JPS6053594B2 - Vinegar manufacturing method - Google Patents

Vinegar manufacturing method

Info

Publication number
JPS6053594B2
JPS6053594B2 JP53128580A JP12858078A JPS6053594B2 JP S6053594 B2 JPS6053594 B2 JP S6053594B2 JP 53128580 A JP53128580 A JP 53128580A JP 12858078 A JP12858078 A JP 12858078A JP S6053594 B2 JPS6053594 B2 JP S6053594B2
Authority
JP
Japan
Prior art keywords
moromi
acetic acid
concentration
fermenter
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53128580A
Other languages
Japanese (ja)
Other versions
JPS5554890A (en
Inventor
一 奥村
義雄 国松
巌 大森
弘毅 山田
博司 正井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKANO SUTEN KK
Original Assignee
NAKANO SUTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKANO SUTEN KK filed Critical NAKANO SUTEN KK
Priority to JP53128580A priority Critical patent/JPS6053594B2/en
Publication of JPS5554890A publication Critical patent/JPS5554890A/en
Publication of JPS6053594B2 publication Critical patent/JPS6053594B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

【発明の詳細な説明】 本発明は通気発酵法による食酢の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing vinegar by an aerated fermentation method.

ハれ↓ ゛ 、へ、フEバn宣讐ゝ4−l−L−づ、
ゝ工A゛充レか ノ魯a 造するために様々な工夫がな
されてきているが、まだ改善すべき点を残している。
Hare↓
Although various efforts have been made to improve the construction of ``A'', there are still areas to be improved.

例えば通気発酵で連続発酵法ないし半連続発酵法によ
り高い酢酸濃度の食酢を製造する方法や冷却費用の節減
等を目的として高い発酵温度て食酢を製造する方法など
があるが、これらの場合には高い酢酸濃度や高い温度の
ために酢酸菌の増殖能力が抑制され醪中の酢酸菌濃度が
低くなつてしまうため、より低い酢酸濃度や温度の場合
に比較して生産速度が低下してしまうことが多い。
For example, there are methods to produce vinegar with a high acetic acid concentration using a continuous or semi-continuous fermentation method using aerated fermentation, and methods to produce vinegar at a high fermentation temperature for the purpose of reducing cooling costs. High acetic acid concentration and high temperature suppress the growth ability of acetic acid bacteria and lower the concentration of acetic acid bacteria in the moromi, resulting in a lower production rate than in the case of lower acetic acid concentration and temperature. There are many.

そして上記の如く高い酢酸濃度や高い温度などのため
に酢酸菌の増殖が抑制され生産速度が低下するような場
合には、何等かの手段を用いて醪中の酢酸菌の濃度を高
め、ひいては生産速度を向上させようとする試みがなさ
れるのは当然であり、一般的には高い酢酸濃度や高い温
度に耐えて増殖を促進させ生産速度を向上させることの
できるような栄養物質を検索し醪中に添加したり、変異
株を見い出して接種する等の試みがなされるわけで’あ
るが、このような栄養物質や変異株を得ることは労力ば
かり要する割には期待される成果は得られないことが多
く、従がつて例えば発酵温度は30℃以下が普通であり
、また酢酸濃度が7重量/容量%以上て発酵させる場合
には次第に生産性が低・下するのが常であつた。
As mentioned above, if the growth of acetic acid bacteria is suppressed and the production rate is reduced due to high acetic acid concentration or high temperature, some means should be used to increase the concentration of acetic acid bacteria in the moromi, and eventually Naturally, attempts are made to increase production rates, typically by searching for nutritional substances that can withstand high acetic acid concentrations and high temperatures to promote growth and increase production rates. Attempts have been made to add nutrients to the moromi, or to find mutant strains and inoculate them, but although it takes a lot of effort to obtain such nutrients and mutant strains, the expected results have not been achieved. Therefore, for example, the fermentation temperature is usually below 30°C, and when fermentation is carried out at an acetic acid concentration of 7% by weight/volume or higher, productivity usually gradually decreases. Ta.

一方、通気発酵で連続発酵法を実施する場合に、発酵槽
内から取り出される醪中の菌体を分離して元の発酵槽へ
還元して再利用し発酵槽内の醪中の菌体量を多くして生
産速度を高めようとする方法も公知である。
On the other hand, when carrying out the continuous fermentation method with aerated fermentation, the bacterial cells in the moromi taken out from the fermenter are separated and returned to the original fermenter for reuse. A method of increasing the production rate by increasing the amount is also known.

その際、菌体を醪より分離する手段としては遠心分離法
や醪を静置させて沈降分離させる方法等が代表的である
が、これらの方法では機械的なりにより菌の活性が失な
われたり、大がかりな遠心分離機や菌体沈降槽が必要で
あり、また菌体を沈降させるために長時間静置しなけれ
ばならないなどの欠点がある。また食酢の製造に用いら
れる酢酸菌には酸素が絶対的に必要てあり、例えは極短
時間通気を中断することによつてほとんどその全てが失
活してしまうという特殊な事情があり、従来の醪中より
菌体を分離して元の発酵槽へ還元して再利用しようとい
う方法を実用化することは不可能であつた。
At that time, typical methods for separating the bacterial cells from the moromi include centrifugation and a method of allowing the moromi to stand and sedimentation, but these methods do not cause the bacterial activity to be lost due to mechanical lag. In addition, it requires a large-scale centrifugal separator and a bacterial cell sedimentation tank, and has disadvantages such as having to stand still for a long time in order to sediment the bacterial cells. In addition, the acetic acid bacteria used in the production of vinegar absolutely require oxygen, and for example, there is a special situation in which almost all of them are deactivated by interrupting ventilation for a very short period of time. It was impossible to put into practical use the method of separating the bacterial cells from the moromi and returning them to the original fermenter for reuse.

