/1 g hydrogel-formen­ des Polymer). Nach 30 Minuten Quellzeit wurde der Teebeutel aus der Kochsalz-Lösung genommen und bei 250 G drei Minuten zentrifu­ giert. Durch Wägung des zentrifugierten Teebeutels wurde die von dem hydrogel-formenden Polymer festgehaltene Flüssigkeitsmenge ermittelt.To determine the CRC, 0.2 g of hydrogel-forming polymer was used (Grain fraction 106-850 µm) in a 60 × 85 mm tea bag weighed, which was then welded. The tea bag was then poured into an excess of 0.9% saline given (at least 0.83 l saline solution / 1 g hydrogel forms of the polymer). After 30 minutes of swelling, the tea bag became out the saline solution taken and centrifuged at 250 G for three minutes yaws. By weighing the centrifuged tea bag, the by amount of liquid retained in the hydrogel-forming polymer determined.

Absorption unter Gewichtsbelastung AUL 0,7 psi (4826,5 Pa).Absorption under weight AUL 0.7 psi (4826.5 Pa).

Die Meßzelle zur Bestimmung der AUL 0,7 psi (4826,5 Pa) ist ein Plexiglas-Zylinder mit einem Innendurchmesser von 60 mm und einer Höhe von 50 mm, der an der Unterseite einen angeklebten Edel­ stahl-Siebboden mit einer Maschenweite von 36 µm besitzt. Zu der Meßzelle gehört weiterhin eine Plastikplatte mit einem Durch­ messer von 59 mm und ein Gewicht, welches zusammen mit der Plastikplatte in die Meßzelle hineingestellt werden kann. Das Gewicht der Plastikplatte und des Gewichts beträgt zusammen 1345 g. Zur Durchführung der Bestimmung der AUL 0,7 psi (4826,5 Pa) wird das Gewicht des leeren Plexiglas-Zylinders und der Plastik­ platte gemessen und als Wo notiert. Dann werden 0,900 ± 0,005 g hydrogel-formendes Polymer (Korngrößenverteilung: 150-800 µm) in den Plexiglas-Zylinder eingewogen und möglichst gleichmäßig auf dem Edelstahl-Siebboden verteilt. Anschließend wird die Plexi­ glasplatte vorsichtig in den Plexiglaszylinder hineingelegt, die gesamte Einheit gewogen und das Gewicht als Wa notiert. Nun wird das Gewicht auf die Plastikplatte in dem Plexiglas-Zylinder gestellt. In die Mitte einer Petrischale mit einem Durchmesser von 200 mm und einer Höhe von 30 mm wird eine keramische Filter­ platte mit einem Durchmesser von 120 mm und der Porosität 0 gelegt und soviel 0,9 gew.-%ige Natriumchlorid-Lösung eingefüllt, daß die Flüssigkeitsoberfläche mit der Filterplattenoberfläche abschließt, ohne das die Oberfläche der Filterplatte bedeckt wird. Anschließend wird ein rundes Filterpapier mit einem Durch­ messer von 90 mm und einer Porengröße < 20 µm (Schwarzband 589 von Schleicher & Schüll) auf die keramische Filterplatte gelegt. Der hydrogel-formendes Polymer enthaltende Plexiglaszylinder wird mit Plastikplatte und Gewicht nun auf das Filterpapier gestellt und dort für 60 Minuten belassen. Nach dieser Zeit wird die komplette Einheit aus der Petrischale vom Filterpapier herausgenommen und anschließend das Gewicht aus dem Plexiglaszylinder entfernt. Der gequollenes Hydrogel enthaltende Plexiglaszylinder wird zusammen mit der Plastikplatte ausgewogen und das Gewicht als Wb notiert. Die AUL 0,7 psi (4826,5 Pa) berechnet sich gemäß:
The measuring cell for determining the AUL 0.7 psi (4826.5 Pa) is a plexiglass cylinder with an inner diameter of 60 mm and a height of 50 mm, which has a glued-on stainless steel sieve bottom with a mesh size of 36 µm on the underside owns. To the measuring cell also includes a plastic plate with a diameter of 59 mm and a weight that can be placed together with the plastic plate in the measuring cell. The weight of the plastic plate and the weight together is 1345 g. To carry out the determination of the AUL 0.7 psi (4826.5 Pa), the weight of the empty Plexiglas cylinder and the plastic plate is measured and noted as W o . Then 0.900 ± 0.005 g of hydrogel-forming polymer (particle size distribution: 150-800 µm) is weighed into the plexiglass cylinder and distributed as evenly as possible on the stainless steel sieve plate. Then the plexiglass plate is carefully placed in the plexiglass cylinder, the entire unit weighed and the weight noted as W a . Now the weight is placed on the plastic plate in the plexiglass cylinder. In the middle of a petri dish with a diameter of 200 mm and a height of 30 mm, a ceramic filter plate with a diameter of 120 mm and the porosity 0 is placed and 0.9% by weight sodium chloride solution is filled in so that the Liquid surface is flush with the filter plate surface without covering the surface of the filter plate. Then a round filter paper with a diameter of 90 mm and a pore size <20 µm (black tape 589 from Schleicher & Schüll) is placed on the ceramic filter plate. The plexiglass cylinder containing the hydrogel-forming polymer is now placed with the plastic plate and weight on the filter paper and left there for 60 minutes. After this time, the complete unit is removed from the Petri dish from the filter paper and then the weight is removed from the Plexiglas cylinder. The plexiglass cylinder containing swollen hydrogel is weighed out together with the plastic plate and the weight is noted as W b . The AUL 0.7 psi (4826.5 Pa) is calculated according to:

AUL 0,7 psi = [Wb - Wa]/[Wa - Wo].AUL 0.7 psi = [W b - W a ] / [W a - W o ].

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern.The following examples are intended to explain the invention in more detail.

Beispiel 1 (nicht erfindungsgemäß)Example 1 (not according to the invention) Zusammensetzung der eingesetzten ReaktionslösungComposition of the reaction solution used

40 Gew.-% Monomer, vor der Polymerisation bestehend aus Acryl­ säure und Natriumacrylat mit einem Neutralisationsgrad der Acryl­ säure von 77 mol-%. Es wurde Acrylsäure neutralisiert (Spezifika­ tion: mind. 99,5 Gew.-% Acrylsäure, max. 0,1 Gew.-% Wasser, max. 500 ppm Diacrylsäure, 180-200 ppm Monomethylhydrochinon­ ether, < 2000 ppm Essigsäure, < 600 ppm Propionsäure). Nach der Neutralisation wurde die Mischung maximal 6 Stunden gelagert ehe sie zur Polymerisation eingesetzt wurde. Zur Initiierung der radikalischen Polymerisation wurde folgendes System verwendet:
0,005 Gew.-% Wasserstoffperoxid und 0,006 Gew.-% Ascorbinsäure und 0,28 Gew.-% Natriumperoxodisulfat, wobei alle Mengenangaben auf die in der Reaktionslösung vorhandenen Monomere - ausgedrückt als Acrylsäure - bezogen sind. Als mehrfach ethylenisch unge­ sättigter Vernetzer wurde Polyethylenglykol-400-diacrylat (Cray Valley) in einer Einsatzmenge von 0,45 Gew.-% bezogen auf die in der Reaktionslösung vorhandenen Monomere - ausgedrückt als Acryl­ säure - verwendet. Der Vernetzer wurde zusammen mit der wäßrigen Monomerlösung gemischt und diese Lösung durch Einleiten von Stickstoff inertisiert.
40 wt .-% monomer, before the polymerization consisting of acrylic acid and sodium acrylate with a degree of neutralization of acrylic acid of 77 mol%. Acrylic acid was neutralized (specification: at least 99.5% by weight acrylic acid, max.0.1% by weight water, max. 500 ppm diacrylic acid, 180-200 ppm monomethylhydroquinone ether, <2000 ppm acetic acid, <600 ppm propionic acid). After neutralization, the mixture was stored for a maximum of 6 hours before it was used for the polymerization. The following system was used to initiate the radical polymerization:
0.005% by weight of hydrogen peroxide and 0.006% by weight of ascorbic acid and 0.28% by weight of sodium peroxodisulfate, all the amounts given being based on the monomers present in the reaction solution, expressed as acrylic acid. Polyethylene glycol 400 diacrylate (Cray Valley) was used as a polyethylenically unsaturated crosslinker in an amount of 0.45% by weight, based on the monomers present in the reaction solution, expressed as acrylic acid. The crosslinker was mixed together with the aqueous monomer solution and this solution was rendered inert by introducing nitrogen.

Die einzelnen Komponenten dieser Reaktionslösung (verdünnte wäßrige Lösungen von Wasserstoffperoxid, Ascorbinsäure, Natrium­ peroxodisulfat und die Monomer/Vernetzerlösung) wurden getrennt in den Knetreaktor eindosiert und dort während des Einlaufens im Reaktor gemischt, wobei die Polymerisation schon während des Mischens zügig startete.The individual components of this reaction solution (diluted aqueous solutions of hydrogen peroxide, ascorbic acid, sodium peroxodisulfate and the monomer / crosslinker solution) were separated metered into the kneading reactor and there in the Reactor mixed, the polymerization during the Mixing started quickly.

