JPS6053692A - Coolant compressor - Google Patents

Coolant compressor

Info

Publication number
JPS6053692A
JPS6053692A JP16005383A JP16005383A JPS6053692A JP S6053692 A JPS6053692 A JP S6053692A JP 16005383 A JP16005383 A JP 16005383A JP 16005383 A JP16005383 A JP 16005383A JP S6053692 A JPS6053692 A JP S6053692A
Authority
JP
Japan
Prior art keywords
control valve
suction passage
control
passage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16005383A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Ryoichi Abe
良一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16005383A priority Critical patent/JPS6053692A/en
Publication of JPS6053692A publication Critical patent/JPS6053692A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to carry out various modes of operation with the control of a single control valve and as well to relieve shock upon starting, by disposing the control valve in the intermediate section of a coolant suction passage communicated with a compression chamber, and as well by piercing a coolant passage hole through a coolant passage and a rotor. CONSTITUTION:A coolant passage is branched out into an upper suction passage 6 and a lower suction passage 7 at a branch point 5 downstream of a suction passage opening 4. A control valve 8 disposed at the branch point 5, is rotationally driven and positioned by a control motor 10 through a shaft seal device 9. With this arrangement upon starting the control valve 8 gradually rotates from its fully close position at suction passages 6, 7 so that shock upon starting is reduced. Further, upon fully open operation the control valve 8 opens the suction passages with no resistance so that operation may be made exhibiting its maximum capability. Further, upon control operation the supply amount of coolant is regulated in accordance with the rotation of the control valve 8 to carry out capacity control operation so that it is possible to carry out energy saving operation. Upon resting the control valve 8 rotates at once to the position where the suction passages are fully closed to prevent high pressure gas and oil from counterflowing toward the evaporator side, thereby heat loss upon restarting is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車用冷房装置などに使われる冷媒圧縮機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a refrigerant compressor used in automobile cooling systems and the like.

従来例の構成と“その問題点 従来の冷媒圧縮機は、第1図にその具体例を示すようK
、冷媒は一旦吸入室1に入り、この吸入室1に通じた個
々の吸入通路2a 、2bから圧縮部内に流入していた
。また、圧縮部の潤滑には圧a機後部に設けら力た油溜
部3aから差圧方式によう冷凍機油を供給する方法が一
般的であった。
The structure of the conventional example and its problems The conventional refrigerant compressor is
The refrigerant once entered the suction chamber 1, and then flowed into the compression section through the individual suction passages 2a and 2b communicating with the suction chamber 1. Furthermore, for the lubrication of the compression section, it has been common practice to supply refrigerating machine oil using a differential pressure method from an oil reservoir 3a provided at the rear of the compressor.

このような構成においては、圧縮機を運転後、停止させ
た時、油溜部3aの冷凍機油は差圧がなくなる丑で油供
給通路3bから圧縮部内に流出し。
In such a configuration, when the compressor is stopped after operation, the refrigerating machine oil in the oil sump 3a flows out from the oil supply passage 3b into the compression section when the differential pressure disappears.

続け、さらに圧縮部から吸入通路2a、2bを逆流しで
、冷凍サイクルの蒸発器まで高温の冷凍機油ないしその
内に溶は込んだ冷媒ガスが浸入し、蒸発器を暖めてしま
りという欠点を有していた。
Furthermore, there is a drawback that the high-temperature refrigerating machine oil or refrigerant gas dissolved therein flows backward through the suction passages 2a and 2b from the compression section to the evaporator of the refrigeration cycle, and warms the evaporator. Was.

一方、自動車用冷房に使われる冷媒圧縮機は、ベルトを
介してエンジンにより直接駆動されるため、エンジンの
高速回転時には圧縮機の冷凍能力が余剰となシ、冷凍サ
イクル上で吐出圧力や温度が過大となるなど種々の幣害
が発生する。このため、近年ではEPRなどの制御機器
がしばしば使われるが、高価であること、冷凍サイクル
効率が劣るなどの欠点がめった。また、現在では電磁ク
ラッチの着脱による制御が主流であるか、着脱時の騒音
、起動時の衝撃、吹出し空気温度の変化など運転、温調
フィーリングを損うという欠点を有していた。
On the other hand, the refrigerant compressor used for automobile air conditioning is directly driven by the engine via a belt, so when the engine rotates at high speed, the compressor's refrigeration capacity is surplus, and the discharge pressure and temperature on the refrigeration cycle are low. Various financial harms will occur, such as excessive amounts. For this reason, control devices such as EPR are often used in recent years, but they often have drawbacks such as being expensive and having poor refrigeration cycle efficiency. In addition, control by attaching and detaching an electromagnetic clutch is currently the mainstream, and it has disadvantages such as noise during attaching and detaching, shock at startup, and changes in the temperature of the blown air, which impair the feeling of operation and temperature control.