さらに、このような従来法の欠点を補い菌体の再利用を
可能ならしめるために発酵槽内部に素焼、焼結金属、セ
ルロース系フィルター等の多孔質材を持つた菌体分離槽
を設けた発酵槽が考案されているが、この装置では菌体
を発酵槽内に保持したまま醪を分離することになるので
、上記の如き欠点は改良されるが、発酵槽内部に複雑な
機構を持つ菌体分離槽が設けられているため発酵途中て
の装置の故障が発生しやすく、また多孔質材への菌体及
び醪中の不溶性物質等の目づまりが発生しやすく、この
ような時には発酵を一時中断して修理したり掃除しなけ
ればならない等の欠点がある。一方、酢酸発酵では酢酸
菌は醪中に溶解した酸素とエタノールを吸収して酢酸発
酵を行なうのであり、酸素は絶対的に必要なわけである
が、酢酸菌の溶存酸素吸収能は強力てあり、醪中に溶解
した酸素は直ちに酢酸菌により消費され溶存酸素濃.度
は非常に低い濃度となる。
Furthermore, in order to compensate for the shortcomings of the conventional method and enable the reuse of bacterial cells, a bacterial cell separation tank with porous materials such as unglazed, sintered metal, or cellulose filters was installed inside the fermenter. A fermentation tank has been devised, but this device separates the moromi while keeping the bacterial cells in the fermentation tank, which improves the above drawbacks, but it has a complicated mechanism inside the fermentation tank. Since a bacterial cell separation tank is provided, the equipment is likely to malfunction during fermentation, and the porous material is likely to be clogged with bacterial cells and insoluble substances in the moromi, and in such cases, fermentation must be stopped. There are drawbacks such as the need to temporarily suspend operations for repairs and cleaning. On the other hand, in acetic acid fermentation, acetic acid bacteria absorb oxygen and ethanol dissolved in the moromi to perform acetic acid fermentation, and oxygen is absolutely necessary, but the ability of acetic acid bacteria to absorb dissolved oxygen is extremely strong. The oxygen dissolved in the moromi is immediately consumed by the acetic acid bacteria, resulting in a concentration of dissolved oxygen. The concentration will be very low.

このような状態では生産速度は酸素の溶解速度に比例し
てくるので、従来より通気発酵法による食酢の製造法に
おいても酸素溶解速度を向上させるために様々な工夫が
なされてきている。例えば酸素を用いて通気され、るべ
き空気中の酸素濃度を高めてやるとか微量の炭酸ガスを
含有させた酸素ガスそのものを通気するとかの方法が公
知である。これらの方法によれば確かに醪中への酸素溶
解速度を高めることができ、生産速度を高めることがで
きるが、しかし酢酸菌自体の増殖能や発酵能には限界が
あり、また酸素供給能を高めることのみによつては酢酸
菌自体の増殖能および発酵能そのものを向上させること
はほとんど期待できないことから、ある程度までは生産
速度を向上させることはできても、それ以上の向上は無
理であつて、酸素を使用する効果が薄れてくるのである
Under such conditions, the production rate is proportional to the oxygen dissolution rate, so various efforts have been made to improve the oxygen dissolution rate even in vinegar production methods using aeration fermentation. For example, methods are known in which oxygen is used to aerate the air to increase the oxygen concentration in the air, or oxygen gas itself containing a trace amount of carbon dioxide is aerated. Although these methods can certainly increase the rate of oxygen dissolution into the moromi and increase the production rate, there are limits to the growth and fermentation ability of the acetic acid bacteria themselves, and the oxygen supply capacity is limited. It is almost impossible to expect to improve the growth and fermentation ability of the acetic acid bacterium itself by simply increasing the production rate, so even if it is possible to improve the production rate to a certain extent, it is impossible to improve it further. As the temperature increases, the effectiveness of using oxygen diminishes.

ことに前記の如くより高い発酵温度や酢酸濃度・で発酵
させるような場合には、高い発酵温度や酢酸濃度自体に
よつて酢酸菌の増殖能が発酵能が抑制されてしまつてい
るので、酸素供給速度をいくら高めてやつても生産速度
を向上させることはできない。本発明は、これら従来法
の欠点を克服し、限外泊過装置を用いて発酵槽から取り
出される醪より酢酸菌を分離し活性を低下させることな
く発酵槽内へ還元して発酵槽内の醪中の酢酸菌濃度を高
める一方、高濃度となつた酢酸菌の酸素消費に対応させ
るために酸素を用いて酸素濃度を高めた空気を通気する
ことにより生産速度を高めて効率良く食酢を製造するこ
とを可能ならしめた通気発酵法による食酢の製造法を提
供することを目的とするものであつて、本発明は通気発
酵で連続発酵法または半連続発酵法によつて食酢を製造
する方法において、発酵槽より取り出される醪を発酵槽
外に設けた限外沖過装置により限外泊過して酢酸菌を含
まない清澄な醪と酢酸菌を元の状態より濃い濃度で含有
する醪とに戸別し、清澄な醪は発酵系外に排出し、酢酸
菌を元の状態より濃い濃度で含有する醪は、醪が発酵槽
より取り出されてから1分以内に発酵槽へ酢酸菌を元の
状態より濃い濃度で含有する醪として還元されるように
、発酵槽へ還元する工程を連続的にまたは間欠的に加え
る一方、酸素を用いて酸素含有量を高めた空気を通気し
て発酵槽内の醪中の溶存酸素濃度を0.2ppm以上と
して発酵させることを特徴とする食酢の製造法である。
In particular, when fermentation is carried out at a higher fermentation temperature or acetic acid concentration as mentioned above, the fermentation ability of acetic acid bacteria is suppressed by the high fermentation temperature or acetic acid concentration itself. No matter how much you increase the supply rate, you cannot increase the production rate. The present invention overcomes the drawbacks of these conventional methods, uses an ultra-overnight device to separate acetic acid bacteria from the moromi taken out from the fermenter, and returns it to the fermenter without reducing its activity. While increasing the concentration of acetic acid bacteria in the container, in order to cope with the oxygen consumption of the high concentration of acetic acid bacteria, we use oxygen to aerate air with increased oxygen concentration, thereby increasing the production rate and efficiently producing vinegar. It is an object of the present invention to provide a method for producing vinegar by an aerated fermentation method that makes it possible to produce vinegar by a continuous fermentation method or a semi-continuous fermentation method. The moromi taken out from the fermenter is passed through an ultraviolet filtration device installed outside the fermenter, and is separated into clear moromi that does not contain acetic acid bacteria and moromi that contains acetic acid bacteria at a higher concentration than the original state. Clear moromi is discharged from the fermentation system, and moromi containing acetic acid bacteria in a higher concentration than the original state is returned to the fermenter within 1 minute after the moromi is taken out of the fermenter. A reduction process is added continuously or intermittently to the fermenter so that the moromi is reduced to a higher concentration. This is a method for producing vinegar, which is characterized in that fermentation is carried out at a dissolved oxygen concentration in the moromi of 0.2 ppm or more.

以下、本発明について具体的に詳説する。Hereinafter, the present invention will be specifically explained in detail.

先ず、本発明において使用する装置の具体例を図面につ
いて説明する。
First, a specific example of the apparatus used in the present invention will be explained with reference to the drawings.

図において1は発酵槽てあり、従来公知のものが使用さ
れる。
In the figure, 1 is a fermenter, and a conventionally known one is used.