Es wurden 600 kg/h Reaktionslösung in einen List ORP 250 Conti­ kneter (Fa. List, Arisdorf, Schweiz) eingebracht und das im Kneter durch Polymerisation erzeugte Gel wurde kontinuierlich ausgetragen. Die Temperatur des Kühlwassers im Mantel betrug 40°C bei einem gesamten Kühlwasserdurchsatz durch den Mantel von 12 m3/h. Während der Polymerisation wurden 14 m3/h Stickstoff als Inertgas durch diesen Kneter geführt. Das Reaktionsvolumen betrug 300 l.600 kg / h of reaction solution were introduced into a List ORP 250 Conti kneader (from List, Arisdorf, Switzerland) and the gel produced in the kneader by polymerization was continuously discharged. The temperature of the cooling water in the jacket was 40 ° C. with a total cooling water throughput of 12 m 3 / h through the jacket. During the polymerization, 14 m 3 / h of nitrogen were passed through this kneader as an inert gas. The reaction volume was 300 l.

Der Reaktor wurde so betrieben, daß 62% der Reaktionswärme über die Reaktorwand durch die Mantelkühlung abgeführt wurde und 38% der Reaktionswärme durch das warme Produktgel ausgetragen wurde. Unter diesen Bedingungen fand kein Wärmeaustrag durch Wasserver­ dampfung statt.The reactor was operated so that 62% of the heat of reaction the reactor wall was removed through the jacket cooling and 38% the heat of reaction was discharged through the warm product gel. Under these conditions, there was no heat dissipation from water steaming instead.

Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5°C, und das Produktgel besaß am Austrag eine Temperatur von 64,5°C. Es wurden maximale Produkttemperaturen < 80°C im Reaktor gemessen. Die Verweilzeit des Produkts im Reaktor betrug unter 15 min.The reaction solution had a temperature of 23.5 ° C. at the inlet, and the product gel had a temperature of 64.5 ° C at the discharge. It maximum product temperatures <80 ° C were measured in the reactor. The residence time of the product in the reactor was less than 15 minutes.

Im erhaltenen Produktgel wurde analytisch ein Restacrylsäurege­ halt von 1,23 Gew.-% und ein Feststoffgehalt von 41,0 Gew.-% gefunden. Das Gel wurde getrocknet, gemahlen und durch sieben eine Korngrößenfraktion von 100-800 µm erhalten. Das getrocknete Polymer besaß eine Zentrifugenretentionskapazität von 38,8 g/g. Der pH-Wert des Polymers betrug 6,1. A residual acrylic acid was analytically obtained in the product gel obtained content of 1.23% by weight and a solids content of 41.0% by weight found. The gel was dried, ground and sifted through receive a grain size fraction of 100-800 microns. The dried one Polymer had a centrifuge retention capacity of 38.8 g / g. The pH of the polymer was 6.1.  

OberflächennachvernetzungSurface post-crosslinking

Anschließend wurden 20 g Polymer (Korngrößenfraktion 100-800 µm) in einem Labormischer (Waring-Mischer) mit Mischaufsatz und abge­ stumpften Mischblättern vorgelegt. Bei eingeschaltetem Mischer und niedriger Umdrehungszahl wurden 1 g Nachvernetzungslösung enthaltend 12 mg Ethylenglykoldiglycidylether gelöst in einer Mischung aus 33 Gew.-% 1,2-Propylenglykol und 67 Gew.-% Wasser zudosiert. Das feuchte Polymerpulver wurde danach dem Mischer entnommen und in einer Petrischale bei 150°C 60 Minuten lang im Umluftschrank getrocknet. Nach Absieben der Grobfraktion (< 800 Mikrometer) wurde das erhaltene Produkt anwendungstechnisch untersucht:
Zentrifugenretentionskapazität, CRC = 32,2 g/g
AUL 0,7 psi: 26,0 g/g.
Subsequently, 20 g of polymer (particle size fraction 100-800 microns) were placed in a laboratory mixer (Waring mixer) with a mixing attachment and blunted mixing blades. When the mixer was switched on and the speed of rotation was low, 1 g of postcrosslinking solution containing 12 mg of ethylene glycol diglycidyl ether dissolved in a mixture of 33% by weight of 1,2-propylene glycol and 67% by weight of water was metered in. The moist polymer powder was then removed from the mixer and dried in a petri dish at 150 ° C. for 60 minutes in a circulating air cabinet. After the coarse fraction had been sieved off (<800 micrometers), the product obtained was examined in terms of application technology:
Centrifuge retention capacity, CRC = 32.2 g / g
AUL 0.7 psi: 26.0 g / g.

Beispiel 2Example 2

Wie in Beispiel 1 beschrieben, wurden 600 kg/h Reaktionslösung kontinuierlich polymerisiert, jedoch wurde die Temperatur des Kühlwassers im Reaktormantel auf 90°C geregelt und der Kühlmittel­ durchfluß wurde auf ca. 6 m3/h gedrosselt. Der Reaktor wurde so betrieben, daß 64% der Reaktionswärme über den Produktaustrag und 36% über die Verdampfung des Reaktionswassers abgeführt wur­ den. Es wurden Reaktionstemperaturen von 96-98°C im Reaktor festgestellt. Die Verweilzeit im Reaktor betrug unter 15 Minuten. Es fand keine Wärmeabfuhr über die Reaktorwand statt. Es wurde ein Restmonomerengehalt an Acrylsäure im Produktgel von 0,25 Gew.-% ermittelt bei einem Feststoffgehalt von 43,0 Gew.-%. Die Reaktoreintrittstemperatur der Reaktionslösung betrug 23,2°C, und die Reaktoraustrittstemperatur des erhaltenen Produktgels be­ trug 93,2°C.As described in Example 1, 600 kg / h of reaction solution were polymerized continuously, but the temperature of the cooling water in the reactor jacket was regulated at 90 ° C. and the coolant flow was throttled to about 6 m 3 / h. The reactor was operated such that 64% of the heat of reaction was removed via the product discharge and 36% via the evaporation of the water of reaction. Reaction temperatures of 96-98 ° C were found in the reactor. The residence time in the reactor was less than 15 minutes. There was no heat dissipation via the reactor wall. A residual monomer content of acrylic acid in the product gel of 0.25% by weight was determined with a solids content of 43.0% by weight. The reactor inlet temperature of the reaction solution was 23.2 ° C, and the reactor outlet temperature of the product gel obtained was 93.2 ° C.

Das erhaltene Gel wurde analog Bsp. 1 getrocknet, gemahlen, gesiebt und oberflächennachvernetzt. Die anwendungstechnischen Ergebnisse sind Tabelle 1 zu entnehmen. Das getrocknete Polymer hatte vor der Oberflächennachvernetzung eine Zentrifugenretenti­ onskapazität von 37,8 g/g und einen pH-Wert von 6,1.The gel obtained was dried analogously to Example 1, ground, sieved and post-crosslinked. The application technology Results are shown in Table 1. The dried polymer had a centrifuge retenti before surface post-crosslinking on capacity of 37.8 g / g and a pH of 6.1.

Beispiel 3Example 3

Es wurde ein Versuch analog zu Beispiel 2 durchgeführt, jedoch wurden statt 600 kg/h nur 450 kg/h an Reaktionslösung dem Reaktor zugeführt. Die Verweilzeit im Reaktor betrug nun ca. 20 min. An experiment was carried out analogously to Example 2, however instead of 600 kg / h, only 450 kg / h of reaction solution were added to the reactor fed. The residence time in the reactor was now about 20 minutes.  

Es wurde ein Restmonomerengehalt im Produktgel von 0,15 Gew.-% ermittelt bei einem Feststoffgehalt von 43,1 Gew.-%. Die Reaktor­ eintrittstemperatur der Reaktionslösung betrug 23,4°C, und die Re­ aktoraustrittstemperatur des erhaltenen Produktgels betrug 91,7°C. Es wurden maximale Reaktionstemperaturen von 95-97°C im Reaktor gemessen.A residual monomer content of 0.15% by weight was found in the product gel. determined at a solids content of 43.1% by weight. The reactor inlet temperature of the reaction solution was 23.4 ° C, and the Re Actuator outlet temperature of the product gel obtained was 91.7 ° C. There were maximum reaction temperatures of 95-97 ° C in the reactor measured.

Das erhaltene Gel wurde analog Bsp. 1 getrocknet, gemahlen, ge­ siebt und oberflächennachvernetzt. Die anwendungstechnischen Ergebnisse sind in Tabelle 2 aufgeführt. Das getrocknete Polymer besaß vor der Oberflächennachvernetzung eine Zentrifugenreten­ tionskapazität von 39,5 g/g und einen pH-Wert von 6,1.The gel obtained was dried analogously to Example 1, ground, ge sieves and post-crosslinked. The application technology Results are shown in Table 2. The dried polymer had a centrifuge pedal before the surface post-crosslinking tion capacity of 39.5 g / g and a pH of 6.1.

