JPS6229779A - Compressor for vehicle air conditioner - Google Patents

Compressor for vehicle air conditioner

Info

Publication number
JPS6229779A
JPS6229779A JP60170162A JP17016285A JPS6229779A JP S6229779 A JPS6229779 A JP S6229779A JP 60170162 A JP60170162 A JP 60170162A JP 17016285 A JP17016285 A JP 17016285A JP S6229779 A JPS6229779 A JP S6229779A
Authority
JP
Japan
Prior art keywords
compressor
opening
air conditioner
refrigerant
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60170162A
Other languages
Japanese (ja)
Inventor
Ikuji Akaike
赤池 生司
Yukio Sudo
須藤 幸雄
Toshinori Aihara
相原 俊徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Atsugi Motor Parts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Motor Parts Co Ltd filed Critical Atsugi Motor Parts Co Ltd
Priority to JP60170162A priority Critical patent/JPS6229779A/en
Publication of JPS6229779A publication Critical patent/JPS6229779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve a driving feeling of the driver, by controlling the proportion of an opening and closing time of opening and closing valves, provided in suction sides of a compressor, so that the delivery amount of a refrigerant of the compressor can be controlled with an electromagnetic clutch left as being turned on. CONSTITUTION:An air conditioner provides opening and closing valves 22A, 22B, consisting of two-port and two-position solenoid selector valves, in suction side flow lines 14 of a compressor 20 driven by an engine through an electromagnetic clutch. While a controller of said compressor 20 outputs a control signal which controls the proportion of a time for opening and closing the opening and closing valves 22A, 22B during a unit time on the basis of various signals of car room temperature, engine speed, etc. And the air conditioner controls the opening and closing valves 22A, 22B to be opened and closed by said control signal.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は圧縮作動を継続したままで冷媒吐出量を制御
可能な車輌用空調装置の圧縮機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a compressor for a vehicle air conditioner that can control the amount of refrigerant discharged while continuing compression operation.