発酵槽1には内部の醪に空気や酸素を通気するための散
気管6及び散気管6に空気や酸素を導入するための空気
導入管5が設けられており、また通気された空気や酸素
を微粉砕して醪中に分散させ混合させるための攪拌翼2
及び攪拌翼2を回転させるために発酵槽1の外部に設け
た電動機4と攪拌翼2とを連結する攪拌軸3が設けられ
ている。この散気管6及び攪拌翼2としては、酢酸発酵
においては主原料であるアルコール及び主生産物である
酢酸が共に揮発性であるため、比較的少量の空気(例え
ば毎分醪量に対して5〜30%程度)が充分混合され効
率良く醪に酸素を供給できるようなものが望ましい。7
は発酵槽1に設けた排気管であり、醪に空気や酸素を供
給し終えて醪から分離した空気や酸素がこれから排出さ
れる。
The fermenter 1 is provided with an aeration pipe 6 for aerating air and oxygen into the internal mash and an air introduction pipe 5 for introducing air and oxygen into the aeration pipe 6. Stirring blade 2 for finely pulverizing and dispersing and mixing in the moromi
A stirring shaft 3 is provided to connect the stirring blade 2 to an electric motor 4 provided outside the fermenter 1 in order to rotate the stirring blade 2. In acetic acid fermentation, alcohol, the main raw material, and acetic acid, the main product, are both volatile. -30%) is sufficiently mixed and can efficiently supply oxygen to the moromi. 7
is an exhaust pipe provided in the fermenter 1, from which air and oxygen separated from the moromi after supplying air and oxygen to the moromi are exhausted.

8は発酵槽1に設けた原料醪投入管てあり、原料醪を発
酵槽1に投入する他、酢酸菌、栄養物質、アルコール等
を投入する際にも用いられる。
Reference numeral 8 denotes a raw material moromi input pipe provided in the fermenter 1, which is used not only to input raw material moromi into the fermenter 1 but also to input acetic acid bacteria, nutritional substances, alcohol, etc.

9は発酵槽1内の醪液面下の位置に設けた醪取出管であ
つて、連続発酵法により食酢を製造する際、原料醪投入
管8より原料醪が連続的に投入されて発酵槽1内の醪の
液位が上−昇すると、醪は連続的に発酵槽1外に醪取出
管9を通つて溢れ出て一定の醪量すなわち液位が維持さ
れつつ連続発酵が行われるようになつている。
Reference numeral 9 denotes a mash removal pipe installed below the level of the mash in the fermenter 1. When producing vinegar by the continuous fermentation method, raw mash is continuously inputted from the mash input pipe 8 to the fermenter. When the liquid level of the moromi in the fermenter 1 rises, the moromi continuously overflows out of the fermenter 1 through the mortar removal pipe 9, so that continuous fermentation is carried out while maintaining a constant amount of moromi, that is, the liquid level. It's getting old.

また発酵槽1には、その内部に蛇管10が設けられてお
り、冷水または温水等を通じることにより醪を冷却した
り加温したりすることができるようになつており、図に
は示されていないが、醪温度を自動的に測定して蛇管1
0に接続された電磁弁を自動的に開閉する自動温度調節
計によつて発酵槽1内の醪の温度を一定に保つことがで
きるようになつている。11は発酵槽1の底部に設けた
醪排出管であり、発酵槽1内部の醪の取り出しに用いら
れ、また12及び13は醪取出管9及び醪排出管11の
途中に設けられたバルブであつて用途に応じて適宜開閉
して使用される。
Furthermore, the fermenter 1 is provided with a serpentine pipe 10 inside thereof, which allows the moromi to be cooled or heated by passing cold water or hot water through it, which is not shown in the figure. Although it is not, the temperature of the moromi is automatically measured and
The temperature of the moromi in the fermenter 1 can be kept constant by an automatic temperature controller that automatically opens and closes a solenoid valve connected to the fermenter 1. 11 is a moromi discharge pipe provided at the bottom of the fermenter 1, and is used to take out the moromi from inside the fermenter 1, and 12 and 13 are valves provided in the middle of the moromi discharge pipe 9 and the moromi discharge pipe 11. It is used by opening and closing as appropriate depending on the purpose.

さらに醪排出管11は発酵槽1とバルブ13との間で分
枝しており、バルブ21及びバイブ16を介して醪循環
ポンプ14に連結しており、醪循環ポンプ14は途中に
バルブ22を持つバイブ17を介して限外ろ過装置15
に接続されている。限外ろ過装置15にはさらにバルブ
23を持つバイブ18が連結されており、バイブ18の
先端は発酵槽1の内部に開口している。ここで限外ろ過
装置15としては、一般に用いられているものが使用さ
れるが、少なくとも食酢中に含まれる程度の濃度の酢酸
溶液に耐える枦過膜を持つものが好適である。
Furthermore, the mash discharge pipe 11 is branched between the fermenter 1 and the valve 13, and is connected to the mash circulation pump 14 via the valve 21 and the vibrator 16, and the mash circulation pump 14 has a valve 22 in the middle. Ultrafiltration device 15 via vibrator 17 with
It is connected to the. A vibrator 18 having a valve 23 is further connected to the ultrafiltration device 15, and the tip of the vibrator 18 opens into the inside of the fermenter 1. Here, as the ultrafiltration device 15, a commonly used one can be used, but one having a filter membrane that can withstand at least an acetic acid solution of a concentration equivalent to that contained in vinegar is suitable.

従来良く用いられたセルロース系の膜では食酢中の酢酸
により膜自体が加水分解等の作用を受け破壊されてしま
うので、アクリロニトリルやテフロン等の重合物より構
成されるような酢酸耐性の強い膜を持つ限外沖過装置を
使用するのが望ましい。発酵槽1から取り出される醪は
この限外ろ過装置15により淵過され、酢酸菌を含まな
い清澄な醪(以下、清澄醪という)は清澄醪排出管19
を通つて発酵系外に排出される。また、バイブ17は醪
循環ポンプ14とバルブ22との間で分枝しており、バ
ルブ24を介して醪排出管20に連結している。
The cellulose-based membrane that has been commonly used in the past is destroyed by the effects of hydrolysis and other actions due to the acetic acid in vinegar, so we recommend using a membrane that is highly resistant to acetic acid and is made of polymers such as acrylonitrile or Teflon. It is preferable to use an ultraviolet penetration device that has a The moromi taken out from the fermenter 1 is filtered through this ultrafiltration device 15, and the clear moromi that does not contain acetic acid bacteria (hereinafter referred to as clarified moromi) is passed through the clarified moromi discharge pipe 19.
is discharged from the fermentation system through the Further, the vibrator 17 is branched between the mash circulation pump 14 and the valve 22, and is connected to the mash discharge pipe 20 via the valve 24.