Beispiel 4Example 4

Es wurde ein Versuch analog zu Beispiel 2 durchgeführt.An experiment was carried out analogously to Example 2.

Es wurde gefunden, daß der Restmonomerengehalt des Produktgels 0,30 Gew.-% betrug, während der Feststoffgehalt 42,9 Gew.-% be­ trug. Die Reaktoreintrittstemperatur der Reaktionslösung betrug 23,4°C, und die Reaktoraustrittstemperatur des erhaltenen Produkt­ gels betrug 93,2°C.It was found that the residual monomer content of the product gel Was 0.30% by weight, while the solids content was 42.9% by weight wore. The reactor inlet temperature of the reaction solution was 23.4 ° C, and the reactor outlet temperature of the product obtained gel was 93.2 ° C.

Das erhaltene Gel wurde analog Bsp. 1 getrocknet, gemahlen, gesiebt und oberflächennachvernetzt. Die anwendungstechnischen Ergebnisse sind in Tab. 2 aufgeführt. Das getrocknete Polymer besaß vor der Oberflächennachvernetzung eine Zentrifugenretenti­ onskapazität von 39,4 g/g und einen pH-Wert von 6,1.The gel obtained was dried analogously to Example 1, ground, sieved and post-crosslinked. The application technology Results are shown in Tab. 2. The dried polymer had a centrifuge retenti before surface post-crosslinking on capacity of 39.4 g / g and a pH of 6.1.

Beispiel 5Example 5

Es wurde ein Versuch analog zu Beispiel 2 durchgeführt, jedoch wurden diesmal 750 kg/h Reaktionslösung dem Reaktor zugeführt. Die Verweilzeit im Reaktor betrug jetzt nur noch ca. 12 min.An experiment was carried out analogously to Example 2, however This time 750 kg / h of reaction solution were fed to the reactor. The residence time in the reactor was now only about 12 minutes.

Es wurde ein Restmonomergehalt des Produktgels von 0,25 Gew.-% und ein Feststoffgehalt von 43,0 Gew.-% ermittelt. Die Reaktor­ eintrittstemperatur der Reaktionslösung betrug 23,4°C, und die Re­ aktoraustrittstemperatur des erhaltenen Produktgels betrug 94,8°C. Es wurden maximale Produkttemperaturen von 97-99°C im Reaktor gemessen.A residual monomer content of the product gel of 0.25% by weight and a solids content of 43.0% by weight was determined. The reactor inlet temperature of the reaction solution was 23.4 ° C, and the Re Actuator outlet temperature of the product gel obtained was 94.8 ° C. There were maximum product temperatures of 97-99 ° C in the reactor measured.

Das erhaltene Gel wurde analog Bsp. 1 getrocknet, gemahlen, ge­ siebt und oberflächennachvernetzt. Die anwendungstechnischen Ergebnisse sind in Tabelle 2 aufgeführt. Das getrocknete Polymer besaß vor der Nachvernetzung eine Zentrifugenretentionskapazität von 36,9 g/g und einen pH-Wert von 6,1.The gel obtained was dried analogously to Example 1, ground, ge sieves and post-crosslinked. The application technology Results are shown in Table 2. The dried polymer  had a centrifuge retention capacity before post-crosslinking of 36.9 g / g and a pH of 6.1.

Tabelle 1 Table 1

Versuche mit und ohne Wärmeabfuhr über die Reaktorwandkühlung Experiments with and without heat dissipation via the reactor wall cooling

Als gesamte "Reaktionswärme" wird die Summe der eigentlichen Po­ lymerisationswärme und des Wärmeeintrags ins Produkt durch mecha­ nische Rührung angenommen.The total "heat of reaction" is the sum of the actual Po heat of polymerization and the heat input into the product by mecha African emotion accepted.

Tabelle 2 Table 2

Versuche ohne Wärmeabfuhr über die Reaktorwandkühlung mit variiertem Eduktdurchsatz Experiments without heat dissipation via the reactor wall cooling with varied educt throughput

Die Kühlwassertemperatur betrug bei allen Versuchen 90°C - die Edukteintrittstemperatur lag bei 22-24°C.The cooling water temperature was 90 ° C in all tests The starting material temperature was 22-24 ° C.

Als gesamte "Reaktionswärme" wird die Summe der eigentlichen Polymerisationswärme und des Wärmeeintrags ins Produkt durch mechanische Rührung angenommen.As the total "heat of reaction", the sum of the actual Polymerization heat and the heat input into the product mechanical agitation assumed.

Claims (9)

1. Verfahren zur kontinuierlichen Herstellung von vernetzten, feinteiligen, gelförmigen Polymerisaten durch Copoly­ merisieren von
  • a) wasserlöslichen, monoethylenisch ungesättigten Monomeren,
  • b) 0,001 bis 5 Mol-% bezogen auf die Monomere (a), mindes­ tens zwei ethylenisch ungesättigte Doppelbindungen ent­ haltenden Monomeren und
  • c) 0 bis 20 Mol-% bezogen auf die Monomere (a) wasserun­ löslichen monoethylenisch ungesättigten Monomeren
in 20 bis 80 gew.-%iger wäßriger Lösung in Gegenwart von In­ itiator bei Temperaturen von 0 bis 140°C, wobei man die wäßrige Lösung der Monomeren zusammen mit dem Initiator und einem Inertgas kontinuierlich einem Mischkneter mit minde­ stens zwei achsparallel rotierenden Wellen zuführt, wobei sich auf den Wellen mehrere Knet- und Transportelemente befinden, die eine Förderung der am Anfang des Mischkneters zugegebenen Stoffe in axialer Richtung zum Ende des Mischers bewirken, dadurch gekennzeichnet, daß der Anteil der Wärmeabfuhr durch Verdampfung von Wasser aus dem Reaktionsgemisch mindestens 5% der Reaktionswärme und der Anteil der Wärmeabfuhr durch Produktaustrag mindestens 25% der Reaktionswärme beträgt und die restliche Wärmeabfuhr über Kühlung der Reaktorwände er­ folgt.
1. Process for the continuous production of crosslinked, finely divided, gel-like polymers by copoly merizing
  • a) water-soluble, monoethylenically unsaturated monomers,
  • b) 0.001 to 5 mol% based on the monomers (a), at least two monomers containing ethylenically unsaturated double bonds and
  • c) 0 to 20 mol% based on the monomers (a) water-insoluble monoethylenically unsaturated monomers
in 20 to 80% by weight aqueous solution in the presence of an initiator at temperatures from 0 to 140 ° C., the aqueous solution of the monomers together with the initiator and an inert gas being fed continuously to a mixing kneader with at least two axially parallel rotating shafts , wherein there are several kneading and transport elements on the shafts, which cause the materials added at the beginning of the mixing kneader to be conveyed in the axial direction towards the end of the mixer, characterized in that the proportion of heat removal by evaporation of water from the reaction mixture is at least 5% the heat of reaction and the proportion of heat dissipation by product discharge is at least 25% of the heat of reaction and the remaining heat dissipation takes place via cooling of the reactor walls.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Reaktionswärme zu insgesamt mindestens 50% durch Produktaus­ trag und Wasserverdampfung abgeführt wird.2. The method according to claim 1, characterized in that the Heat of reaction to a total of at least 50% through product trag and water evaporation is removed. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Massendurchsatz an Monomerlösung mindestens 1000 kg/hm3 und der Inertgasstrom mindestens 100 l/hm3 beträgt.3. The method according to claim 1 or 2, characterized in that the mass throughput of monomer solution is at least 1000 kg / hm 3 and the inert gas flow is at least 100 l / hm 3 . 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeich­ net, daß die Monomere a) aus der Gruppe Acrylsäure, Meth­ acrylsäure sowie den Alkali- oder Ammoniumsalzen dieser Säuren, Acrylamid und/oder Methacrylamid sind. 4. The method according to claims 1 to 3, characterized in net that the monomers a) from the group acrylic acid, meth acrylic acid and the alkali or ammonium salts thereof Acids, acrylamide and / or methacrylamide are.   5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeich­ net, daß das Reaktorvolumen mindestens 0,10 m3 beträgt.5. Process according to claims 1 to 4, characterized in that the reactor volume is at least 0.10 m 3 . 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeich­ net, daß die Wellen des Mischkneters gegenläufig rotieren.6. The method according to claims 1 to 5, characterized in net that the shafts of the mixer kneader rotate in opposite directions. 7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeich­ net, daß die maximale Temperatur im Reaktor mindestens 70°C, die Abgastemperatur mindestens 60°C und die Produkttemperatur beim Austrag aus dem Reaktor mindestens 60°C beträgt.7. The method according to claims 1 to 6, characterized in net that the maximum temperature in the reactor is at least 70 ° C, the exhaust gas temperature at least 60 ° C and the product temperature when discharged from the reactor is at least 60 ° C. 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeich­ net, daß man als Inertgas Stickstoff, ein Edelgas, Kohlen­ monoxid, Kohlendioxid, Schwefelhexafluorid oder Mischungen dieser Gase einsetzt.8. The method according to claims 1 to 7, characterized in net that as an inert gas nitrogen, a noble gas, coal monoxide, carbon dioxide, sulfur hexafluoride or mixtures this gas sets in. 9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeich­ net, daß man das Inertgas ganz oder teilweise durch eine che­ mische Reaktion im Mischkneter erzeugt.9. The method according to claims 1 to 8, characterized in net that one or all of the inert gas through a che mixing reaction generated in the mixer.
DE19955861A 1999-11-20 1999-11-20 Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off Withdrawn DE19955861A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DE19955861A DE19955861A1 (en) 1999-11-20 1999-11-20 Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off
DE50014971T DE50014971D1 (en) 1999-11-20 2000-11-10 Process for the continuous preparation of crosslinked finely divided gel-like polymers
TR2004/00487T TR200400487T4 (en) 1999-11-20 2000-11-10 Continuous production method of cross-woven polymers.
BRPI0015680-9A BR0015680B1 (en) 1999-11-20 2000-11-10 process for the continuous production of fine cross-linked particles of polymeric gel.
AT03022084T ATE386057T1 (en) 1999-11-20 2000-11-10 METHOD FOR THE CONTINUOUS PRODUCTION OF CROSS-LINKED FINE PARTICLE GEL-SHAPED POLYMERS
US10/111,428 US6710141B1 (en) 1999-11-20 2000-11-10 Method for continuously producing cross-linked fine-particle geleous polymerizates
PCT/EP2000/011098 WO2001038402A1 (en) 1999-11-20 2000-11-10 Method for continuously producing cross-linked fine-particle geleous polymerizates
CNB008158509A CN1142188C (en) 1999-11-20 2000-11-10 Method for continuously producing cross-linked fine-particle geleous polymerizates
AT00974512T ATE260937T1 (en) 1999-11-20 2000-11-10 METHOD FOR THE CONTINUOUS PRODUCTION OF CROSS-LINKED FINE PARTICLE GEL-SHAPED POLYMERS
CA002390871A CA2390871A1 (en) 1999-11-20 2000-11-10 Continuous production of crosslinked fine particles of polymer gel
MXPA02004034A MXPA02004034A (en) 1999-11-20 2000-11-10 Method for continuously producing cross linked fine particle geleous polymerizates.
JP2001540164A JP4511774B2 (en) 1999-11-20 2000-11-10 Continuous production method of cross-linked fine-grained gel-like polymer
EP00974512A EP1237937B1 (en) 1999-11-20 2000-11-10 Method for continuously producing cross-linked fine-particle geleous polymerizates
DE50005555T DE50005555D1 (en) 1999-11-20 2000-11-10 METHOD FOR THE CONTINUOUS PRODUCTION OF CROSS-LINKED FINE-PART GEL-SHAPED POLYMERS
EP03022084A EP1384728B8 (en) 1999-11-20 2000-11-10 Method for continuously producing cross-linked fine-particle geleous polymerizates
ES00974512T ES2216983T3 (en) 1999-11-20 2000-11-10 PROCEDURE FOR CONTINUOUS OBTAINING OF POLYMERS IN THE FORM OF A GEL FINALLY DIVIDED AND RETICULATED.
US10/765,152 US20040186229A1 (en) 1999-11-20 2004-01-28 Continuous production of crosslinked fine particles of polymer gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19955861A DE19955861A1 (en) 1999-11-20 1999-11-20 Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off