(従来の技術) 車輌用空調装置の圧縮機としては、例えば第3.4図に
示すようなベーン型回転圧縮機(以下、略して単に圧縮
機と言う)が知られている。これらの図において、1は
圧縮機のハウジング(図示省略)内に収装される圧縮機
構部を示し、この圧縮機構部lはカムリング2とロータ
3とを有している。カムリング2は、第3図に示すよう
に、断面略楕円形の筒体からなり、その内周面が小内部
2Aと大内部2Bとにより構成されている。カムリング
2の両端開口はフロントプレート4およびリヤプレート
5により封止され、ロータ3はこれらの両プレート4.
5に軸受6A、6Bを介しカムリング2内、特に小内部
2A内で回転自在に支持されている。ロータ3には、第
3図に詳示するように、その軸方向にスリット8が4条
形成され、また各スリット8はロータ3の円周方向に等
間隔(90度)で配されており、さらに各スリット8は
軸垂直方向断面にてその略半径方向(放射方向)に延在
している。これらのスリット8内には、矩形板状体のベ
ーン9A〜9Dが摺動自在に収容されており、これらの
ベーン9A〜9Dはロータ3の回転時、遠心力およびベ
ーン背圧により、各先端がカムリング2の内周面に摺接
する。カムリング2とロータ3と両プレート4.5とに
より作動室10A、IOBがそれぞれ画成され、各作動
室10A、10Bはベーン9“A〜9Dにより拡縮され
て吸入室または圧縮室として作用する。また、カムリン
グ2の内周面には円周方向に略180度離隔して冷媒の
吸入口(図外)および吐出口(図外)に連通ずる一対の
吸入ポート11A、IIBおよび吐出ポート12A、1
2Bがそれぞれ開口しており、吸入ポート11A、II
Bより作動室10A、IOB内に吸入された低温低圧の
冷媒は、ロータ3の回転により作動室10A、IOB内
で圧縮されて高温高圧となって所定圧力で開く吐出弁7
A、7Bを設けた吐出ポートL2A、12・Bから吐出
口を経て吐出される。前記ロータ3は図示しない駆動ベ
ルトを介してエンジンから伝達される駆動力を電磁クラ
ッチ13 (第5図参照)の0N−OFF作動によって
伝達・遮断され駆動、停止されるようになっている。し
かして、前記圧縮機Cの吐出口から吐出された高温高圧
の冷媒は、この圧縮機Cを組込んだ第5図に示すような
冷凍サイクルの配管14を介してコンデンサ15に送ら
れる。コンデンサ15は送り込まれた冷媒を凝縮温度ま
で冷却し中温中圧の液体に還元する。
(Prior Art) As a compressor for a vehicle air conditioner, for example, a vane type rotary compressor (hereinafter simply referred to as a compressor) as shown in FIG. 3.4 is known. In these figures, reference numeral 1 indicates a compression mechanism part housed in a housing (not shown) of a compressor, and this compression mechanism part l has a cam ring 2 and a rotor 3. As shown in FIG. 3, the cam ring 2 is made of a cylindrical body having a substantially elliptical cross section, and its inner circumferential surface is composed of a small interior 2A and a large interior 2B. The openings at both ends of the cam ring 2 are sealed by a front plate 4 and a rear plate 5, and the rotor 3 is sealed between these two plates 4.
5 through bearings 6A and 6B, and is rotatably supported within the cam ring 2, particularly within the small interior 2A. As shown in detail in FIG. 3, the rotor 3 has four slits 8 formed in its axial direction, and each slit 8 is arranged at equal intervals (90 degrees) in the circumferential direction of the rotor 3. Furthermore, each slit 8 extends substantially in the radial direction (radial direction) in the cross section in the direction perpendicular to the axis. In these slits 8, rectangular plate-like vanes 9A to 9D are slidably housed, and when the rotor 3 rotates, each tip of the vanes 9A to 9D is compressed by centrifugal force and vane back pressure. comes into sliding contact with the inner peripheral surface of the cam ring 2. Working chambers 10A and IOB are defined by the cam ring 2, rotor 3, and both plates 4.5, respectively, and each working chamber 10A, 10B is expanded or contracted by vanes 9''A to 9D, and acts as a suction chamber or a compression chamber. Further, on the inner circumferential surface of the cam ring 2, a pair of suction ports 11A, IIB and a discharge port 12A, which are separated by approximately 180 degrees in the circumferential direction and communicate with a refrigerant suction port (not shown) and a discharge port (not shown), are provided. 1
2B are open, respectively, and the suction ports 11A and II
The low-temperature, low-pressure refrigerant sucked into the working chamber 10A and IOB from B is compressed in the working chamber 10A and IOB by the rotation of the rotor 3, becomes high temperature and high pressure, and the discharge valve 7 opens at a predetermined pressure.
It is discharged from discharge ports L2A and 12/B provided with ports A and 7B through discharge ports. The rotor 3 is driven and stopped by receiving and cutting off the driving force transmitted from the engine via a drive belt (not shown) by the ON-OFF operation of the electromagnetic clutch 13 (see FIG. 5). The high-temperature, high-pressure refrigerant discharged from the discharge port of the compressor C is sent to the condenser 15 through the piping 14 of the refrigeration cycle as shown in FIG. 5, in which the compressor C is incorporated. The condenser 15 cools the fed refrigerant to a condensing temperature and reduces it to a medium-temperature, medium-pressure liquid.

この冷却はラジェータの前面に取付けられた冷却ファン
や車速による空冷によって行われる。液体に還元された
冷媒はリキッドタンク16へ送られて溜められる0次に
、この液状冷媒はリキッドタンク16から膨張弁17へ
送られ、急激に膨張させられて低温低圧の霧状となった
後、エバポレータ18へ送られる。そして、このエバポ
レータ18で冷却ファンにより周囲から気化熱を奪いな
がら蒸発して気体となる。このとき冷却された空気を送
風機によって冷風として車輌の室内に送り込み、室内を
冷却するのである。そして、蒸発した冷媒は再び圧縮機
Cへ送られて圧縮される。
This cooling is performed by a cooling fan attached to the front of the radiator or by air cooling depending on the vehicle speed. The refrigerant reduced to liquid is sent to the liquid tank 16 and stored there.Next, this liquid refrigerant is sent from the liquid tank 16 to the expansion valve 17, where it is rapidly expanded and becomes a low-temperature, low-pressure mist. , are sent to the evaporator 18. Then, in this evaporator 18, the cooling fan evaporates and turns into a gas while removing the heat of vaporization from the surroundings. At this time, the cooled air is sent into the interior of the vehicle as cold air by a blower, thereby cooling the interior of the vehicle. The evaporated refrigerant is then sent to the compressor C again and compressed.