この醪排出管20は醪循環ポンプ14を作動させて醪を
循環させている途中に醪を排出させる場合に使用される
。なお、バルブ21,22,23及び24は適宜用途に
応じて開閉して使用される。25,26及び27はそれ
ぞれ醪取出管9、清澄醪排出管19及び醪排出管20よ
り排出されてきた酢酸菌を含む醪もしくは清澄醪を受け
る貯蔵タンクである。
This mash discharge pipe 20 is used when the mash is discharged while the mash is being circulated by operating the mash circulation pump 14. Note that the valves 21, 22, 23, and 24 are opened and closed as appropriate depending on the purpose. Reference numerals 25, 26, and 27 are storage tanks for receiving the moromi containing acetic acid bacteria or the clarified mash discharged from the mash removal pipe 9, the clarified mash discharge pipe 19, and the mash discharge pipe 20, respectively.

醪循環ポンプ14は発酵槽1内の醪を醪排出管11及び
バイブ16を通して吸引し、さらにバイブ17を通して
限外淵過装置15に送り込み、そして限外ろ過装置15
によりp別された酢酸菌を元の状態より濃い濃度で含有
する醪(以下、酢酸”菌濃縮醪という)をバイブ18を
通して発酵槽1内へ還元する役目をし、また同時に限外
ろ過装置15によつて醪をろ過するために必要な圧力を
醪にかける役目もする。
The moromi circulation pump 14 sucks the moromi in the fermenter 1 through the mortar discharge pipe 11 and the vibrator 16, and further sends it through the vibrator 17 to the ultrafiltration device 15.
The function is to return the moromi containing acetic acid bacteria in a higher concentration than the original state (hereinafter referred to as acetic acid bacteria concentrated moromi) through the vibrator 18 into the fermenter 1, and at the same time, the ultrafiltration device 15 It also serves to apply the necessary pressure to the moromi to filter it.

従がつて発酵槽1内の醪を限外淵過装置15を通して酢
酸菌濃縮醪として再・びもとの発酵槽1内へ1分以内で
還元することのできるような吐出流量を持つものが好ま
しいし、かつ限外枦過装置15に適当なp過圧力をかけ
ることのできるような揚程を持つものが好ましい。なお
、上記のように1分以内に醪を循環させる)ことができ
るためには、単に醪循環ポンプ14の吐出流量のみを大
きくすれば良いというのではなく、醪循環系を構成して
いるバイブ16,17及び18等の直径や長さも関係し
ている。従がつてできるだけ細いバイブを用い最短距離
をなるべく小さくすることができ経済的である。また、
空気導入管5は途中で2本に分枝しており、一方はコン
プレッサー28に、またもう一方は酸素ボンベ29に連
結している。
Therefore, there is a device with a discharge flow rate that allows the mash in the fermenter 1 to be returned to the original fermenter 1 as acetic acid bacteria concentrated mash through the ultrafiltration device 15 within one minute. It is preferable to have a lift such that a suitable p overpressure can be applied to the ultrafiltration device 15. Note that in order to be able to circulate the moromi within one minute as described above, it is not only necessary to increase the discharge flow rate of the mortar circulation pump 14, but also to increase the flow rate of the mortar circulation system. The diameter and length of 16, 17, 18, etc. are also relevant. Therefore, the shortest distance can be made as small as possible by using the thinnest vibrator possible, which is economical. Also,
The air introduction pipe 5 branches into two parts in the middle, one of which is connected to a compressor 28 and the other to an oxygen cylinder 29.

ここでコンプレッサー28及び酸素ボンベ29は共に従
来公知のもので良い。また図示には示されていないが酸
素ボンベ29は1本のみではなく2本以上が切替コック
によつて順次使用できるようになつている。30及び3
1は空気ならびに酸素の流量計である。
Here, both the compressor 28 and the oxygen cylinder 29 may be conventionally known ones. Although not shown, not only one oxygen cylinder 29 but two or more oxygen cylinders 29 can be used sequentially by a switching cock. 30 and 3
1 is an air and oxygen flow meter.

32,33及び34はバルブであり、特に32及び34
はそれぞれコンプレッサー28及び酸素ボンベ29から
の空気及び酸素ガスを使用する際、適正圧力にまで減圧
するための減圧バルブとなつている。
32, 33 and 34 are valves, especially 32 and 34
are pressure reducing valves for reducing the pressure to an appropriate pressure when using air and oxygen gas from the compressor 28 and oxygen cylinder 29, respectively.

そしてまた35は溶存酸素計でありセンサー36とは電
気的に連結されており発酵槽1内の醪中の溶存酸素濃度
を測定するために設けられている。
A dissolved oxygen meter 35 is electrically connected to a sensor 36 and is provided to measure the dissolved oxygen concentration in the moromi in the fermenter 1.

次に上記した具体例の装置を用い本発明にしたがつて通
気発酵て連続発酵法もしくは半連続発酵法により食酢を
製造することについて説明する。
Next, the production of vinegar by continuous fermentation or semi-continuous fermentation using aerated fermentation according to the present invention using the apparatus of the above-mentioned specific example will be explained.

本発明においては、まず発酵槽1内にアルコール、水、
酢酸発酵液または酢酸、及び酢酸菌の栄養物を用いて調
製した発酵開始用の醪を充填する。ここで酢酸発酵液と
しては酢酸発酵により得られる適当な醪、例えば発酵終
了後の粕酢醪などが用いられ、また酢酸菌の栄養物とし
ては、例えば酒粕浸出液、酵母工キズ、糖類、無機塩類
、有機酸などのうちから適当なものが使用される。なお
、この発酵開始用の醪を充填する際にはバルブ12,1
3及び21は勿論、バルブ22,23及び24も閉じら
れている。発酵槽1内に発酵開始用の醪を充填した後、
電動機4を作動させ攪拌軸3を通じて攪拌翼2を回転さ
せ、醪を攪拌しつつ蛇管10に温水もしくは水蒸気を通
して25〜35゜Cの間の所定の温度に加温する。
In the present invention, first, alcohol, water,
The mash for starting fermentation prepared using acetic acid fermentation liquid or acetic acid and nutrients for acetic acid bacteria is filled. Here, as the acetic acid fermentation liquid, a suitable moromi obtained by acetic acid fermentation, such as lees vinegar mash after completion of fermentation, is used, and as nutrients for acetic acid bacteria, for example, sake lees infusion, yeast factory scratches, sugars, inorganic salts, etc. , organic acids, etc. are used. In addition, when filling the moromi for starting fermentation, the valves 12, 1
Not only valves 3 and 21 but also valves 22, 23 and 24 are closed. After filling fermentation tank 1 with moromi for starting fermentation,
The electric motor 4 is operated to rotate the stirring blades 2 through the stirring shaft 3, and while stirring the mash, hot water or steam is passed through the cork tube 10 and heated to a predetermined temperature between 25 and 35°C.