Publications (1)

Publication Number Publication Date
DE19955861A1 true DE19955861A1 (en) 2001-05-23

Family

ID=7929721

Family Applications (3)

Application Number Title Priority Date Filing Date
DE19955861A Withdrawn DE19955861A1 (en) 1999-11-20 1999-11-20 Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off
DE50005555T Expired - Lifetime DE50005555D1 (en) 1999-11-20 2000-11-10 METHOD FOR THE CONTINUOUS PRODUCTION OF CROSS-LINKED FINE-PART GEL-SHAPED POLYMERS
DE50014971T Expired - Lifetime DE50014971D1 (en) 1999-11-20 2000-11-10 Process for the continuous preparation of crosslinked finely divided gel-like polymers

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE50005555T Expired - Lifetime DE50005555D1 (en) 1999-11-20 2000-11-10 METHOD FOR THE CONTINUOUS PRODUCTION OF CROSS-LINKED FINE-PART GEL-SHAPED POLYMERS
DE50014971T Expired - Lifetime DE50014971D1 (en) 1999-11-20 2000-11-10 Process for the continuous preparation of crosslinked finely divided gel-like polymers

Country Status (12)

Country Link
US (2) US6710141B1 (en)
EP (2) EP1237937B1 (en)
JP (1) JP4511774B2 (en)
CN (1) CN1142188C (en)
AT (2) ATE386057T1 (en)
BR (1) BR0015680B1 (en)
CA (1) CA2390871A1 (en)
DE (3) DE19955861A1 (en)
ES (1) ES2216983T3 (en)
MX (1) MXPA02004034A (en)
TR (1) TR200400487T4 (en)
WO (1) WO2001038402A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018087A1 (en) * 2002-08-20 2004-03-04 Sahbi Belkhiria Reactor and process for the production and/or drying of water-soluble polymers (wsps) or their derivatives
WO2005113619A1 (en) * 2004-05-10 2005-12-01 Basf Aktiengesellschaft Thickened liquids
WO2007025921A1 (en) 2005-09-02 2007-03-08 Basf Se Method for producing water-absorbing polymers
WO2007028750A1 (en) 2005-09-07 2007-03-15 Basf Se Polymerization method
WO2007112901A1 (en) * 2006-03-31 2007-10-11 List Holding Ag Process and apparatus for treating viscous products
US7393908B2 (en) 2000-10-19 2008-07-01 Basf Aktiengesellschaft Cross-linked, water-swellable polymer and method for producing the same
WO2009115472A1 (en) * 2008-03-20 2009-09-24 Basf Se Method for manufacturing water-absorbing polymer particles with a low centrifuge retention capacity
US7652111B2 (en) 2003-11-25 2010-01-26 Basf Aktiengesellschaft (Meth)acrylic acid esters of unsaturated aminoalcohols and preparation thereof
WO2012160174A1 (en) * 2011-05-26 2012-11-29 Basf Se Method for producing water-absorbing polymer particles
WO2013167397A1 (en) * 2012-05-07 2013-11-14 Basf Se Method for operating a kneader mixer
DE102014004222A1 (en) * 2014-03-25 2015-10-01 List Holding Ag Method for carrying out mechanical, chemical and / or thermal processes

