JPS5970894A - Flow control device for multilobe type vane rotary compressor - Google Patents

Flow control device for multilobe type vane rotary compressor

Info

Publication number
JPS5970894A
JPS5970894A JP18312382A JP18312382A JPS5970894A JP S5970894 A JPS5970894 A JP S5970894A JP 18312382 A JP18312382 A JP 18312382A JP 18312382 A JP18312382 A JP 18312382A JP S5970894 A JPS5970894 A JP S5970894A
Authority
JP
Japan
Prior art keywords
suction
compressor
cylinder
rotary compressor
vane rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18312382A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18312382A priority Critical patent/JPS5970894A/en
Publication of JPS5970894A publication Critical patent/JPS5970894A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber

Abstract

PURPOSE:To reduce required power and improve temperature control and running feeling in a car room by opening and closing an intake port of a compression chamber or at least one path communicating to the intake port to control refrigerant amount sent into a cylinder. CONSTITUTION:Refrigerant gas flows into a suction chamber 6 from a suction port 13 provided on the upper portion of a front cover 5 and further from three suction paths 13a arranged in a front plate 3 into each compression chamber of a cylinder 1. When a solenoid valve 19 is energized, a rod 20 is sunk so that an opening and closing plate 18 closes a path 17 by a spring 15. Then, the refrigerant gas cannot be introduced from the suction path 17. As a result, the refrigerant amount sucked by a compressor is reduced about to two thirds and thereby required power reduced. Also, since temperature in a car room is controlled without stopping the running of the compressor, temperature variation is small compared control according to intermittent operation of a conventional clutch, and running feeling is not damaged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車用空気調和機などの冷凍サイクルを構
成するマルチローブ型ベーン回転式圧縮機の冷凍流量を
制御する制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control device for controlling the refrigeration flow rate of a multilobe vane rotary compressor that constitutes a refrigeration cycle of an automobile air conditioner or the like.

従来例の構成とその問題点 一般に、自動車用空気調和機は、圧縮機、凝縮器、受液
器、膨張弁および蒸発器を順次冷媒管で接続して構成さ
れる。そして圧縮機はエンジンブロックに取付けられて
ベルトにより電磁クラッチを介してエンジンにて駆動さ
れる。このような自動車用空気調和機の特徴は、エンジ
ンを駆動源とする圧縮機であるだめ、圧縮機の回転数も
エンジン回転数とともに広範囲にわたって変化すること
である。
Conventional Structure and Problems Generally, an air conditioner for an automobile is constructed by sequentially connecting a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator with a refrigerant pipe. The compressor is attached to the engine block and driven by the engine via a belt and an electromagnetic clutch. A feature of such an air conditioner for an automobile is that since the compressor is driven by an engine, the rotational speed of the compressor varies over a wide range with the engine rotational speed.

このような空気調和機においては、ある適当な回転数に
おいて適切な冷房能力を発揮する冷凍サイクルが構成さ
れるが、近年では交通事情もあって、次第にエンジンの
低速回転時すなわち低速走行時の冷房能力が重視されて
きている。
Such air conditioners are constructed with a refrigeration cycle that exhibits appropriate cooling capacity at a certain appropriate rotation speed, but in recent years, due to traffic conditions, it has become increasingly difficult to cool the engine at low speeds, that is, when driving at low speeds. Ability is becoming more important.

このため、高速回転時には、冷凍サイクルにおける圧縮
機の冷凍能力、凝縮器の放熱能力、蒸発器の吸熱能力な
どとの熱的バランス上・一般に・圧縮機の吐出圧力が適
切値より上昇し、また吸入圧力が降下する傾向にある。
Therefore, during high-speed rotation, due to the thermal balance between the refrigeration capacity of the compressor, the heat dissipation capacity of the condenser, and the heat absorption capacity of the evaporator in the refrigeration cycle, the discharge pressure of the compressor generally rises above the appropriate value. Suction pressure tends to decrease.

このような現象は、圧縮機の冷凍能力が回転数に対し、
正比例的に増加する圧縮機はど顕著に現われる。
This phenomenon occurs because the refrigerating capacity of the compressor varies with the rotation speed.
The compressor increases in direct proportion and is clearly visible.