発明の目的 この発明の目的は、運転停止後の高温ガス、油の蒸発器
側への逆流を防止でき、高速回転時や車室内熱負荷が少
ない時などの冷凍能力の余剰時に圧縮機の冷凍能力を制
御する、いわゆる容量制御運転を行なうことができ、運
転Ui1始時には起動衝撃を緩和できる冷媒圧縮機゛を
提供することである。
Purpose of the Invention The purpose of this invention is to prevent the backflow of high temperature gas and oil to the evaporator side after the operation is stopped, and to prevent the compressor from freezing when there is excess refrigerating capacity, such as during high speed rotation or when the heat load inside the vehicle is small. It is an object of the present invention to provide a refrigerant compressor which is capable of performing so-called capacity control operation in which the capacity is controlled, and which can alleviate startup shock at the beginning of operation Ui1.

発明の構成 この発明の冷媒圧縮機は、圧縮室へ連通した冷媒吸入通
路と、回転体に冷媒流通穴を貫通形成したもので前記冷
媒吸入通路の途中に配置さilてその回転によシ冷媒供
給量を制御する制御弁と、この制御弁を回転駆動する制
御モータとを備えたもので、1個の制御弁を回転制御す
ることによシ、下記に示す種々のモード運転が可能とな
る多大かつ特有の効果を有する。
Structure of the Invention The refrigerant compressor of the present invention has a refrigerant suction passage communicating with a compression chamber and a refrigerant circulation hole formed through a rotating body, and is disposed in the middle of the refrigerant suction passage. It is equipped with a control valve that controls the supply amount and a control motor that rotationally drives this control valve.By controlling the rotation of one control valve, various modes of operation shown below are possible. It has great and unique effects.

(1ン 起動時 制御弁は吸入通路全閉位置から徐々に回転し、吸入通路
を開くため急激な圧縮をせず、起動衝撃が少なくな9、
運転フィーリングを損わない。
(1) At startup, the control valve rotates gradually from the suction passage fully closed position to open the suction passage, so there is no sudden compression and there is less startup shock9.
Does not impair driving feeling.

(2)全回運転時 制御弁は吸入通路を流路抵抗なく開き、圧縮機は最大能
力を発揮した運転を行なう。
(2) During full-time operation, the control valve opens the suction passage without flow path resistance, and the compressor operates to its maximum capacity.

(3)制御運転時 冷房熱負荷が小さな場合などには、ff1lJ御弁の回
転によ〃冷媒供給量を調整して、冷凍能力を抑制した容
量制御運転を行ない、消費動力を軽減した省エネ運転が
できる。
(3) During control operation When the cooling heat load is small, the refrigerant supply amount is adjusted by rotating the ff1lJ control valve to perform capacity control operation that suppresses the refrigerating capacity, resulting in energy-saving operation that reduces power consumption. I can do it.

(4)停止時 圧縮機を運転後、停止させた時、制御弁は吸入通路を全
閉する位置に即座に回転し、蒸発器側への高温ガス、油
の逆流を防止するため、蒸発器の急激な温度上昇による
不快感がないとともに、再起動時の熱的ロスが防止でき
る。
(4) When stopped When the compressor is stopped after operation, the control valve immediately rotates to the position that fully closes the suction passage, and prevents high-temperature gas and oil from flowing back into the evaporator. There is no discomfort caused by a sudden rise in temperature, and heat loss during restart can be prevented.

実施例の説明 この発明の一実施例を第2図ないし第6図を用いて説明
する。第2図は本・実施例における冷媒圧縮機の縦断面
図を示す。同図において、4は吸入通路入口部で、分岐
点5でけ上吸入通路6.下吸入通路7に通路は分岐する
。前記分岐点5に何2、回転可能な制御弁8が挿入さハ
ておシ、前記iH御弁8け軸封装置9を介し、鯛御十−
夕10にごよう回転駆動2位置決めされる。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 2 to 6. FIG. 2 shows a longitudinal sectional view of the refrigerant compressor in this embodiment. In the figure, reference numeral 4 denotes the inlet of the suction passage, and the upper suction passage 6. The passage branches into a lower suction passage 7. A rotatable control valve 8 is inserted into the branch point 5, and a rotatable control valve 8 is inserted into the iH control valve 8 via a shaft sealing device 9.
At 10 pm, the rotary drive 2 was positioned.