Families Citing this family (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY130475A (en) 2000-08-25 2007-06-29 Contura As Polyacrylamide hydrogel and its use as an endoprosthesis
US7186419B2 (en) 2000-08-25 2007-03-06 Contura Sa Polyacrylamide hydrogel for arthritis
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US6987151B2 (en) * 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
EP1455853B1 (en) 2001-12-19 2010-11-24 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
CN1235922C (en) 2001-12-19 2006-01-11 株式会社日本触媒 Water absorbing resin and production method thereof
DE10221176A1 (en) * 2002-05-13 2003-11-27 Basf Ag Process for the preparation of low-odor hydrogel-forming polymers
DE10225943A1 (en) 2002-06-11 2004-01-08 Basf Ag Process for the preparation of esters of polyalcohols
DE10257449A1 (en) * 2002-12-09 2003-11-06 Basf Ag Preparation of low odor hydrogel-forming polymerisate based on acrylic acid useful in the production of low odor superabsorbers of low residual monomer content
EP1462473B1 (en) 2003-03-14 2011-07-06 Nippon Shokubai Co., Ltd. Surface crosslinking method of water-absorbing resin powder
MXPA06001291A (en) * 2003-08-06 2006-04-11 Procter & Gamble Coated water-swellable material.
US8137746B2 (en) * 2003-08-06 2012-03-20 The Procter & Gamble Company Process for making water-swellable material comprising coated water-swellable polymers
KR20060060001A (en) 2003-08-06 2006-06-02 바스프 악티엔게젤샤프트 Water-swellable material comprising coated water-swellable polymers
EP1518567B1 (en) * 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
DE10344411A1 (en) * 2003-09-25 2005-04-28 Roehm Gmbh hydrogel
JP2007519790A (en) * 2004-01-28 2007-07-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing polymer
DE102004028002A1 (en) * 2004-06-09 2006-01-05 Stockhausen Gmbh Process for the preparation of hydrophilic polymers using a computer generated model
DE102004038015A1 (en) * 2004-08-04 2006-03-16 Basf Ag Process for the post-crosslinking of water-absorbing polymers with cyclic carbamates and / or cyclic ureas
EP2052773B1 (en) 2004-09-28 2012-07-18 Basf Se Kneader and use of the kneader for producing poly(meth)acrylates
WO2006034806A1 (en) * 2004-09-28 2006-04-06 Basf Aktiengesellschaft Method for the continuous production of crosslinked particulate gel-type polymers
DE102005001802A1 (en) * 2004-09-30 2006-04-06 List Holding Ag Process for the continuous performance of polymerization processes
DE102004051242A1 (en) 2004-10-20 2006-05-04 Basf Ag Finely divided water-absorbing polymer particles with high liquid transport and absorption performance
DE602006015422D1 (en) * 2005-02-04 2010-08-26 Basf Se METHOD FOR PRODUCING A WATER ABSORBENT MATERIAL WITH A COATING OF ELASTIC FILM-FORMING POLYMERS
US20080154224A1 (en) * 2005-02-04 2008-06-26 Basf Aktiengesellschaft Process for Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers
JP2008538121A (en) * 2005-02-04 2008-10-09 ビーエーエスエフ ソシエタス・ヨーロピア Water-absorbing material having an elastic film-forming polymer coating
JP2008538375A (en) * 2005-02-04 2008-10-23 ビーエーエスエフ ソシエタス・ヨーロピア Water swellable material
WO2006083584A2 (en) * 2005-02-04 2006-08-10 The Procter & Gamble Company Absorbent structure with improved water-absorbing material
DE102005014291A1 (en) 2005-03-24 2006-09-28 Basf Ag Process for the preparation of water-absorbing polymers
DE102005014841A1 (en) 2005-03-30 2006-10-05 Basf Ag Process for the preparation of water-absorbing polymer particles
DE102005027221A1 (en) * 2005-06-13 2007-01-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of powdered high molecular weight water-soluble polymers for use in solid / liquid separation processes
EP1736508A1 (en) 2005-06-22 2006-12-27 Basf Aktiengesellschaft Hydrogel-forming polymers with increased permeability and high absorption capacity
DE102005031114A1 (en) * 2005-07-04 2007-01-18 Basf Ag Use of a device for adding at least one additive into a reactor interior
DE102005042604A1 (en) 2005-09-07 2007-03-08 Basf Ag Neutralization process
DE102005042607A1 (en) * 2005-09-07 2007-03-08 Basf Ag polymerization
DE102005042608A1 (en) 2005-09-07 2007-03-08 Basf Ag polymerization
DE102005042606A1 (en) 2005-09-07 2007-03-08 Basf Ag Neutralization process
DE102005042605A1 (en) * 2005-09-07 2007-03-08 Basf Ag Neutralization process
CN100424101C (en) * 2005-11-25 2008-10-08 台湾塑胶工业股份有限公司 Preparation method of powdery, water-insoluble high hydroscopicity resin capable of adsorbing water, urine or blood and containing low content residue monomer not reacted
US20090012486A1 (en) * 2005-12-28 2009-01-08 Basf Se Process for Production of a Water-Absorbing Material
US7446352B2 (en) * 2006-03-09 2008-11-04 Tela Innovations, Inc. Dynamic array architecture
EP2069409B1 (en) 2006-09-25 2012-05-30 Basf Se Method for the continuous production of water absorbent polymer particles
WO2008046841A1 (en) * 2006-10-19 2008-04-24 Basf Se Method for the production of superabsorbers
WO2008086975A1 (en) * 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers on a continuous belt reactor
EP2107938B1 (en) 2007-01-16 2016-08-17 Basf Se Production of superabsorbent polymers on a continuous belt reactor
EP2107939B2 (en) * 2007-01-16 2020-04-29 Basf Se Production of super absorbent polymers on a continuous belt reactor
CN101583632B (en) 2007-01-16 2012-03-28 巴斯夫欧洲公司 Production of superabsorbent polymers
WO2008086972A1 (en) 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers on a continuous belt reactor
WO2008090961A1 (en) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. Particulate water-absorbent polymer and process for production thereof
DE102008000237A1 (en) 2007-02-06 2008-08-07 Basf Se Mixtures, useful e.g. as an inhibitor or retarder for the stabilization of polymerizable compound, preferably swellable hydrogel-forming polymers, comprises a phenol imidazole derivative and a polymerizable compound
US8389595B2 (en) 2007-02-23 2013-03-05 Basf Se Production of superabsorbent polymers on a continuous belt reactor
EP2225284B2 (en) * 2007-12-17 2014-11-05 Basf Se Method for producing water-absorbing polymer particles
JP5787521B2 (en) * 2008-01-29 2015-09-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
US20110001087A1 (en) * 2008-03-05 2011-01-06 Basf Se Process for Preparing Superabsorbents
WO2009113673A1 (en) 2008-03-13 2009-09-17 株式会社日本触媒 Method for production of particulate water absorbent comprising water-absorbable resin as main ingredient
WO2009119754A1 (en) 2008-03-28 2009-10-01 株式会社日本触媒 Process for production of water-absorbing resins
WO2009123193A1 (en) 2008-03-31 2009-10-08 株式会社日本触媒 Method of manufacturing particulate water absorbent with water-absorbent resin as main ingredient
JP5390511B2 (en) * 2008-04-11 2014-01-15 株式会社日本触媒 Surface treatment method for water absorbent resin and method for producing water absorbent resin
WO2009133813A1 (en) 2008-04-27 2009-11-05 株式会社日本触媒 Process for producing acrylic acid, and process for producing hydrophilic resin and process for producing water absorptive resin using the process
US8329844B2 (en) * 2008-04-30 2012-12-11 Basf Se Process for producing water-absorbing polymer particles
US20090318884A1 (en) * 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
EP2163266A1 (en) 2008-09-12 2010-03-17 The Procter &amp; Gamble Absorbent article comprising water-absorbing material
TWI500663B (en) * 2008-10-07 2015-09-21 Evonik Degussa Gmbh A continuous process for the production of a superabsorbent polymer
TWI500636B (en) * 2008-10-07 2015-09-21 Evonik Degussa Gmbh A process for the production of a superabsorbent polymer
US8048942B2 (en) * 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
WO2010074177A1 (en) 2008-12-26 2010-07-01 株式会社日本触媒 Method for producing acrylic acid
US9518133B2 (en) 2009-02-06 2016-12-13 Nippon Shokubai Co., Ltd. Hydrophilic polyacrylic acid (salt) resin and manufacturing method thereof
WO2010095427A1 (en) 2009-02-17 2010-08-26 株式会社日本触媒 Polyacrylic acid-based water-absorbing resin powder and method for producing the same
WO2010094639A2 (en) 2009-02-18 2010-08-26 Basf Se Method for the production of water-absorbing polymer particles
JP5615801B2 (en) 2009-03-04 2014-10-29 株式会社日本触媒 Method for producing water absorbent resin
US20100247916A1 (en) 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
US9175143B2 (en) 2009-03-31 2015-11-03 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbent resin
JP5645924B2 (en) 2009-04-30 2014-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for separating metal impurities
RU2523796C2 (en) 2009-05-15 2014-07-27 Ниппон Сокубаи Ко., Лтд. Method of producing (meth)acrylic acid
CN102428065B (en) 2009-05-15 2014-02-26 株式会社日本触媒 Method for producing (meth)acrylic acid
CN102414160B (en) 2009-05-15 2014-06-04 株式会社日本触媒 Method for producing (meth)acrylic acid and crystallization system
CN102438665B (en) 2009-05-20 2016-04-27 巴斯夫欧洲公司 Water-absorbent storage layers
US8502012B2 (en) * 2009-06-16 2013-08-06 The Procter & Gamble Company Absorbent structures including coated absorbent material
CN102803316B (en) 2009-06-26 2015-09-16 巴斯夫欧洲公司 There is the preparation method of the water-absorbing polymeric particles of reduced caking tendency and high-selenium corn under stress
WO2011023536A1 (en) 2009-08-25 2011-03-03 Basf Se Soft particulate super absorbent and use thereof
CN102481386A (en) 2009-08-26 2012-05-30 巴斯夫欧洲公司 Deodorizing compositions
WO2011024975A1 (en) 2009-08-27 2011-03-03 株式会社日本触媒 Polyacrylic acid (salt) water absorbent resin and method for producing same
EP2470226A1 (en) 2009-08-28 2012-07-04 Basf Se Process for producing triclosan-coated superabsorbents
BR112012005901A2 (en) 2009-09-16 2019-09-24 Basf Se superabsorbent, process for producing a superabsorbent, article for absorbing fluids, and process for producing articles for absorbing fluids
US8513378B2 (en) 2009-09-16 2013-08-20 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin powder
WO2011032922A1 (en) 2009-09-17 2011-03-24 Basf Se Color-stable superabsorber
EP2484702B2 (en) 2009-09-30 2021-11-10 Nippon Shokubai Co., Ltd. Polyacrylic acid salt-based water absorbent resin and method for producing same
JP5871803B2 (en) 2009-10-09 2016-03-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Post-humidification method for surface post-crosslinked water-absorbing polymer particles
CN102574941B (en) 2009-10-09 2015-09-16 巴斯夫欧洲公司 For the method for cross-linking of water-absorbing polymer particles behind rewetting surface
EP2485773B1 (en) 2009-10-09 2013-12-11 Basf Se Use of heating steam condensate for producing water-absorbent polymer particles
WO2011061125A2 (en) 2009-11-23 2011-05-26 Basf Se Method for producing water-absorbing polymer particles having improved color stability
CN102665771A (en) 2009-11-23 2012-09-12 巴斯夫欧洲公司 Methods for producing water-absorbent foamed polymer particles
CN102712712B (en) 2009-12-24 2015-05-06 株式会社日本触媒 Water-absorbable polyacrylic acid resin powder, and process for production thereof
EP2527391B1 (en) 2010-01-20 2023-08-09 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
JP5514841B2 (en) 2010-01-20 2014-06-04 株式会社日本触媒 Method for producing water absorbent resin
CN102791298B (en) 2010-01-27 2015-02-18 巴斯夫欧洲公司 Odor-inhibiting, water-absorbing composite materials
WO2011099586A1 (en) 2010-02-10 2011-08-18 株式会社日本触媒 Process for producing water-absorbing resin powder
JP5818821B2 (en) 2010-02-24 2015-11-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
CN102762617A (en) 2010-02-24 2012-10-31 巴斯夫欧洲公司 Method for producing water-absorbing polymer particles
CN102791774B (en) 2010-03-08 2016-06-29 株式会社日本触媒 The drying means of graininess aqueous gel shape cross linked polymer
JP5605862B2 (en) 2010-03-12 2014-10-15 株式会社日本触媒 Method for producing water absorbent resin
US8703876B2 (en) 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
CN102906124B (en) 2010-03-24 2014-12-17 巴斯夫欧洲公司 Method for removing residual monomers from water-absorbent polymer particles
CN102844358B (en) 2010-03-25 2014-09-17 巴斯夫欧洲公司 Method for producing water-absorbing polymer particles
EP2371869A1 (en) 2010-03-30 2011-10-05 Evonik Stockhausen GmbH A process for the production of a superabsorbent polymer
US20130018161A1 (en) 2010-03-31 2013-01-17 Takayuki Ezawa Catalyst for glycerin dehydration, and process for producing acrolein, process for producing acrylic acid, and process for producing hydrophilic resin each using the catalyst
KR101908142B1 (en) 2010-04-07 2018-10-15 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
WO2011131526A1 (en) * 2010-04-19 2011-10-27 Basf Se Method for producing water-absorbing polymer particles
JP5806209B2 (en) 2010-04-26 2015-11-10 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing resin and method for producing the same
BR112012027406B1 (en) 2010-04-26 2021-02-09 Nippon Shokubai Co., Ltd. water-absorbing resin like polyacrylic acid (salt), sanitary material and method for producing said resin
WO2011136301A1 (en) 2010-04-27 2011-11-03 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water absorbent resin powder
US8791230B2 (en) 2010-06-08 2014-07-29 Nippon Shokubai Co., Ltd. Method for producing particulate water absorbent resin
JP5766283B2 (en) 2010-06-14 2015-08-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Water-absorbing polymer particles with improved color stability
US9962459B2 (en) 2010-07-02 2018-05-08 Basf Se Ultrathin fluid-absorbent cores
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
WO2012045705A1 (en) 2010-10-06 2012-04-12 Basf Se Method for producing thermally surface post-crosslinked water-absorbing polymer particles
EP2464680B1 (en) 2010-10-21 2013-10-02 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
EP2630183A1 (en) 2010-10-21 2013-08-28 Basf Se Water-absorbing polymeric particles and method for the production thereof
JP5654615B2 (en) 2010-12-28 2015-01-14 株式会社日本触媒 Process for producing acrylic acid and / or ester thereof and polymer thereof
EP2476714A1 (en) 2011-01-13 2012-07-18 Basf Se Polyurethane integral foams with improved surface hardness
EP2669318B1 (en) 2011-01-28 2020-06-17 Nippon Shokubai Co., Ltd. Manufacturing method for polyacrylic acid (salt) -based water-absorbent resin powder
WO2012107432A1 (en) 2011-02-07 2012-08-16 Basf Se Method for producing water-absorbing polymer particles having high swelling speed
WO2012107344A1 (en) 2011-02-07 2012-08-16 Basf Se Method for producing water-absorbing polymer particles
DE102011003882A1 (en) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Composition for extinguishing and / or inhibiting fluorinated and / or phosphorus-containing fires
DE102011003877A1 (en) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Composition for extinguishing and / or inhibiting fluorinated and / or phosphorus-containing fires
WO2012119969A1 (en) 2011-03-08 2012-09-13 Basf Se Method for producing water-absorbing polymer particles having improved permeability
JP5635685B2 (en) 2011-04-20 2014-12-03 株式会社日本触媒 Method and apparatus for producing polyacrylic acid (salt) water-absorbing resin
WO2012152647A1 (en) 2011-05-06 2012-11-15 Basf Se Method for producing water-absorbing polymer particles
US8987545B2 (en) 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
WO2012159949A1 (en) 2011-05-26 2012-11-29 Basf Se Process for the continuous production of water-absorbing polymer particles