まだこのような冷凍サイクルにおいてはしばしば、高速
回転時に、吐出温度が異常上昇する現象を引きおこし、
冷凍機油の劣下、ゴム配管の破損等の弊害を生じていた
。さらには、圧縮機自身の焼利きなどの破損に至らしめ
、信頼性を極度に損う原因にもなっていた。まだ、圧縮
機の所要動力が著しく増加し、車輌の加速性など運転フ
ィーリングを損う問題点が多い。
However, in such refrigeration cycles, the discharge temperature often rises abnormally during high-speed rotation.
This caused problems such as deterioration of the refrigerating machine oil and damage to the rubber piping. Furthermore, this caused damage to the compressor itself, such as burnout, and caused a severe loss of reliability. However, there are still many problems such as the required power of the compressor increases significantly and the driving feeling of the vehicle, such as poor acceleration.

このような問題に対し、圧縮梗内部の圧縮開始ガス冷媒
を吸入側にバイパスさせるいわゆるシリンダバイパス方
式による容量制御がルームエアコン用圧縮機では広く知
られているが、カーエアコン用圧縮機においては信頼性
などの問題のために実用化されていない。
To solve this problem, capacity control using the so-called cylinder bypass method, which bypasses the compression start gas refrigerant inside the compression stroke to the suction side, is widely known for room air conditioner compressors, but it is not reliable for car air conditioner compressors. It has not been put into practical use due to issues such as gender.

一方、スライディングベーン式回転圧縮機において、吸
入通路を適切に設計することにより、高速回転時に吸入
量を制御した構造が、近年実用化され、回転数に対する
いわゆる容量制御が実現している。この構造により、高
速回転域における吐出圧力、温度上昇などが抑制され、
圧縮機の所要動力は大幅に低減させることが確認されて
いる。
On the other hand, in a sliding vane rotary compressor, a structure in which the suction amount is controlled during high-speed rotation by appropriately designing the suction passage has been put into practical use in recent years, and so-called capacity control over the rotation speed has been realized. This structure suppresses discharge pressure and temperature rise in the high-speed rotation range,
It has been confirmed that the power required for the compressor is significantly reduced.

しかしながら、この吸入通路の設計による容量制御にお
いては、圧縮機の回転数のみに依存し、ガス流量が制御
されるだめ、例えば、車室内空間の熱負荷が高い場合に
は、回転数を上昇させても冷房力があまり増加しないだ
めに、急激な冷房が行なわれにくくなり、逆に、熱負荷
が極度に小さい場合には、回転数が低く、冷房力が小さ
くても冷房力が過剰となる場合があって、無駄な動力消
費になっていた。
However, this capacity control based on the design of the suction passage depends only on the rotation speed of the compressor, and the gas flow rate cannot be controlled. For example, if the heat load in the passenger compartment is high, the rotation speed may be increased. However, if the cooling power does not increase too much, it will be difficult to cool rapidly, and conversely, if the heat load is extremely small, the cooling power will become excessive even if the rotation speed is low and the cooling power is small. In some cases, this resulted in unnecessary power consumption.

現在、熱負荷の小さい場合には、室内の温度サーモによ
り、室内温度などがある設定温度以下になった時に、圧
縮機の電磁クラッチを切離し、圧縮機の運転を停止させ
る手段が主流であるが、この手段では、車室内の温度コ
ントロール性、クラッチのON 、 offによる運転
フィーリング性の面において、不快感がある。さらに、
所要動力に対する冷房力の効率においては適切な冷房力
に保持し、クラッチを断続させない場合に比べ、ON。
Currently, when the heat load is small, the mainstream method is to use an indoor temperature thermometer to disengage the electromagnetic clutch of the compressor and stop the compressor when the indoor temperature drops below a certain set temperature. However, with this method, there is discomfort in terms of temperature controllability in the vehicle interior and driving feeling due to turning on and off the clutch. moreover,
Regarding the efficiency of cooling power relative to the required power, it is better to keep the cooling power at an appropriate level and keep the clutch ON than when the clutch is not engaged.

off制御は、蒸発器の熱量などの点で効率が低い欠点
を有していた。
The off control has the disadvantage of low efficiency in terms of the amount of heat in the evaporator.