第3図は前記制御弁8の詳細図で、同図(a)は千面丙
、同図(b)3は正面図である。この制御弁8は円柱状
で、円周上には貫通した出入口11,3.2を有する通
路と、X通しない入013を育する通路があり、軸方向
には貫通しない出口14を有する通路が存在する回転式
切換弁である。
FIG. 3 is a detailed view of the control valve 8. FIG. 3(a) is a 1,000-sided view, and FIG. 3(b) is a front view. This control valve 8 has a cylindrical shape, and there are a passage on the circumference that has penetrating entrances and exits 11, 3.2, a passage that grows an inlet 013 that does not pass through, and a passage that has an outlet 14 that does not pass through in the axial direction. This is a rotary switching valve.

つぎに、この制御弁8の動作(lrつbて、第4〜6図
を参照しながら説明する。こ汎らの図はいすねも圧8機
の正面から見た場合の動作状意図である。
Next, the operation of this control valve 8 will be explained with reference to Figures 4 to 6. .

第4図において、制御弁8は出入1コil、12が上下
にあるため、冷媒ガスは土吸入通路6および下吸入通路
7の両方に流iする。
In FIG. 4, since the control valve 8 has one coil inlet and one outlet and one coil 12 at the top and bottom, the refrigerant gas flows into both the soil suction passage 6 and the lower suction passage 7.

第5図におい−cPi、制御弁8の入口13が±方゛に
向くため、入口13から流入した冷媒ガスは出口14を
鮭1上吸入通路6に流れ込み、下阪人通路7には流れ込
まない。この時、圧縮機は約すのr5凍能力しか光球せ
ず、容量制御圧縮機となシ、所要動力が減少する。
In Figure 5 - cPi, since the inlet 13 of the control valve 8 faces in the ± direction, the refrigerant gas that has flowed in from the inlet 13 flows through the outlet 14 into the salmon 1 upper suction passage 6 and does not flow into the Shimohanjin passage 7. . At this time, the compressor has only about R5 refrigerating capacity, and since it is a capacity control compressor, the required power is reduced.

第6図では、吸入通路人口部4は、土トいずれの吸入通
路6,7にも連通せず、通路は完全に遮閉さtlだ状態
を斥し−(l/する。したがっ1、冷媒ガスの流入出が
阻止される。
In FIG. 6, the suction passage artificial part 4 does not communicate with any of the suction passages 6 and 7, and the passage is completely blocked. Gas inflow and outflow is prevented.

つきに、前述のか14JJ作モート′の使途について説
明する。
Finally, we will explain how to use the above-mentioned Ka14JJ mote.

圧縮機が運転さ!Lない時は、制御弁8は第6図に示す
位置にあり(/r≧閉モー1’ ) 、圧縮機の運転開
始と共に制御−jp sけ徐々に90度回転し、吸入通
路人り部4をU音孔するため、冷媒循環量が緩かに増加
し、最終8<JIICは第4図の状態となる(全開モー
トン。そして、圧縮機は最大能力を発揮した逓伝となシ
、急速冷房を行なう。
The compressor is running! When the control valve 8 is not closed, the control valve 8 is in the position shown in Fig. 6 (/r≧closed mode 1'), and when the compressor starts operating, the control valve 8 gradually rotates 90 degrees and closes the intake passageway. 4 is made into a U sound hole, the refrigerant circulation rate increases slowly, and the final 8 Perform rapid cooling.

つぎに、冷房が設定温度まで達した時、′υ1j御弁8
け第5図の状態(制御モード)まで回転し、圧縮機は制
御運転状棲となる。この時、所要動力は冷凍サイクルの
圧力バランス状態が変わると共に冷媒循環量が半減する
ため、省動力となる。
Next, when the air conditioner reaches the set temperature, 'υ1j control valve 8
The compressor rotates to the state shown in FIG. 5 (control mode), and the compressor enters the control operating state. At this time, the required power is reduced because the pressure balance state of the refrigeration cycle changes and the amount of refrigerant circulated is halved, resulting in power savings.

この後は、全開モードと′!+!X開モードの繰返し運
転状態になり、電磁クラッチの着脱を行なわない容量f
&il #運転を行なりことができる。
After this, full throttle mode and '! +! Capacity f when the electromagnetic clutch is not engaged or disengaged due to repeated operation in X-open mode
&il #Able to drive.