US8653215B2 (en) 2011-05-26 2014-02-18 Basf Se Process for producing water-absorbing polymer particles
US8999884B2 (en) 2011-06-01 2015-04-07 The Procter & Gamble Company Absorbent structures with coated water-absorbing material
WO2012163995A1 (en) 2011-06-01 2012-12-06 Basf Se Deodorizing mixtures for incontinence articles
US8889765B2 (en) 2011-06-01 2014-11-18 Basf Se Water-absorbing material having a coating of elastic film-forming polyurethane with high wicking and high permeability
US20120309890A1 (en) 2011-06-01 2012-12-06 Basf Se Fast Water-Absorbing Material Having a Coating of Elastic Film-Forming Polyurethane with High Wicking
US8664151B2 (en) 2011-06-01 2014-03-04 The Procter & Gamble Company Articles comprising reinforced polyurethane coating agent
JP6053762B2 (en) 2011-06-03 2016-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Continuous production method of water-absorbing polymer particles
DE102011076931A1 (en) 2011-06-03 2012-12-06 Basf Se Aqueous solution containing acrylic acid and its conjugate base
EP2714755B1 (en) 2011-06-03 2017-04-26 Basf Se Method for continuous production of water-absorbent polymer particles
US9044525B2 (en) 2011-06-29 2015-06-02 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-based water absorbent resin powder and method for producing the same
WO2013007819A1 (en) 2011-07-14 2013-01-17 Basf Se Method for producing water-absorbing polymer particles having a high swelling speed
EP2573153A3 (en) 2011-09-26 2014-07-30 Basf Se Heat storing composition containing sodium sulfate, decahydrate and superabsorber
US8741169B2 (en) 2011-09-26 2014-06-03 Basf Se Heat storage composition comprising sodium sulfate decahydrate and superabsorbent
EP2768456B1 (en) 2011-10-18 2018-06-20 Basf Se Fluid-absorbent article
EP2586410A1 (en) 2011-10-24 2013-05-01 Bostik SA Novel process for preparing an absorbent article
EP2586409A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
EP2586412A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
JP5551836B2 (en) * 2011-11-16 2014-07-16 株式会社日本触媒 Method for producing polyacrylic acid (salt) water-absorbing resin
US9126186B2 (en) 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
WO2013076031A1 (en) 2011-11-22 2013-05-30 Basf Se Superabsorbent polymer with pyrogenium aluminum oxide
JP5874353B2 (en) 2011-11-30 2016-03-02 セントラル硝子株式会社 Method for producing fluoroalkanesulfonic anhydride
EP2615119B1 (en) 2012-01-12 2016-10-26 Evonik Degussa GmbH Cooling neutralized acrylic acid by means of an absorption chiller
EP2614841B1 (en) 2012-01-12 2014-09-10 Evonik Industries AG Process for the continuous preparation of water-absorbent polymers
EP2615120B2 (en) 2012-01-12 2022-12-21 Evonik Superabsorber GmbH Process for the continuous preparation of water-absorbent polymers
JP2015506406A (en) 2012-02-06 2015-03-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
EP2814854B1 (en) 2012-02-15 2019-01-23 Basf Se Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
KR20140142740A (en) 2012-03-30 2014-12-12 바스프 에스이 Color-stable super-absorbent
WO2013144026A1 (en) 2012-03-30 2013-10-03 Basf Se Color-stable super-absorbent
WO2013143943A1 (en) 2012-03-30 2013-10-03 Basf Se Method for thermal surface post-crosslinking in a drum-type heat exchanger having an inverse screw flight
CN104394895A (en) 2012-04-17 2015-03-04 巴斯夫欧洲公司 Process for producing surface postcrosslinked water-absorbing polymer particles
EP2838573A1 (en) 2012-04-17 2015-02-25 Basf Se Process for producing surface postcrosslinked water-absorbing polymer particles
EP2859039A2 (en) 2012-06-08 2015-04-15 Basf Se Odour-control superabsorbent
CN102703145B (en) * 2012-06-12 2014-11-05 昆明理工大学 Size mixing and conveying device and application method thereof
US9248429B2 (en) 2012-06-13 2016-02-02 Basf Se Process for producing water-absorbing polymer particles in a polymerization reactor with at least two axially parallel rotating shafts
EP2861631B1 (en) 2012-06-13 2017-04-12 Basf Se Method for producing water-absorbing polymer particles in a polymerization reactor having at least two axially parallel rotating shafts
EP2861633B1 (en) 2012-06-19 2016-08-10 Basf Se Method for the production of water-absorbing polymer particles
WO2014002886A1 (en) 2012-06-27 2014-01-03 株式会社日本触媒 (meth)acrylic acid production method, and, hydrophilic resin production method
JP6272844B2 (en) 2012-07-03 2018-01-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing water-absorbing polymer particles with improved properties
WO2014019813A1 (en) 2012-07-30 2014-02-06 Basf Se Odour-inhibiting mixtures for incontinence products
US9644058B2 (en) 2012-08-01 2017-05-09 Nippon Shokubai Co. Ltd. Process for producing polyacrylic acid (salt)-based water absorbent resin
EP2888296B1 (en) 2012-08-27 2016-08-10 Basf Se Process for producing water-absorbing polymer particles
KR102124670B1 (en) 2012-09-11 2020-06-18 가부시키가이샤 닛폰 쇼쿠바이 Method for producing polyacrylic acid (salt)-based water absorbing agent, and water absorbing agent
WO2014041969A1 (en) 2012-09-11 2014-03-20 株式会社日本触媒 Method for manufacturing polyacrylic acid (polyacrylate)-based absorbent, and absorbent
US9382393B2 (en) 2012-09-19 2016-07-05 Basf Se Process for producing water-absorbing polymer particles
EP2905071B1 (en) 2012-10-01 2020-02-12 Nippon Shokubai Co., Ltd. Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
EP3369480B1 (en) 2012-10-03 2020-01-01 Nippon Shokubai Co., Ltd. Water absorbing agent
EP2730596A1 (en) 2012-11-13 2014-05-14 Basf Se Polyurethane soft foam materials containing plant seeds
WO2014079694A1 (en) 2012-11-21 2014-05-30 Basf Se A process for producing surface-postcrosslinked water-absorbent polymer particles
WO2014079785A2 (en) 2012-11-26 2014-05-30 Basf Se Method for producing superabsorbers based on renewable raw materials
WO2014084281A1 (en) 2012-11-27 2014-06-05 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbing resin
CN110698696A (en) 2012-12-03 2020-01-17 株式会社日本触媒 Polyacrylic acid (salt) -based water-absorbent resin and article containing same
US10195584B2 (en) 2013-01-29 2019-02-05 Nippon Shokubai Co., Ltd. Water absorbent resin material, and method for producing same
JP2016506981A (en) 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles having high permeability of swollen gel bed, fast swelling speed and high centrifugal retention capacity
EP2950829B1 (en) 2013-01-30 2020-03-11 Basf Se Method for removal of residual monomers from water-absorbing polymer particles
KR101309836B1 (en) 2013-03-12 2013-09-23 주식회사 에코제이앤지 Environment-frienldy polymer gel and method for producing the same, device for producing the same, and method for deleting asbestos and methof of waterproof using the same
WO2014181859A1 (en) 2013-05-10 2014-11-13 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbent resin
US20160206772A1 (en) 2013-08-26 2016-07-21 Basf Se Fluid-Absorbent Article
EP3401070B1 (en) 2013-08-28 2021-04-21 Nippon Shokubai Co., Ltd. Water absorbent resin powder comprising polyacrylic acid (salt)-based water absorbent resin
KR102297640B1 (en) 2013-08-28 2021-09-06 가부시키가이샤 닛폰 쇼쿠바이 Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
WO2015036273A1 (en) 2013-09-12 2015-03-19 Basf Se Method for producing acrylic acid
KR102357517B1 (en) 2013-09-30 2022-02-04 가부시키가이샤 닛폰 쇼쿠바이 Granular water-absorbent filling method and granular water-absorbent sampling method
JP6151790B2 (en) 2013-10-09 2017-06-21 株式会社日本触媒 Particulate water-absorbing agent mainly composed of water-absorbing resin and method for producing the same
JP2017006808A (en) 2013-11-14 2017-01-12 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbing resin
EP3071911B1 (en) 2013-11-22 2021-03-03 Basf Se Process for producing water-absorbing polymer particles, conveyer adapted therefore and method of use of the conveyer
WO2015093594A1 (en) 2013-12-20 2015-06-25 株式会社日本触媒 Polyacrylic acid (salt) water absorbent, and method for producing same
EP3135700B1 (en) 2014-04-25 2021-06-09 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
US10179185B2 (en) 2014-05-08 2019-01-15 Basf Se Method for producing water-absorbing polymer particles
EP2995323B1 (en) 2014-09-15 2019-02-27 Evonik Degussa GmbH Amino polycarboxylic acids as processing aids in the production of superabsorbents
EP2995322B1 (en) 2014-09-15 2017-03-01 Evonik Degussa GmbH Smell adsorbent
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
EP3009474B1 (en) 2014-10-16 2017-09-13 Evonik Degussa GmbH Method for the production of water soluble polymers
EP3243565B1 (en) 2015-01-07 2022-07-13 Nippon Shokubai Co., Ltd. Water absorbent agent and method for producing same
WO2016135020A1 (en) 2015-02-24 2016-09-01 Basf Se Method for the continuous dehydration of 3-hydroxypropionic acid to give acrylic acid
WO2016162175A1 (en) 2015-04-07 2016-10-13 Basf Se Method for the dehydration of 3-hydroxypropanoic acid to form acrylic acid
CN107438632B (en) 2015-04-07 2021-04-13 巴斯夫欧洲公司 Method for producing superabsorbent polymer particles
JP6820862B2 (en) 2015-04-07 2021-01-27 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se How to agglomerate superabsorbent particles
KR102597114B1 (en) 2015-05-08 2023-11-01 바스프 에스이 Production method for producing water-absorbing polymer particles and belt dryer
WO2016207444A1 (en) 2015-06-26 2016-12-29 Bostik Inc. New absorbent article comprising an acquisition/distribution layer and process for making it
CN109310986B (en) 2016-03-28 2022-03-15 株式会社日本触媒 Particulate water absorbent
CN109310984A (en) 2016-03-28 2019-02-05 株式会社日本触媒 The manufacturing method of water absorbing agent
US10881555B2 (en) 2016-03-30 2021-01-05 Basf Se Fluid-absorbent article
WO2017207330A1 (en) 2016-05-31 2017-12-07 Basf Se Method for the production of superabsorbers
JP7150701B2 (en) 2016-08-10 2022-10-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for manufacturing high absorber
JP6839202B2 (en) 2016-09-30 2021-03-03 株式会社日本触媒 Water-absorbent resin composition
CN109843426A (en) 2016-10-26 2019-06-04 巴斯夫欧洲公司 From discharge superabsorbent particles in silo and fill it into the method in bulk container
KR102560352B1 (en) 2016-11-16 2023-07-28 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent resin powder and apparatus for producing the same
EP3576701B1 (en) 2017-02-06 2022-10-19 Basf Se Fluid-absorbent article
WO2018149783A1 (en) 2017-02-17 2018-08-23 Basf Se Fluid-absorbent article
EP3586957B1 (en) 2017-02-22 2022-03-30 Nippon Shokubai Co., Ltd. Absorbent article comprising water-absorbing sheet
EP3391958B1 (en) 2017-04-19 2020-08-12 The Procter & Gamble Company Method of making surface-coated water-absorbing polymer particles in a microfluidic device
JP7229987B2 (en) 2017-07-12 2023-02-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing superabsorbent polymer particles
JP7287946B2 (en) 2017-07-31 2023-06-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for classifying superabsorbent polymer particles
WO2019074094A1 (en) 2017-10-12 2019-04-18 株式会社日本触媒 Measurement method for properties of particulate absorbent agent, and particulate absorbent agent.
EP3697457B1 (en) 2017-10-18 2021-07-07 Basf Se Method for the production of superabsorbers
EP3706900B1 (en) 2017-11-10 2022-12-07 Basf Se Super absorber
US11607667B2 (en) 2017-11-16 2023-03-21 Nippon Shokubai Co., Ltd. Absorption agent and absorbent article
US11491463B2 (en) 2018-01-09 2022-11-08 Basf Se Superabsorber mixtures
KR20200118002A (en) 2018-02-06 2020-10-14 바스프 에스이 Pneumatic transport method of super absorbent particles
US20200392258A1 (en) 2018-02-22 2020-12-17 Basf Se Method for producing super absorber particles
EP3774999B1 (en) 2018-04-10 2022-08-03 Basf Se Permeable superabsorber and method for the production thereof
CN111989074B (en) 2018-04-20 2022-08-05 巴斯夫欧洲公司 Process for producing superabsorbers
US20210291145A1 (en) 2018-07-24 2021-09-23 Basf Se Method for the production of superabsorbers
WO2020025401A1 (en) 2018-08-01 2020-02-06 Basf Se Fluid-absorbent core
EP3829507A1 (en) 2018-08-01 2021-06-09 Basf Se Feminine hygiene absorbent article
KR20210073516A (en) 2018-09-28 2021-06-18 바스프 에스이 Method of making superabsorbent
JP2022506105A (en) 2018-10-29 2022-01-17 ビーエーエスエフ ソシエタス・ヨーロピア Methods for Producing Superabsorbent Polymer Particles with Long-Term Color Stability
WO2020096003A1 (en) 2018-11-07 2020-05-14 株式会社日本触媒 Method for producing particulate water absorbent, and particulate water absorbent
DE102019216910A1 (en) 2018-11-12 2020-05-14 Basf Se Process for post-crosslinking superabsorbents
JP2022507250A (en) 2018-11-14 2022-01-18 ビーエーエスエフ ソシエタス・ヨーロピア How to make a superabsorbent
CN112996592A (en) 2018-11-14 2021-06-18 巴斯夫欧洲公司 Process for producing superabsorbers
EP3880355A1 (en) 2018-11-14 2021-09-22 Basf Se Process for producing superabsorbents
JP7446659B2 (en) 2018-11-29 2024-03-11 ベーアーエスエフ・エスエー Prediction of physical properties of superabsorbent polymers
CN110054729A (en) * 2018-12-22 2019-07-26 河南正佳能源环保股份有限公司 A kind of oil film dispersin polymerization gel particle transfer drive blocking agent and its synthesis technology
WO2020151969A1 (en) 2019-01-23 2020-07-30 Basf Se Method for producing superabsorbent particles
US20220089789A1 (en) 2019-01-23 2022-03-24 Basf Se Method for producing superabsorbent particles
WO2020151972A1 (en) 2019-01-23 2020-07-30 Basf Se Method for producing super absorbent particles
WO2020151971A1 (en) 2019-01-23 2020-07-30 Basf Se Method for producing superabsorbent particles
US20220080386A1 (en) 2019-01-24 2022-03-17 Basf Se Method for producing superabsorbent particles
CN113490703A (en) 2019-03-01 2021-10-08 巴斯夫欧洲公司 Method of preparing superabsorbent polymer particles
WO2021013639A1 (en) 2019-07-24 2021-01-28 Basf Se Permeable superabsorbent and process for production thereof
CN115348897A (en) 2020-03-31 2022-11-15 株式会社日本触媒 Particulate water absorbent
CN116209718A (en) 2020-09-17 2023-06-02 巴斯夫欧洲公司 Method for producing superabsorbent polymer particles
CN116323688A (en) 2020-09-25 2023-06-23 株式会社日本触媒 Method for producing water-absorbent resin powder
WO2022128619A1 (en) 2020-12-16 2022-06-23 Basf Se Process for producing superabsorbent particles
WO2022181771A1 (en) 2021-02-26 2022-09-01 株式会社日本触媒 Granular water absorbent, absorbent body containing said water absorbent, and absorbent article using said absorbent body
WO2023046583A1 (en) 2021-09-27 2023-03-30 Basf Se Process for producing superabsorbent particles
CN114316107B (en) * 2022-01-07 2023-08-18 安徽富瑞雪化工科技股份有限公司 Novel production method of super absorbent resin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055002A (en) * 1983-09-07 1985-03-29 Nippon Shokubai Kagaku Kogyo Co Ltd Novel continuous polymerization
US4625001A (en) * 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
DE3621429A1 (en) * 1985-07-02 1987-01-08 Milchem Inc CONTINUOUS POLYMERIZATION PROCESS
DE3537276A1 (en) * 1985-10-19 1987-04-23 Basf Ag METHOD FOR THE CONTINUOUS PRODUCTION OF CROSSLINKED FINE-PARTED GEL-SHAPED POLYMERS
DE3865509D1 (en) * 1987-04-30 1991-11-21 Nippon Catalytic Chem Ind HYDROPHYLES POLYMERS AND PRODUCTION METHOD.
US5250640A (en) * 1991-04-10 1993-10-05 Nippon Shokubai Co., Ltd. Method for production of particulate hydrogel polymer and absorbent resin
DE19710212A1 (en) * 1997-03-12 1998-09-17 Basf Ag Production of finely-divided polymers derived from N-vinyl- formamide