(発明が解決しようとする問題点) しかしながら、一般に車輌用空調装置の圧縮機は、停車
中のエンジン低速回転時(所謂アイドリング時)にあっ
てもエバポレータ18の冷力を確保する必要があるため
その容量を大きくしである。
(Problem to be Solved by the Invention) However, in general, the compressor of a vehicle air conditioner needs to ensure cooling power for the evaporator 18 even when the engine is rotating at low speed (so-called idling) when the vehicle is stopped. Increase its capacity.

このため、車輌の高速運転時には圧縮能力が過剰となっ
て車輌の室内が冷え過ぎるため、電磁クラッチ13の0
N−OFFを頻繁に繰り返して圧縮機Cを全容量(10
0%容量)で作動させるかあるいは停止させ、室内の温
度を調節しなければならなかった。ところが、このよう
に高速運転時に電磁クラッチ13を頻繁に0N−OFF
させた場合、圧縮機の圧縮機構部は停止状態からいきな
り高速作動に接続されることとなるため、大きなショッ
クを生じる上に0N−OFF時の作動音もうるさく、運
転者のドライブフィーリングを著しく悪くしていた。更
に、電磁クラッチ13を頻繁に0N−OFFさせるため
電磁クラッチ13の摩擦−面の摩耗が激しく、耐用期間
が著しく短縮され不経済であるという問題点もあった。
For this reason, when the vehicle is driven at high speed, the compression capacity becomes excessive and the interior of the vehicle becomes too cold.
Repeat N-OFF frequently to turn compressor C to full capacity (10
They had to run it at 0% capacity or shut it down and adjust the room temperature. However, during high-speed operation, the electromagnetic clutch 13 is frequently turned ON and OFF.
In this case, the compression mechanism of the compressor is suddenly connected to high-speed operation from a stopped state, which not only causes a large shock, but also causes a loud operating sound during 0N-OFF, which significantly affects the driving feeling of the driver. I was making it worse. Further, since the electromagnetic clutch 13 is frequently turned ON and OFF, the friction surfaces of the electromagnetic clutch 13 are severely worn out, and the service life is significantly shortened, which is uneconomical.

そこで、このような問題点を解決すべく、圧縮機の吸入
口や吸入ポートIIA、11Bにオリフィス等の絞り部
を設けて冷媒の吸入量を少なくする方法が提案された。
Therefore, in order to solve this problem, a method has been proposed in which a constriction part such as an orifice is provided in the suction port of the compressor and the suction ports IIA and 11B to reduce the amount of refrigerant sucked.

しかしながら、作動室10A、10Bへの入口部に絞り
部を設けて冷媒吸入量を減少させた場合、吐出量(重量
)は減少するが、吸入時に絞り部を通過して通常の吸入
圧よりも更に低圧に減圧した冷媒を吐出ポート12A、
12Bから吐出させるためには吐出弁7A、7Bが開く
設定圧まで圧縮しなければならないため、圧縮比が極め
て大きくなる。したがって、作動室10A、IOB内の
温度が異常に高温となり、圧縮機が損傷するという問題
が生じ、前述した問題点を解決することはできなかった
However, if a constriction is provided at the inlet to the working chambers 10A, 10B to reduce the amount of refrigerant sucked in, the discharge amount (weight) will decrease, but the refrigerant will pass through the constrictor during suction and will be lower than the normal suction pressure. The refrigerant further reduced in pressure is discharged to the discharge port 12A,
In order to discharge it from 12B, it is necessary to compress it to the set pressure at which the discharge valves 7A and 7B open, so the compression ratio becomes extremely large. Therefore, the temperature inside the working chamber 10A and IOB becomes abnormally high, causing damage to the compressor, and the above-mentioned problems could not be solved.