また、圧縮機の運転を停止させる時には、制御弁8を全
開モードないし制御モードの位置から、即停に第6図の
全閉モードの位置に回転させ、これにより、上、1吸入
通路6,7と吸入通路入口部4[連通しなくなるため、
圧縮機を停止させた時、圧縮機の油溜部15に溜っ/L
−冷凍機油が供給通路16から圧m部内に流出し、さら
に上、1吸入通路6,7を逆流してきても、冷凍サイク
ルの蒸発器側筐で浸入しない。
When stopping the operation of the compressor, the control valve 8 is immediately rotated from the fully open mode or control mode position to the fully closed mode position shown in FIG. 7 and suction passage inlet 4 [because they are no longer in communication,
When the compressor is stopped, oil accumulates in the compressor sump 15/L.
- Even if refrigerating machine oil flows out from the supply passage 16 into the pressure m section and further flows backward through the first suction passages 6 and 7, it does not enter the evaporator side housing of the refrigeration cycle.

このよりに、本実施例によハに、2本例分岐した吸入通
路6,7の分岐点に回転により流通路を切換え可能な制
御弁8を挿入し、それを制御用モータlOによシ回転駆
動1位置決めするようにしたため、つぎのような効果が
得られる。
Therefore, according to this embodiment, a control valve 8 capable of switching the flow passage by rotation is inserted into the branch point of the two branched suction passages 6 and 7, and the control valve 8 is controlled by the control motor IO. Since the rotary drive is used for one positioning, the following effects can be obtained.

(1)起動時には徐々に冷媒流量を増加させることによ
り、起動衝撃を緩和し、滑らかな負荷トルクカーブを得
ることができ、運転フィーリングを損わない。
(1) By gradually increasing the refrigerant flow rate at startup, the startup shock can be alleviated, a smooth load torque curve can be obtained, and the driving feeling is not impaired.

(2)圧縮機の運転を車輛の熱負荷に応じ、圧縮機の冷
凍能力で100%、50%の2種類の切換運転が5J能
となp、容量制御運転が可能であり、年間を通じ省燃費
となると共に、電磁クラッチの着脱による騒音の心配が
なく、さらに起動衝撃により運転フィーリングが損われ
ることがない。
(2) The compressor operation can be switched between 100% and 50% of the compressor's refrigeration capacity according to the heat load of the vehicle, allowing for capacity control operation throughout the year. In addition to reducing fuel consumption, there is no need to worry about noise caused by attaching and disengaging the electromagnetic clutch, and the driving feeling is not impaired by the start-up shock.

(3) 圧縮機を停止させた時、即座に吸入通路を辿閉
することにより、潤滑経路からの冷凍機油の圧縮部流出
に伴なう高温カス、油の蒸発器側への逆流が阻止され、
蒸発器が加熱されることがないため、圧縮機の運転のオ
ン−オフによる熱的な損失が減らせ、経済性が向上する
。さらには、蒸発器の温度上昇により吹出空気温度が上
がることによるm調フィーリングが損わねることがなく
、快適性が欄すなど、その実用的効果は大なるものがあ
る。
(3) When the compressor is stopped, by immediately tracing and closing the suction passage, the backflow of high-temperature scum and oil to the evaporator side due to the flow of refrigerating machine oil from the compression part from the lubrication path is prevented. ,
Since the evaporator is not heated, thermal loss caused by turning the compressor on and off can be reduced, improving economic efficiency. Furthermore, the practical effects are great, such as the comfort level being improved because the m-tone feeling is not impaired due to the rise in the temperature of the blown air due to the rise in the temperature of the evaporator.