醪の温度が所定の温度にまで達した後は温調計を作動さ
せ、以後は25〜35℃間の所定の温度に加温もしくは
冷却を適宜加えつつ保持する。
After the temperature of the moromi reaches a predetermined temperature, a temperature controller is activated, and thereafter, the predetermined temperature is maintained at 25 to 35° C. by heating or cooling as appropriate.

しかる後に空気導入管5及び散気管6を通じて毎分醪量
に対して5〜30%の空気を醪中に通気する。空気はコ
ンプレッサー28を作動させることによつて得られ、減
圧バルブ32によつて適正な圧力(例えば1〜2k91
cIt)に減圧された後、流量計30により前記の如き
適正な流量に調整され空気導入管5及び散気管6を通じ
て供給される。なおこの発酵開始時点ではバルブ33及
び減圧バルブ34は閉じて酸素ガスは使用しない方が経
済的である。そして醪から分離した空気は排出管7より
排気されるようにする。かくして醪に充分酸素がゆき渡
つた後、酢酸菌を接種する。この場合、少なくとも目的
とする高い酢酸濃度や高い温度て発酵可能な酢酸菌を接
種するのが適当である。接種方法については特に限定は
なく従来公知の接種手段で行なうことができる。このよ
うにして酢酸菌を接種した醪は通常醪量に対して毎分5
〜30%の通気量及び25〜35℃の温度で通気攪拌を
行なつていると、酢酸菌が増殖し発酵が開始され、醪中
のアルコールが酢酸に変換されて酢酸濃度が上昇してゆ
く。
Thereafter, 5 to 30% air is aerated into the mash through the air introduction pipe 5 and the aeration pipe 6 per minute based on the mash content. Air is obtained by operating the compressor 28 and controlled by the pressure reducing valve 32 to an appropriate pressure (for example, 1 to 2 k91).
After the pressure is reduced to cIt), the flow rate is adjusted to the appropriate flow rate as described above by the flow meter 30, and the air is supplied through the air introduction pipe 5 and the air diffuser pipe 6. Note that at the start of this fermentation, it is more economical to close the valve 33 and the pressure reducing valve 34 and not use oxygen gas. The air separated from the moromi is then exhausted from the exhaust pipe 7. After sufficient oxygen has been distributed to the moromi in this way, acetic acid bacteria are inoculated. In this case, it is appropriate to inoculate at least acetic acid bacteria that can ferment at the desired high acetic acid concentration and high temperature. There are no particular limitations on the inoculation method, and conventionally known inoculation means can be used. The moromi that has been inoculated with acetic acid bacteria in this way is
When aeration and stirring are performed at ~30% aeration volume and a temperature of 25 to 35°C, acetic acid bacteria proliferate and fermentation begins, and the alcohol in the moromi is converted to acetic acid, increasing the acetic acid concentration. .

そこで発酵が進行し醪の酢酸濃度が充分上がつたところ
で、連続発酵法の場合には原料醪投入管8より原料醪を
発酵槽1内へ例えば定量ポンプまたは落差などを利用す
るというような公知手段で定量的にかつ連続的に投入す
る。
When the fermentation progresses and the acetic acid concentration of the moromi has sufficiently increased, in the case of a continuous fermentation method, the raw material moromi is fed into the fermentation tank 1 from the raw material moromi input pipe 8 using a metering pump or a head, for example. Input quantitatively and continuously by means of means.

原料醪としては、アルコール、水、酢酸発酵液または酢
酸、及び酢酸菌の栄養物を用いて調製した醪が用いられ
る。
As the raw material moromi, a moromi prepared using alcohol, water, an acetic acid fermentation liquid or acetic acid, and nutrients for acetic acid bacteria is used.

そして酢酸発酵液及び酢酸菌の栄養物は発酵開始用の醪
について述べたと同様のものが用いられる。原料醪が定
量的にかつ連続的に発酵槽1内に投a入されてゆくと、
発酵槽1内の醪の量が次第に増し醪の液位が高くなつて
くる。
The acetic acid fermentation liquid and the nutrients for the acetic acid bacteria used are the same as those described for the moromi for starting fermentation. When the raw material moromi is quantitatively and continuously put into the fermenter 1,
The amount of moromi in the fermenter 1 gradually increases, and the liquid level of the moromi becomes higher.

そこで醪取出管9のバルブ12を開いて発酵槽1内の醪
を醪取出管9を通じて溢れ出させ、溢れ出た醪は貯蔵タ
ンク25で受けるようにできており、それによつて発酵
槽1内の醪の液量を調節する。このようにして連続発酵
法により食酢を製造するのであるが、本発明においては
強制的に醪中の酢酸菌濃度を高め生産速度を向上させる
ために、連続発酵中にバルブ21,22及び23を開き
醪ノ循環ポンプ14を運転して発酵槽1内の醪を醪排出
管11より取り出し、バイブ16及び17を通じて限外
枦過装置15に送り込み、醪を枦過して清澄醪と酢酸菌
濃縮醪とに戸別して酢酸菌濃縮醪の方は元の発酵槽1内
へ還元するという操作を加えるのである。
Therefore, the valve 12 of the moromi extraction pipe 9 is opened to allow the moromi in the fermenter 1 to overflow through the mortar extraction pipe 9, and the overflowing moromi is received in the storage tank 25. Adjust the amount of liquid in the moromi. In this way, vinegar is produced by the continuous fermentation method. In the present invention, valves 21, 22, and 23 are closed during continuous fermentation in order to forcibly increase the concentration of acetic acid bacteria in the moromi and improve the production rate. The open moromi circulation pump 14 is operated to take out the mash in the fermenter 1 from the mash discharge pipe 11, and the mash is sent to the ultra-filtration device 15 through the vibrators 16 and 17, where the mash is filtered to produce clear mash and acetic acid bacteria concentration. An operation is added in which the moromi and moromi are separated and the acetic acid bacteria concentrated moromi is returned to the original fermentation tank 1.

なお、清澄醪は限外淵過装置15から清澄醪排出管19
を通じて貯蔵タンク26へ排出される。
In addition, the clarified moromi is passed from the ultrafiltration device 15 to the clarified moromi discharge pipe 19.
It is discharged to the storage tank 26 through.