(問題点を解決するための手段および作用)この発明は
、このような従来の問題点に着目してなされたもので、
圧縮機の作動室へ冷媒を供給する吸入側の流路に開閉弁
を設け、圧縮機の1作動サイクルタイムにおける前記開
閉弁の開閉時間の割合を制御することによって、電磁ク
ラッチをONにしたまま、すなわち圧縮機を作動させた
まま、の状態で冷媒の吐出量を制御できるようになし、
上記問題点を解決するものである。
(Means and effects for solving the problems) This invention was made by focusing on such conventional problems.
An on-off valve is provided in the suction side flow path that supplies refrigerant to the working chamber of the compressor, and by controlling the ratio of the opening/closing time of the on-off valve in one operating cycle time of the compressor, the electromagnetic clutch can be kept on. In other words, the refrigerant discharge amount can be controlled while the compressor is operating.
This solves the above problems.

(実施例) 以下、この発明を実施例に基づいて説明する。(Example) Hereinafter, this invention will be explained based on examples.

第1図はこの発明に係る圧縮機の一実施例を組込んだ冷
凍サイクルを示すものであり、14は配管、15はコン
デンサ、16はリキッドタンク、17は膨張弁、18は
エバポレータ、20は圧縮機構部の構成および作用が前
述した圧縮機Cと同様なこの発明に係る圧縮機である。
FIG. 1 shows a refrigeration cycle incorporating an embodiment of the compressor according to the present invention, in which 14 is piping, 15 is a condenser, 16 is a liquid tank, 17 is an expansion valve, 18 is an evaporator, and 20 is a This compressor according to the present invention has the same structure and operation of the compression mechanism as the compressor C described above.

この圧縮機20の各作動室10A、10Bと連通ずる吸
入口には開閉弁としての2ポ一ト2位置電磁切換弁(以
下、略して切換弁と言う)22A、22Bが取付けられ
ている。なお、切換弁22A、22Bは圧縮機20の各
吸入口とエバポレータ18の出口とを接続する配管14
の途中に設けてもよい。そして、この切換弁22A、2
2Bは図外のコンピュータ内蔵の制御装置から発せられ
る電気信号によって同時にあるいは選択的に切換えられ
、それぞれ全開あるいは全閉するようになっている。
Two-point/two-position electromagnetic switching valves (hereinafter simply referred to as switching valves) 22A and 22B as on-off valves are attached to the suction ports communicating with the working chambers 10A and 10B of the compressor 20. Note that the switching valves 22A and 22B are connected to piping 14 that connects each suction port of the compressor 20 and the outlet of the evaporator 18.
It may be provided in the middle. And this switching valve 22A, 2
2B are switched simultaneously or selectively by electrical signals issued from a control device built in a computer (not shown), so that they are fully open or fully closed, respectively.

次に作用を説明する。Next, the effect will be explained.