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393908B2 (en) 2000-10-19 2008-07-01 Basf Aktiengesellschaft Cross-linked, water-swellable polymer and method for producing the same
WO2004018087A1 (en) * 2002-08-20 2004-03-04 Sahbi Belkhiria Reactor and process for the production and/or drying of water-soluble polymers (wsps) or their derivatives
US7652111B2 (en) 2003-11-25 2010-01-26 Basf Aktiengesellschaft (Meth)acrylic acid esters of unsaturated aminoalcohols and preparation thereof
WO2005113619A1 (en) * 2004-05-10 2005-12-01 Basf Aktiengesellschaft Thickened liquids
WO2007025921A1 (en) 2005-09-02 2007-03-08 Basf Se Method for producing water-absorbing polymers
WO2007028750A1 (en) 2005-09-07 2007-03-15 Basf Se Polymerization method
US7947794B2 (en) 2005-09-07 2011-05-24 Basf Se Polymerization process
WO2007112901A1 (en) * 2006-03-31 2007-10-11 List Holding Ag Process and apparatus for treating viscous products
US8222355B2 (en) 2006-03-31 2012-07-17 List Holding Ag Process and apparatus for treating viscous products
US8678641B2 (en) 2006-03-31 2014-03-25 List Holding Ag Process and apparatus for treating viscous products
WO2009115472A1 (en) * 2008-03-20 2009-09-24 Basf Se Method for manufacturing water-absorbing polymer particles with a low centrifuge retention capacity
US8497336B2 (en) 2008-03-20 2013-07-30 Basf Se Method for manufacturing water-absorbing polymer particles with a low centrifuge retention capacity
WO2012160174A1 (en) * 2011-05-26 2012-11-29 Basf Se Method for producing water-absorbing polymer particles
CN103561782A (en) * 2011-05-26 2014-02-05 巴斯夫欧洲公司 Method for producing water-absorbing polymer particles
CN103561782B (en) * 2011-05-26 2016-11-16 巴斯夫欧洲公司 The method preparing water-absorbing polymeric particles
WO2013167397A1 (en) * 2012-05-07 2013-11-14 Basf Se Method for operating a kneader mixer
US8853333B2 (en) 2012-05-07 2014-10-07 Basf Se Process for operating a mixing kneader
DE102014004222A1 (en) * 2014-03-25 2015-10-01 List Holding Ag Method for carrying out mechanical, chemical and / or thermal processes