バルブ21,22及び23は醪の循環速度及び限外枦過
装置15のろ過膜にかけるろ過圧力を調整するために開
き具合を加減する。醪の循環速度としては発酵槽1内よ
り醪が取り出されてから循環ポンプ14及び限外ろ過装
置15を経て酢酸菌濃縮醪となつて再びもとの発酵槽1
内へ還元されるまでの時間が1分以内となるように調整
する。また枦過圧力は通常1〜2k91cT1程度に保
持させるように調整する。このようにして限外ろ過装置
15によつて醪が沖過され清澄醪が取り出されてくるが
、この取り出し流速すなわち枦過速度が発酵槽1への原
料醪の投入速度よりも大きいと発酵槽1内の醪の量は次
第に減少し、ついには醪がほとんどなくなつて空の状態
になつてしまう。
The opening degree of the valves 21, 22, and 23 is adjusted to adjust the circulation speed of the mash and the filtration pressure applied to the filtration membrane of the ultrafiltration device 15. The circulation speed of the moromi is that after the moromi is taken out from the fermenter 1, it passes through the circulation pump 14 and the ultrafiltration device 15, becomes acetic acid bacteria concentrated moromi, and then returns to the original fermenter 1.
Adjust so that the time it takes to return to the inside is within 1 minute. Further, the overpressure is normally adjusted to be maintained at about 1 to 2k91cT1. In this way, the ultrafiltration device 15 filters the moromi and takes out the clarified moromi, but if the extraction flow rate, that is, the overspeed, is greater than the rate at which raw material moromi is introduced into the fermenter 1, the fermenter The amount of moromi in 1 gradually decreases until it is almost empty and becomes empty.

従がつて限外ろ過装置15の沖過速度は原料醪の投入速
度以下になるようにし、醪の排出速度が足りずに醪の液
位を上昇させようとする分は醪排出管9より発酵槽1外
に溢れ出させて醪の液位を一定に保つようにする。なお
、どうしても原料醪投入速度よりろ過速度が大きい場合
は、醪の液位をほぼ一定とするために限外沖過装置15
によるろ過を断続的に実施する。すなわち限外淵過装置
15によつて醪をろ過して清澄醪を取り出していると、
原料醪の投入速度の方が小さいため次第に発酵槽1内の
醪が少なくなつてくるが、限界まで醪量が少なくな・つ
たところで沖過を止め、原料醪の流加によつて再びもと
の醪量に回復してくるのを持ち、回復したところでろ過
を再関し、さらに醪量が減少しすぎたらまたろ過を止め
るというようにしてほぼ一定の醪量すなわち液位を確保
する。以上の点に留意して限外淵過装置15により醪を
沖過し酢酸菌濃縮醪を得て発酵槽1内へ還元することを
継続することにより発酵槽1内の醪中の酢酸菌濃度は次
第に高くなり、ついには使用発酵装置で得られる最高の
酸素供給能に見合う酢酸菌濃度に到達する。
Therefore, the overspeed of the ultrafiltration device 15 is set to be less than the input speed of the raw material mash, and the portion of the mash that is not discharged at an insufficient speed and the liquid level of the mash is to be raised is discharged from the fermentation pipe 9. The liquid level of the moromi is kept constant by overflowing to the outside of tank 1. In addition, if the filtration speed is unavoidably higher than the feeding speed of the raw material, the ultra-low filtration device 15 is used to keep the liquid level of the moromi almost constant.
Perform filtration intermittently. That is, when the clarified moromi is extracted by filtering the moromi using the ultrafiltration device 15,
Since the input speed of the raw mash is slower, the mash in the fermenter 1 gradually decreases, but when the mash reaches its limit, the overflow is stopped and the raw mash is added again to restore the original mash. When the mash volume recovers, filtration is performed again, and when the mash volume decreases too much, filtration is stopped again, thereby ensuring a nearly constant mash volume, or liquid level. Keeping the above points in mind, by continuing to filter the moromi using the ultrafiltration device 15 to obtain acetic acid bacteria-concentrated moromi and return it to the fermenter 1, the concentration of acetic acid bacteria in the moromi in the fermenter 1 can be increased. gradually increases, and finally reaches a concentration of acetic acid bacteria that corresponds to the highest oxygen supply capacity available in the fermenter used.

このような状態では、もはや酢酸菌濃度をそれ以上高め
ても酢酸菌にとつては酸素が不足する状態であり、従が
つて生産速度もこれ以上は向上しなくなる。このような
状態では、醪中への酸素溶解速度よりも酢酸菌による酸
素消費能の方が大きく、溶解した酸素は直ちに酢酸菌に
よつて消費されているので、この時点で溶存酸素計35
及びセンサー36を作動させて発酵槽1内の溶存酸素濃
度を測定するとほとんどゼロに近くなつているのがわか
る。
In such a state, even if the acetic acid bacteria concentration is increased any further, the acetic acid bacteria will be in a state of insufficient oxygen, and the production rate will therefore no longer be improved. In such a state, the oxygen consumption ability of acetic acid bacteria is greater than the rate of oxygen dissolution into the mortar, and the dissolved oxygen is immediately consumed by acetic acid bacteria, so at this point, the dissolved oxygen meter 35
When the sensor 36 is activated and the dissolved oxygen concentration in the fermenter 1 is measured, it is found that it is almost zero.

本発明では、酢酸菌の活性を低下させる恐れのあるこの
ような醪中の溶存酸素がゼロ近くであるような状態とな
る以前に、好ましくは0.2ppm以下とならないうち
に酸素ボンベ29より酸素ガスの供給を開始し酸素濃度
を高めた空気を通気することにより、醪中への酸素溶解
速度を高めてやるのである。
In the present invention, oxygen is added from the oxygen cylinder 29 before the dissolved oxygen in the moromi approaches zero, which may reduce the activity of acetic acid bacteria, and preferably before it reaches 0.2 ppm or less. By starting the supply of gas and aerating air with increased oxygen concentration, the rate of oxygen dissolution into the moromi is increased.

このようにして、限外枦過装置を用いることにより向上
した酢酸菌の酸素消費速度に充分応じてやることによつ
て従来達成することのできなかつた非常に高い生産速度
を達成することができるのである。
In this way, by fully matching the oxygen consumption rate of acetic acid bacteria that has been improved by using the ultrafiltration device, it is possible to achieve a very high production rate that could not be achieved conventionally. It is.

酸素ガスを供給するには、まず減圧バルブ34より適正
な圧力(例えば1〜2kgIc71f)にまで減圧した
後、バルブ33を開き流量計31を用いて適正な流量に
調節しつつ通気することになるが、この場合コンプレッ
サー28からの空気も同時に通気されており、酸素ボン
ベ29からの酸素ガスは空気導入管5の途中で空気と混
合されて散気管6に通気されることになる。
To supply oxygen gas, first, the pressure is reduced to an appropriate pressure (for example, 1 to 2 kgIc71f) using the pressure reducing valve 34, and then the valve 33 is opened and the flow rate is adjusted to an appropriate flow rate using the flow meter 31 for ventilation. However, in this case, the air from the compressor 28 is also vented at the same time, and the oxygen gas from the oxygen cylinder 29 is mixed with air in the middle of the air introduction pipe 5 and vented to the aeration pipe 6.