配管14から吸入口、吸入ポートLIA、IIBを経て
作動室10A、IOB内に吸入された冷媒はロータ3の
回転によって圧縮され、吐出ポート12A、12B、吐
出弁7A、7B、吐出口を経た後、配管14を介してコ
ンデンサ15に送られる。ここで、車輌の車室内の温度
およびエンジンの回転数等の諸制御条件が予め制御装置
の記憶手段に記憶されている設定値に達したことをセン
サを介して制御装置が検知すると、制御装置から切換弁
22A、22Bに制御信号が発せられる。この制御信号
は、圧縮機20の1作動サイクルタイム(単位時間)の
間に切換弁22A、22Bが開閉している時間の割合を
制御するための信号、すなわちデエーテイー比制御信号
である。そして、この制御信号により切換弁22A、2
2Bを、例えば第2図(al、山)、(C)に示すよう
に、圧縮機20の1作動サイクルタイムのうちの1/2
.3/4あるいは1/4の時間だけ開き、残りの時間は
閉じるように開閉制御することにより、各作動室10A
、IOBへの冷媒供給量を切換弁22A、22B全開時
の50%、75%、25%に制御し、もって  ゛その
吐出量を制御することができる。したがって、切換弁2
2A、22B史うちの一方を全閉するとともに他方のデ
ユーティ−比を変えることによって、圧縮機20全体の
吐出量を0〜50%に制御することができ、また、切換
弁22A、22Bのうちの一方を全開するとともに他方
のデユーティ−比を変えることによって圧縮機20全体
の吐出量を50〜100%に制御することが可能である
。しかも、切換弁22A、22Bは全開するか全閉する
かのいずれかであるため、全開しているときの冷媒の圧
縮比は前述した絞りを設けていない従来の圧縮機Cにお
けるそれと同じであり、作動室の温度上昇も従来と同じ
である。また、全閉しているときの圧縮比はOであるた
め、作動室の温度上昇は低い。したがって、作動室の総
合的な温度上昇は冷媒の吸入量(吐出量)が減少しても
従来より低いものとなる。
The refrigerant sucked into the working chamber 10A and IOB from the pipe 14 through the suction port and suction ports LIA and IIB is compressed by the rotation of the rotor 3, and after passing through the discharge ports 12A and 12B, the discharge valves 7A and 7B, and the discharge port. , are sent to the condenser 15 via the pipe 14. Here, when the control device detects via the sensor that various control conditions such as the temperature inside the vehicle cabin and the engine rotation speed have reached the set values stored in advance in the storage means of the control device, the control device A control signal is issued from the switching valves 22A and 22B. This control signal is a signal for controlling the proportion of time during which the switching valves 22A and 22B are opened and closed during one operating cycle time (unit time) of the compressor 20, that is, a duty ratio control signal. Then, by this control signal, the switching valves 22A, 2
2B is 1/2 of one operating cycle time of the compressor 20, for example, as shown in FIG. 2 (al, mountain) and (C).
.. Each working chamber 10A is opened and closed for 3/4 or 1/4 of the time and closed for the rest of the time.
, the amount of refrigerant supplied to the IOB can be controlled to 50%, 75%, and 25% of when the switching valves 22A and 22B are fully open, thereby controlling the amount of refrigerant discharged. Therefore, the switching valve 2
By fully closing one of the switching valves 2A and 22B and changing the duty ratio of the other, the overall discharge amount of the compressor 20 can be controlled from 0 to 50%. By fully opening one of the compressors and changing the duty ratio of the other, it is possible to control the overall discharge amount of the compressor 20 to 50 to 100%. Moreover, since the switching valves 22A and 22B are either fully open or fully closed, the compression ratio of the refrigerant when fully open is the same as that in the conventional compressor C that is not provided with a throttle. , the temperature rise in the working chamber is also the same as before. Furthermore, since the compression ratio when the valve is fully closed is O, the temperature rise in the working chamber is low. Therefore, the overall temperature rise in the working chamber is lower than in the past even if the refrigerant suction amount (discharge amount) decreases.

更に、切換弁22A、22Bの開閉制御に拘りなく電磁
クラッチ13はONすなわち接続したままでよいため、
運転者のドライブフィーリングを悪くする0N−OFF
時のショックや作動音が無く、電磁クラッチ13の摩擦
面の摩耗も従来と比較すると著しく減少する。
Furthermore, since the electromagnetic clutch 13 can remain ON or connected regardless of the opening/closing control of the switching valves 22A and 22B,
0N-OFF that worsens the driver's driving feeling
There is no shock or noise during operation, and wear on the friction surface of the electromagnetic clutch 13 is significantly reduced compared to conventional clutches.

なお、前記実施例においては1対の作動室を有するベー
ン型回転圧縮機について説明したが、この発明は単一の
作動室を有するベーン型回転圧縮機および往復動式圧縮
機等についても適用可能なことは言うまでもない。
In the above embodiment, a vane type rotary compressor having a pair of working chambers has been described, but the present invention can also be applied to a vane type rotary compressor having a single working chamber, a reciprocating compressor, etc. Needless to say.