Also Published As

Publication number Publication date
MXPA02004034A (en) 2002-10-11
EP1237937A1 (en) 2002-09-11
DE50014971D1 (en) 2008-03-27
EP1384728B1 (en) 2008-02-13
TR200400487T4 (en) 2004-04-21
US20040186229A1 (en) 2004-09-23
ES2216983T3 (en) 2004-11-01
CN1142188C (en) 2004-03-17
US6710141B1 (en) 2004-03-23
DE50005555D1 (en) 2004-04-08
EP1384728A1 (en) 2004-01-28
CA2390871A1 (en) 2001-05-31
CN1391582A (en) 2003-01-15
ATE386057T1 (en) 2008-03-15
BR0015680B1 (en) 2010-06-15
ATE260937T1 (en) 2004-03-15
JP4511774B2 (en) 2010-07-28
EP1237937B1 (en) 2004-03-03
WO2001038402A1 (en) 2001-05-31
BR0015680A (en) 2002-08-06
EP1384728B8 (en) 2008-04-02
JP2003514961A (en) 2003-04-22

Similar Documents

Publication Publication Date Title
EP1237937B1 (en) Method for continuously producing cross-linked fine-particle geleous polymerizates
EP1799721B1 (en) Method for the continuous production of crosslinked particulate gel-type polymers
EP1326898B1 (en) Cross-linked, water-swellable polymer and method for producing the same
EP2539382B1 (en) Method for producing water-absorbing polymer particles
EP2673011B1 (en) Procedure for preparing water absorbing polymer particles having high free swell rate
DE19502939A1 (en) Process for the production of high molecular weight polymers
EP0376118B1 (en) Process for preparing particulate gelatinous water-swellable copolymers
DE19625143C1 (en) Production of hydrophilic, highly swellable hydrogel as granulate free from fines and dust
WO2008037676A1 (en) Method for the continuous production of water absorbent polymer particles
EP2547705B1 (en) Process for the fabrication of waterabsorbing polymeric particles having improved colour stability
US10429128B2 (en) Heat-treatment of water-absorbing polymeric particles in a fluidized bed at a fast heat-up rate
EP2870183A1 (en) Method for producing water-absorbent polymer particles with improved properties
EP2620466A1 (en) Heat-treatment of water-absorbing polymeric particles in a fluidized bed
KR101630470B1 (en) A process for the production of a superabsorbent polymer
EP3914628A1 (en) Method for producing superabsorbent particles
EP2714103B1 (en) Process for the continuous production of water-absorbing polymer particles
WO2020020675A1 (en) Method for the production of superabsorbers

Legal Events

Date Code Title Description
8130 Withdrawal