空気と酸素ガスの流量及びそれらの混合比は発酵槽1内
の醪中の酢酸菌の酸素消費速度に応じて変化させるので
あり、限外ろ過装置15により醪をろ過し酢酸菌濃縮醪
を得て発酵槽1内へ還元することをさらに継続してゆけ
ば、発酵槽1内の醪中の酢酸菌濃度はますます増大し、
酸素消費速度もそれにともなつて増大し、一旦高くなり
つつあつた溶存酸素濃度が低下し始めるので、それ以後
も上記と同様醪中の溶存酸素濃度が0.2ppm以上を
維持するように、溶存酸素計35によつて醪中の溶存酸
素濃度を測定しつつ、酸素ガスの流量を増して空気との
混合比を高めて醪中への酸素溶解速度を高めるようにす
る。
The flow rate of air and oxygen gas and their mixing ratio are changed according to the oxygen consumption rate of the acetic acid bacteria in the moromi in the fermenter 1, and the mortar is filtered by an ultrafiltration device 15 to obtain acetic acid bacteria concentrated moromi. If the reduction into the fermenter 1 is continued, the concentration of acetic acid bacteria in the moromi in the fermenter 1 will further increase.
The oxygen consumption rate increases accordingly, and the dissolved oxygen concentration, which had once been high, begins to decrease. While measuring the concentration of dissolved oxygen in the mash using the oxygen meter 35, the flow rate of oxygen gas is increased to increase the mixing ratio with air to increase the rate of oxygen dissolution into the mash.

なお、酸素溶解速度をさらに向上させねばならないよう
な場合には、コンプレッサー28からの空気はバルブ3
2を閉じて全く使用せず酸素ボンベ29からの酸素ガス
のみを通気するようにしてもよく、このような場合にも
発酵槽1内の醪中の溶存酸素濃度を0.2ppm以上に
保つことは前記と同様である。
Note that if it is necessary to further improve the oxygen dissolution rate, the air from the compressor 28 is transferred to the valve 3.
2 may be closed and not used at all, and only oxygen gas from the oxygen cylinder 29 is vented. Even in such a case, the dissolved oxygen concentration in the moromi in the fermenter 1 must be maintained at 0.2 ppm or more. is the same as above.

いずれにせよ、限外p過装置15による発酵槽1内の醪
中の酢酸菌の濃縮度合と酸素ガス及び空気の流量と混合
比とによつて生産速度が決定されるのであり、目的とす
る高いある一定の生産速度が達成されたあかつきには、
目的とする高い酢酸濃度や高い温度で限外ろ過による酢
酸菌の再利用を実施しなくても一応連続発酵が可能であ
る場合、すなわち僅かでも発酵は勿論増殖がある場合に
は、このような限外ろ過装置による泪過を加えても生産
速度が向上しないような状態に達すれば一旦限外p過を
中断してそのまま通常の連続発酵を継続し、ある程度生
産速度が低下してからまた限外ろ過を再関し、さらに限
外ろ過の中断、そして再開というように断続的に限外淵
過を行なつてほぼ最高の生産能を維持させるのが望まし
いし、このように限外ろ過を中断した場合も酸素含有量
を高めた空気の通気は醪中の溶存酸素濃度が0.2pp
m以上を維持するように調節されつつ継続するのである
In any case, the production rate is determined by the degree of concentration of acetic acid bacteria in the fermenter 1 by the ultrapolar filtration device 15, the flow rate of oxygen gas and air, and the mixing ratio. Once a certain high production rate has been achieved,
If continuous fermentation is possible without reusing acetic acid bacteria by ultrafiltration at the desired high acetic acid concentration or high temperature, in other words, if there is even a small amount of fermentation or proliferation, such a method is recommended. If a state is reached where the production rate does not improve even with the addition of filtration using an ultrafiltration device, the ultrap-filtration is temporarily interrupted and normal continuous fermentation is continued, and once the production rate has decreased to a certain extent, the production rate is increased again. It is desirable to perform ultrafiltration intermittently by restarting ultrafiltration, then interrupting and restarting ultrafiltration, in order to maintain almost the maximum productivity. Even in this case, aeration of air with increased oxygen content will reduce the dissolved oxygen concentration in the moromi to 0.2pp.
It continues while being adjusted to maintain m or more.

また目的とする高い酢酸濃度や高い温度で発酵は行なう
が増殖しないような場合は、それより低い酢酸濃度や温
度でその酢酸菌を増殖させつつ限外枦過による酢酸菌の
濃縮及び酸素含有量を高めた空気の通気を行つて酢酸菌
濃度を充分高めてから目的とする高い酢酸濃度や高い温
度に移行し、その際には醪取出管9のバルブ12は止め
て限外沖過装置15による淵過を加えつつ原料醪の投入
量に見合つた分の醪を清澄醪として清澄醪排出管19よ
り取り出し、酢酸菌は全く発酵系より出さすに高い生産
能を維持しつつ発酵を継続させるという方法も可能であ
るし、この場合も0.2ppm以上の溶存酸素濃度を維
持するように酸素含有量を高めた空気を通気することは
前記と同様である。
In addition, if fermentation is carried out at the desired high acetic acid concentration or high temperature but does not grow, the acetic acid bacteria may be grown at a lower acetic acid concentration or temperature, and the acetic acid bacteria may be concentrated and the oxygen content reduced by ultrafiltration. After the acetic acid bacteria concentration is sufficiently increased by aeration of air with increased acetic acid concentration, the desired high acetic acid concentration and high temperature are achieved. At this time, the valve 12 of the mortar removal pipe 9 is closed and the ultraviolet filtration device 15 is turned on. The amount of moromi corresponding to the input amount of raw material moromi is taken out from the clarified moromi discharge pipe 19 as clarified moromi, and the acetic acid bacteria are completely removed from the fermentation system. Fermentation is continued while maintaining high productivity. This method is also possible, and in this case as well, air with an increased oxygen content is aerated so as to maintain a dissolved oxygen concentration of 0.2 ppm or more, as described above.