(発明の効果) 以上説明してきたようにこの発明によれば、車輌用空調
装置の圧縮機の作動室へ冷媒を供給する吸入側の流路に
開閉弁を設け、圧縮機の1作動サイクルタイムにおける
前記開閉弁の開閉時間の割合を制御することによって冷
媒の吸入量を制御し、もって吐出量を制御することがで
きる。その結果、エンジンの回転数に拘りなく要求され
る冷房能力に応じた冷媒吐出量を得ることができるため
、エバポレータから吹き出される冷風の温度変化を小さ
くすることができ、快適な冷房効果を得ることができる
上に省エネルギー効果も大きい、また、従来の圧縮機に
おけるようにエンジンからの駆動力を圧縮機に伝達する
電磁クラッチを車室内の温度やエンジンの回転数に応じ
て繰り返し0N−OFFする必要がなく、車輌運転中は
常時ONにしたままにしておくことができるため、0N
−OFF時(特に車輌が高速走行中の場合)に生ずるシ
ョックや作動音が無くドライブフィーリングが良い上に
、電磁クラッチの摩擦面の摩耗も従来と比較して著しく
減少するため耐用期間が長くなる。
(Effects of the Invention) As described above, according to the present invention, an on-off valve is provided in the suction side flow path for supplying refrigerant to the working chamber of the compressor of a vehicle air conditioner, and one operating cycle time of the compressor is reduced. By controlling the ratio of opening/closing time of the on-off valve, the intake amount of refrigerant can be controlled, and thereby the discharge amount can be controlled. As a result, it is possible to obtain a refrigerant discharge amount that corresponds to the required cooling capacity regardless of the engine speed, making it possible to reduce temperature changes in the cold air blown out from the evaporator and achieve a comfortable cooling effect. In addition, unlike conventional compressors, the electromagnetic clutch that transmits the driving force from the engine to the compressor is repeatedly turned off and on depending on the temperature inside the vehicle and the engine speed. Since it is not necessary and can be left on at all times while driving the vehicle, it is 0N.
- There is no shock or operating noise when the vehicle is off (especially when the vehicle is running at high speed), giving a good drive feeling, and wear on the electromagnetic clutch's friction surface is significantly reduced compared to conventional models, resulting in a long service life. Become.

更に、切換弁の開閉制御によって圧縮機への冷媒供給量
を減らしても、作動室の温度上昇は従来と略同程度また
はそれ以下に抑えることができる、といった種々の効果
を奏することができる。
Furthermore, even if the amount of refrigerant supplied to the compressor is reduced by controlling the opening and closing of the switching valve, various effects such as being able to suppress the temperature rise in the working chamber to approximately the same level or lower than that of the conventional system can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る圧縮機の一実施例を組込んだ車
輌用空調装置の冷凍サイクルの配管図、第2図(al、
fb)、(C)はそれぞれ圧縮機の1作動サイクルタイ
ムとこの間における開閉弁の開閉時間の割合との関係を
示す説明図、第3図および第4図は車輌用空調装置のベ
ーン型回転圧縮機の圧縮機構部を示すもので第3図はそ
の正面断面図、第4図はその側面断面図、第5図は従来
の圧縮機を組込んだ車輌用空調装置の冷凍サイクルの配
管図である。 10A、IOB・・・・・・作動室、 14・・・・・・配管(吸入側流路)、20・・・・・
・圧縮機、 22A、22B・・・・・・2ポ一ト2位置電磁切換弁
(開閉弁)。
Fig. 1 is a piping diagram of a refrigeration cycle of a vehicle air conditioner incorporating an embodiment of the compressor according to the present invention, and Fig. 2 (al,
fb) and (C) are explanatory diagrams showing the relationship between one operating cycle time of the compressor and the ratio of the opening/closing time of the on-off valve during this time, respectively. Figures 3 and 4 are vane-type rotary compression of a vehicle air conditioner. Fig. 3 shows a front sectional view of the compressor, Fig. 4 shows a side sectional view of the compressor, and Fig. 5 shows a piping diagram of the refrigeration cycle of a vehicle air conditioner incorporating a conventional compressor. be. 10A, IOB... Working chamber, 14... Piping (suction side flow path), 20...
・Compressor, 22A, 22B... 2-point 2-position electromagnetic switching valve (on/off valve).