発明の目的 本発明は、上記従来の欠点を解消するもので、所要動力
の低減化と、車室内の温度制御、運転フィーリングの向
」二をはかるとともに、冷凍サイクルの年間効率の向上
をはかることを目的とするものである。
Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks, and aims to reduce the required power, control the temperature inside the vehicle interior, improve the driving feeling, and improve the annual efficiency of the refrigeration cycle. The purpose is to

発明の構成 この目的を達成するために本発明は、複数の圧縮室を有
するマルチロープ型ベーン回転式圧縮機の、各圧縮室の
吸入口あるいは、吸入口に通じる通路の少なくとも1つ
を開閉する開閉板を設け、ンリンダ内への冷媒量を制御
するよう構成したものである。
Structure of the Invention In order to achieve this object, the present invention opens and closes the inlet of each compression chamber or at least one passage leading to the inlet of a multi-rope vane rotary compressor having a plurality of compression chambers. It is configured to include an opening/closing plate to control the amount of refrigerant flowing into the cylinder.

この構成によシ、車室内の熱負荷に応じた冷房能力を発
揮させるものである。
This configuration allows the cooling capacity to be exerted in accordance with the heat load in the vehicle interior.

実施例の説明 以下、本発明の一実症例について添付図面を参考に説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図において、1は断面三角形状の内壁空間を有する
シリンダで、真円のロータ2が7リンダ1の内壁と3箇
所で近接するよう同心で配設されている。またロータ2
はシリンダ1の両側面を閉塞するフロントプレート3.
リアプレート4に軸受支持されている。6はフロントカ
バーf707トプレート3との空間に吸入室6を形成し
ている。
In FIG. 1, a cylinder 1 has an inner wall space having a triangular cross section, and a perfectly circular rotor 2 is concentrically arranged so as to be close to the inner wall of the cylinder 1 at three locations. Also rotor 2
is a front plate 3 that closes both sides of the cylinder 1.
It is supported by a bearing on the rear plate 4. 6 forms a suction chamber 6 in a space between the front cover f707 and the top plate 3.

7は筒状のリアケースで、リアプレー 1・4との間に
オイル溜部8を有する。
A cylindrical rear case 7 has an oil reservoir 8 between it and the rear plays 1 and 4.

第2図は第1図のA−A線による断面図を示し、同図に
おいてロータ2には4枚のべ一79が出没”I能に配設
されている。まだシリンダ1とロータ2の空間には3個
の圧縮室10が形成され、ロータ2の回転とともに、ベ
ー79がシリンダ1の内壁に押接され、回転滑動する。
FIG. 2 shows a cross-sectional view taken along the line A-A in FIG. Three compression chambers 10 are formed in the space, and as the rotor 2 rotates, the bay 79 is pressed against the inner wall of the cylinder 1 and rotates and slides.

シリンダ゛1には各圧縮室10に対し1個づつの吸入1
」11が設けられ、冷媒ガスが流入し、各吐出口12か
ら流出する。
The cylinder 1 has one suction 1 for each compression chamber 10.
11 are provided, and refrigerant gas flows in and flows out from each discharge port 12.

第3図は第1図のB−B線による断面図を示している。FIG. 3 shows a sectional view taken along line B--B in FIG. 1.

第3図において、冷媒ガスはフロントカバー6の上部に
設けられた吸入口13から吸入室6に流入し、さらにフ
ロントプレート3に配設された3個の吸入通路13aか
ら、シリンダ1の吸入孔11を経て各圧縮室10に入る
In FIG. 3, refrigerant gas flows into the suction chamber 6 from the suction port 13 provided at the upper part of the front cover 6, and then from three suction passages 13a provided on the front plate 3 to the suction hole of the cylinder 1. 11 and enters each compression chamber 10.

吸入室6には隔離壁14が設けられ、この隔離壁14に
はバネ15により、常時通路17を閉塞するように伺勢
された開閉板18かボルト16により取付けられている
。フロントカバー6には出没自在なロッド20を有する
電磁弁19が固定され、前記ロッド20は常時通路17
を開くよう開閉板18を押接している。
A separating wall 14 is provided in the suction chamber 6, and an opening/closing plate 18 biased by a spring 15 so as to close the passage 17 at all times is attached to the separating wall 14 by bolts 16. A solenoid valve 19 having a retractable rod 20 is fixed to the front cover 6, and the rod 20 is always connected to the passage 17.
The opening/closing plate 18 is pressed to open.