発明の効果 この発明の冷媒圧縮機によれtJ、運転停JL後の高温
ガス、油の蒸発器側への逆流を防IF:でき、冷凍能力
の余剰時には容量制御運転を行なえ、運転開始時の起動
衝撃を緩和できるという効果が得らねる。
Effects of the Invention The refrigerant compressor of the present invention can prevent the backflow of high temperature gas and oil to the evaporator side after tJ and operation stop. The effect of alleviating the startup shock cannot be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷媒圧縮機の縦断面図、第2図はこの発
明の一実施例における冷媒圧縮機の縦断面図、第3図(
a) 、 (b)はそれぞれflilJ #弁の平面図
および正面図、第4図ないし第6図は!lI御弁の動作
モード図である。 4・・吸入通路人口部、5・分岐点、6・下吸入通路、
7・・1吸入通路、8・・制御弁、1o・・制御モータ 第1図 入 16 第2図 (a)(b) 第3図 第4図 第5図 第6図
FIG. 1 is a vertical cross-sectional view of a conventional refrigerant compressor, FIG. 2 is a vertical cross-sectional view of a refrigerant compressor according to an embodiment of the present invention, and FIG.
a) and (b) are the plan view and front view of the flilJ# valve, respectively, and Figures 4 to 6 are! It is an operation mode diagram of the II control valve. 4. Inhalation passage artificial part, 5. Branch point, 6. Lower suction passage,
7...1 suction passage, 8...control valve, 1o...control motor 1st drawing 16 Figure 2 (a) (b) Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1) 圧縮室へ連通した冷媒吸入通路と、回転体に冷
媒流通穴を貫通形成したもので前記冷媒吸入通路の途中
に配置さねてその回転によ勺冷媒供給量を制御する制御
弁と、この制御弁を回転駆動する制御モータとを備えた
冷媒圧縮機。
(1) A refrigerant suction passage communicating with the compression chamber, and a control valve having a refrigerant flow hole formed through a rotating body and disposed in the middle of the refrigerant suction passage and controlling the amount of refrigerant supplied by its rotation. , and a control motor that rotationally drives the control valve.
(2)前記冷媒吸入通路は途中で複数に分岐し、前記制
御弁は冷媒流通穴を複数組合せ形成して前記冷媒吸入通
路の分岐点に配置され、前記制御モータは前記制御弁を
回転させて冷媒吸入通路の開成している分岐路の数を制
御する特許請求の範囲第(1ン項記載の冷媒圧縮機。
(2) The refrigerant suction passage branches into a plurality of parts along the way, the control valve forms a plurality of combinations of refrigerant flow holes and is disposed at a branch point of the refrigerant suction passage, and the control motor rotates the control valve. A refrigerant compressor according to claim 1, which controls the number of branch passages opened in the refrigerant suction passage.
JP16005383A 1983-08-31 1983-08-31 Coolant compressor Pending JPS6053692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16005383A JPS6053692A (en) 1983-08-31 1983-08-31 Coolant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16005383A JPS6053692A (en) 1983-08-31 1983-08-31 Coolant compressor

Publications (1)

Publication Number Publication Date
JPS6053692A true JPS6053692A (en) 1985-03-27

Family

ID=15706889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16005383A Pending JPS6053692A (en) 1983-08-31 1983-08-31 Coolant compressor

Country Status (1)

Country Link
JP (1) JPS6053692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726739A (en) * 1985-09-20 1988-02-23 Sanyo Electric Co., Ltd. Multiple cylinder rotary compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101092A (en) * 1980-01-16 1981-08-13 Ogura Clutch Co Ltd Compressor
JPS5718492A (en) * 1980-07-07 1982-01-30 Mitsubishi Heavy Ind Ltd Rotary compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101092A (en) * 1980-01-16 1981-08-13 Ogura Clutch Co Ltd Compressor
JPS5718492A (en) * 1980-07-07 1982-01-30 Mitsubishi Heavy Ind Ltd Rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726739A (en) * 1985-09-20 1988-02-23 Sanyo Electric Co., Ltd. Multiple cylinder rotary compressor

Similar Documents

Publication Publication Date Title
JPH03222814A (en) Cooling device for internal combustion engine
JP2712711B2 (en) Method and apparatus for cooling internal combustion engine
JP2656127B2 (en) Rotary displacement compressor and refrigeration plant
JPH09136530A (en) Vehicle warming up system
JPS59192893A (en) Capacity control device for compressor in cooling device for vehicle
JPS6053692A (en) Coolant compressor
JP4100115B2 (en) Engine oil supply device
JP2017186924A (en) Compressor
JP3489631B2 (en) Turbo refrigerator
JP4521967B2 (en) Oil-cooled compression refrigerator
JPS6022020A (en) Simultaneous rotation control device of cooling fan and water supply pump by water temperature response in internal-combustion engine
JPS62282110A (en) Control device for hydraulic-device type cooling fan
JPH02298623A (en) Internal combustion engine with water cooled intercooler
JPS6229779A (en) Compressor for vehicle air conditioner
JP2001153491A (en) Motor operated selector valve and refrigerating cycle equipment
JPH0426740Y2 (en)
CN215571383U (en) Compressor refrigerating capacity adjusting structure convenient to control
JPS5970894A (en) Flow control device for multilobe type vane rotary compressor
CN213872167U (en) Bearing lubricating system
CN211400390U (en) Air conditioning system
JPH035824Y2 (en)
JPH0413389Y2 (en)
JP4357063B2 (en) Liquid pump discharge capacity control method and pump system
JPS62279228A (en) Intake air cooler for internal combustion engine
JPH0417715A (en) Cooling device of internal combustion engine