Claims (1)

【特許請求の範囲】[Claims] 冷媒を圧縮する単一又は複数の作動室を有する車輌用空
調装置の圧縮機において、作動室へ冷媒を供給する吸入
側流路に開閉弁を設け、圧縮機の1作動サイクルタイム
における前記開閉弁の開閉時間の割合を制御することに
よって冷媒吐出量を制御するようになしたことを特徴と
する車輌用空調装置の圧縮機。
In a compressor for a vehicle air conditioner having a single or multiple working chambers for compressing refrigerant, an on-off valve is provided in the suction side flow path for supplying refrigerant to the working chamber, and the on-off valve during one operation cycle time of the compressor. 1. A compressor for a vehicle air conditioner, characterized in that the amount of refrigerant discharged is controlled by controlling the opening/closing time ratio of the compressor.
JP60170162A 1985-07-31 1985-07-31 Compressor for vehicle air conditioner Pending JPS6229779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170162A JPS6229779A (en) 1985-07-31 1985-07-31 Compressor for vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170162A JPS6229779A (en) 1985-07-31 1985-07-31 Compressor for vehicle air conditioner

Publications (1)

Publication Number Publication Date
JPS6229779A true JPS6229779A (en) 1987-02-07

Family

ID=15899829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170162A Pending JPS6229779A (en) 1985-07-31 1985-07-31 Compressor for vehicle air conditioner

Country Status (1)

Country Link
JP (1) JPS6229779A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138490U (en) * 1987-02-28 1988-09-12
JP2005538299A (en) * 2002-09-12 2005-12-15 アルテミス インテリジェント パワー リミテッド Liquid-driven mechanical device and method of operation
USRE40499E1 (en) 1997-12-08 2008-09-16 Carrier Corporation Pulsed flow for capacity control
USRE40830E1 (en) 1998-08-25 2009-07-07 Emerson Climate Technologies, Inc. Compressor capacity modulation
US7654098B2 (en) * 1995-06-07 2010-02-02 Emerson Climate Technologies, Inc. Cooling system with variable capacity control
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138490U (en) * 1987-02-28 1988-09-12
US7654098B2 (en) * 1995-06-07 2010-02-02 Emerson Climate Technologies, Inc. Cooling system with variable capacity control
USRE40499E1 (en) 1997-12-08 2008-09-16 Carrier Corporation Pulsed flow for capacity control
USRE40830E1 (en) 1998-08-25 2009-07-07 Emerson Climate Technologies, Inc. Compressor capacity modulation
JP2005538299A (en) * 2002-09-12 2005-12-15 アルテミス インテリジェント パワー リミテッド Liquid-driven mechanical device and method of operation
US9188119B2 (en) 2002-09-12 2015-11-17 Artemis Intelligent Power Limited Fluid-working machine and operating method
US10094372B2 (en) 2002-09-12 2018-10-09 Artemis Intelligent Power Limited Fluid-working machine and operating method
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Similar Documents

Publication Publication Date Title
US4557670A (en) Compressor
JPS6146743B2 (en)
US7076963B2 (en) Two-stage compressor for an automotive air conditioner, which can be driven by a vehicle running engine and an electric motor different therefrom
JPS6229779A (en) Compressor for vehicle air conditioner
JPH11324930A (en) Variable capacity type compressor
JP5727348B2 (en) Gas compressor
JP2003148815A (en) Engine driven type heat pump air conditioner
JP4035650B2 (en) Compressor
JPH057558B2 (en)
JPH06229636A (en) Air conditioner for car
JPH085353Y2 (en) Capacity control type compressor
JPS6346713Y2 (en)
JPS6245109Y2 (en)
JP3588216B2 (en) Compressors and air conditioners
JPS5970894A (en) Flow control device for multilobe type vane rotary compressor
JP2576583B2 (en) Variable capacity compressor
JPH0224335Y2 (en)
JPH0353034Y2 (en)
JPS59192612A (en) Car air conditioner
JPH0399932A (en) Control device of air conditioner for vehicle
JPH06229635A (en) Air conditioner for car
JPS6032988A (en) Rate-of-flow controller for refrigerant of multi-robe type vane rotary compressor
JP2006051870A (en) Vehicle air-conditioner
JPS63140872A (en) Variable-capacity compressor
JPS63243473A (en) Engine-compressor unit