」−記構成において、電磁弁19は外部から制御され、
通電時にはロッド2oが没入し、開閉板18はバネ15
により、通路1了を閉塞する。この時、冷媒ガスは吸入
通路1了から流入できなくなる。
In the above configuration, the solenoid valve 19 is controlled from the outside,
When energized, the rod 2o is recessed, and the opening/closing plate 18 is held by the spring 15.
As a result, passage 1 is blocked. At this time, refrigerant gas cannot flow through the suction passage 1.

その結果、圧縮機の冷媒吸入量はおよそ%に減少する。As a result, the refrigerant suction amount of the compressor is reduced to approximately %.

したがって、所要動力は減少し、省エネルギー化がはか
れる。また、圧縮機の運転を停止させることなく、車室
内の温度コントロールを行々うため、従来のクラッチの
断続によるコントロールに比べ、温度変化が少なく、温
度調節フィーリングが良好となる。また、クラッチの断
続による車両の運転フィーリングも損なわれない。
Therefore, the required power is reduced and energy saving is achieved. Furthermore, since the temperature inside the vehicle cabin is controlled without stopping the operation of the compressor, there are fewer temperature changes and a better temperature control feeling compared to conventional control using clutch engagement. Furthermore, the driving feeling of the vehicle is not impaired due to the engagement and disengagement of the clutch.

なお、他の実施例として第4図に示すように、2個の吸
入通路17に対して開閉板18を設けた場合にも、同様
な効果が得られ、その実姉例に比べて約係9%の2段階
の流量制御が行々えるため、より所要動力の節減がはか
れる。
In addition, as shown in FIG. 4 as another embodiment, when the opening/closing plate 18 is provided for the two suction passages 17, the same effect can be obtained, and the time difference is 9. Since the flow rate can be controlled in two stages (%), the required power can be further reduced.

まだ、吸入口11あるいは通路13aを開閉するように
してもよい。
However, the suction port 11 or the passage 13a may be opened and closed.

発明の効果 上記実施例より明らかなように本発明は、マルチロープ
型ベーン回転式圧縮機における、圧縮室の吸入口あるい
は吸入口に通じる通路の1つを開閉する開閉板を設け、
電磁弁により通路の開閉を行なうようにしたもので、圧
縮機の冷房能力を可変することができ、これによって高
速回転時における冷房能力の過剰、吐出圧力・温度の異
常上昇、あるいは所要動力の増加などの問題を解消し、
さらには、従来の電磁クラッチの断続による温度調節、
運転フィーリングの低化が防止できる。また、能力制御
は、圧縮機の回転数に対し制御率が決まってしまう吸入
口絞り方式に比べて高速回転クールダウン特性の劣下が
ないなど、種々の効果を奏する。
Effects of the Invention As is clear from the above embodiments, the present invention provides a multi-rope vane rotary compressor with an opening/closing plate that opens and closes the suction port of the compression chamber or one of the passages leading to the suction port.
The passage is opened and closed by a solenoid valve, and the cooling capacity of the compressor can be varied.This can prevent excessive cooling capacity during high-speed rotation, abnormal rise in discharge pressure/temperature, or increase in required power. Solving problems such as
In addition, temperature control using the conventional electromagnetic clutch,
Deterioration of driving feeling can be prevented. In addition, capacity control has various effects such as no deterioration in high-speed rotation cool-down characteristics compared to the suction throttle method in which the control rate is determined depending on the rotation speed of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における流量制御装置を具備し
たマルチローブ型ベーン回転式車輌用圧縮機の断面図、
第2図は第1図のA−A線による断面図、第3図は第1
図のB−B線による断面図、第4図は本発明の他の実施
例を示す第3図相当図である。 1・・・・・・シリンダ、2・・・・・・ロータ、3・
・・・・・フロントプレート、5・・・・・・フロント
カバー、11・・・・・・吸入口、13&・・・・・吸
入通路、1了・・・・・通路、18・・・・・・開閉板
、19・・・・・・電磁弁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
FIG. 1 is a sectional view of a multi-lobe rotary vane vehicular compressor equipped with a flow rate control device according to an embodiment of the present invention;
Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is a cross-sectional view of Figure 1.
4 is a sectional view taken along line B--B in the figure, and FIG. 4 is a view corresponding to FIG. 3 showing another embodiment of the present invention. 1... Cylinder, 2... Rotor, 3...
...Front plate, 5...Front cover, 11...Intake port, 13&...Intake passage, 1...Passage, 18... ... Opening/closing plate, 19... Solenoid valve. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 円筒状内壁を有するシリンダ内に、複数個の可動ベーン
を有するロータを、その複数部が常にシリンダ内壁と近
接するよう同心支持して複数個の圧縮室を有するマルチ
ローブ型ベーン回転式圧縮機を構成し、各圧縮室の吸入
口あるいは吸入口に通じる通路の1つを電磁弁にて開閉
する開閉板を設けたマルチローブ型ベーン回転式圧縮機
の流量制御装置。
A rotor having a plurality of movable vanes is supported concentrically within a cylinder having a cylindrical inner wall so that the plurality of parts thereof are always close to the inner wall of the cylinder to provide a multilobe type vane rotary compressor having a plurality of compression chambers. A flow control device for a multilobe vane rotary compressor, which is equipped with an opening/closing plate that opens and closes the suction port of each compression chamber or one of the passages leading to the suction port using a solenoid valve.
JP18312382A 1982-10-18 1982-10-18 Flow control device for multilobe type vane rotary compressor Pending JPS5970894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18312382A JPS5970894A (en) 1982-10-18 1982-10-18 Flow control device for multilobe type vane rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18312382A JPS5970894A (en) 1982-10-18 1982-10-18 Flow control device for multilobe type vane rotary compressor

Publications (1)

Publication Number Publication Date
JPS5970894A true JPS5970894A (en) 1984-04-21

Family

ID=16130189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18312382A Pending JPS5970894A (en) 1982-10-18 1982-10-18 Flow control device for multilobe type vane rotary compressor

Country Status (1)

Country Link
JP (1) JPS5970894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111514U (en) * 1990-02-24 1991-11-14
WO2008071243A1 (en) * 2006-12-11 2008-06-19 Vhit S.P.A. A vacuum pump provided with a device for its deactivation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111514U (en) * 1990-02-24 1991-11-14
WO2008071243A1 (en) * 2006-12-11 2008-06-19 Vhit S.P.A. A vacuum pump provided with a device for its deactivation
US8182244B2 (en) 2006-12-11 2012-05-22 Vhit S.P.A. Vacuum pump provided with a device for its deactivation

Similar Documents

Publication Publication Date Title
JPS6062690A (en) Rotary compressor enable of partial load operation
JPS5970894A (en) Flow control device for multilobe type vane rotary compressor
JPS6338697A (en) Rotary compressor
JP2013001268A (en) Air conditioning device for vehicle
JPS6229779A (en) Compressor for vehicle air conditioner
JPH024796B2 (en)
JPS6117271Y2 (en)
JPH03294687A (en) Capacity control method of capacity variable type compressor
US2818210A (en) Refrigerating apparatus
US2738651A (en) Refrigerating apparatus
JPH0224335Y2 (en)
JPS58222994A (en) Variable capacity compressor
JPS6347677Y2 (en)
JPS6245109Y2 (en)
JPH0413580Y2 (en)
JPS6032988A (en) Rate-of-flow controller for refrigerant of multi-robe type vane rotary compressor
JPH0346749B2 (en)
JPS639695A (en) Vane type rotary compressor
JP2006051870A (en) Vehicle air-conditioner
JPS59192612A (en) Car air conditioner
JP2004230974A (en) Compressor for vehicle air conditioning
JPS60222578A (en) Refrigerator utilizing variable capacity compressor
JPS61171606A (en) Freezing device for car air conditioning equipment
JPS63233256A (en) Capacity-control compressor loading refrigerator
JPS59106315A (en) Air conditioner for car