なお上記のようにして得られた貯蔵タンク25中の醪は
p過、殺菌して食酢製品とし、また貯蔵タンク26中の
清澄醪は必要な場合に殺菌して食酢製品とする。以上の
如き操作で限外p過装置を用いた通気発酵で連続発酵法
による食酢の製造が行なわれるが、一方半連続発酵法の
場合も連続発酵法とほぼ同様の操作で実施される。
The moromi in the storage tank 25 obtained as described above is subjected to p-filtration and sterilized to produce a vinegar product, and the clarified moromi in the storage tank 26 is sterilized if necessary to produce a vinegar product. Vinegar is produced by the continuous fermentation method through aerated fermentation using an ultrapolar filtration device in the manner described above, but in the case of the semi-continuous fermentation method, the operations are almost the same as the continuous fermentation method.

通気発酵て半連続発酵法の場合も発酵開始用の醪を発酵
槽1に充填し、攪拌し、所定の温度まで加温した後、通
気を開始し、そして酢酸菌を接種して発酵を開始させる
が、その後発酵が進行し酢酸濃度が目的の濃度にまで上
昇してきた時に通常約半量の醪を通気攪拌を中断するこ
となく発酵槽1の醪排出管11より取り出してほぼ同量
の原料醪を原料醪投入管8より投入する。
In the case of semi-continuous fermentation using aerated fermentation, the fermentation tank 1 is filled with moromi to start fermentation, stirred and heated to a predetermined temperature, then aeration is started, and acetic acid bacteria are inoculated to start fermentation. However, when the fermentation progresses and the acetic acid concentration rises to the target concentration, usually about half of the mash is taken out from the mash discharge pipe 11 of the fermenter 1 without interrupting aeration and stirring, and approximately the same amount of raw mash is extracted. is introduced from the raw material moromi injection pipe 8.

従がつて発酵槽1内の醪の酢酸濃度は発酵開始時には低
く、次第に発酵が進行するにつれて高くなり、醪取り出
し時に最高となる。
Therefore, the acetic acid concentration of the moromi in the fermenter 1 is low at the start of fermentation, gradually increases as fermentation progresses, and reaches its maximum when the moromi is taken out.

そして醪を取り出し、原料醪を発酵槽1に充填した直後
はまた最低となり、再び発酵の進行につれて高くなり醪
取り出し時に最高となるというサイクルを繰り出す。
Immediately after the fermentation tank 1 is filled with the raw material moromi after the moromi is taken out, the temperature is at its lowest level, and as the fermentation progresses, it rises again until it reaches the highest level when the moromi is taken out, and a cycle continues.

この間、酢酸菌は酢酸濃度の低い状態から増殖を開始し
、同時に発酵を行なつて酢酸濃度を高めつつ増殖を継続
して行く。また醪中のアルコール濃度は一般に原料醪充
填直後が最も高く、発酵が進行するにつれてアルコール
が酢酸に変換されるために少なくなつて行き、醪取り出
し時に最少となる。このような形態で発酵が継続される
半連続発酵法の場合には、限外ろ過装置15を用いた醪
の?ろ過はなるべく醪取り出し時に実施するのが好まし
い。
During this time, the acetic acid bacteria begin to proliferate from a state where the acetic acid concentration is low, and simultaneously perform fermentation to increase the acetic acid concentration while continuing to proliferate. Additionally, the alcohol concentration in the moromi is generally highest immediately after filling the raw moromi, and decreases as fermentation progresses as alcohol is converted to acetic acid, reaching its lowest level when the moromi is taken out. In the case of a semi-continuous fermentation method in which fermentation continues in this manner, the ultrafiltration device 15 is used to filter the moromi. It is preferable to carry out filtration at the time of taking out the moromi.

さもないと、目的とする酢酸濃度にまで達していず、逆
にアルコール濃度が高い醪が限外沖過装置15より、清
澄化されて排出されてくることになり、このような清澄
醪は酢酸濃度及びアルコール濃度が食酢製品とするには
共に不適格であり、好ましくないからである。なお、限
外ろ過装置15を用いて醪をP過し清澄醪を貯蔵タンク
26へ排出すること、及び酢酸菌濃縮醪を発酵槽1へ還
元して酢酸菌を再利用する要領は半連続発酵法の場合も
前記の連続発酵法の場合と同様である。
Otherwise, the mash that has not reached the desired acetic acid concentration and has a high alcohol concentration will be clarified and discharged from the ultraviolet filtration device 15. This is because the concentration and alcohol concentration are both inappropriate and undesirable for use as a vinegar product. Note that the process of filtering the mash using the ultrafiltration device 15 and discharging the clear mash to the storage tank 26, and returning the acetic acid bacteria concentrated mash to the fermentation tank 1 to reuse the acetic acid bacteria is semi-continuous fermentation. The same applies to the continuous fermentation method described above.

しかし半連続発酵法で食酢を製造する場合は、なるべく
取り出す醪のアルコール濃度が低くかつ酢酸濃度は高い
状態であるのが好ましいのであるが、その反面酢酸菌は
ある程度以下のアルコール濃度(例えばO」容量%)に
なると、増殖は勿論゜発酵すらもほとんど行なわなくな
ることがあるので、発酵槽1内の醪の取り出しはなるべ
く短時間で行ないたいという事情がある。
However, when producing vinegar using a semi-continuous fermentation method, it is preferable that the alcohol concentration of the moromi to be taken out is as low as possible and the acetic acid concentration is high. % by volume), not only growth but also hardly any fermentation takes place, so it is desirable to take out the moromi in the fermenter 1 in as short a time as possible.

この場合、適当に大きな泊過速度を持つ限外p過装置を
用いるのが好ましいが、設備した限外ろ過装置では所定
の時間内に所定量の醪を発酵槽1より排出し枦過しきれ
ない場合がでてくる。このような場合には、バルブ24
を開いて醪の取り出しに許容される時間内にろ過しきれ
ない分の醪は醪排出管20を通じて貯蔵タンク27に排
出するのである。このようにして醪取り出し時に本来発
酵槽1外に醪と共に排出されるはずの酢酸菌を限外ろ過
装置15を用いて醪から淵別して酢酸菌濃縮醪のかたち
で発酵槽1内へ還元して再利用することにより限外沖過
装置15を用いない場合よりも発酵槽1内の醪中の酢酸
菌濃度を高めることができ、従がつて高い酢酸濃度や高
い温度等により抑制された酢酸菌の増殖活性や発酵能を
補つて高い生産速度て半連続発酵を実施することが可能
となる。
In this case, it is preferable to use an ultrafiltration device with a suitably large overrate; however, the installed ultrafiltration device is capable of discharging a predetermined amount of mash from the fermenter 1 within a predetermined period of time. There will be cases where this is not the case. In such a case, valve 24
The amount of moromi that cannot be filtered within the time allowed for opening and removing the moromi is discharged to the storage tank 27 through the mortar discharge pipe 20. In this way, the acetic acid bacteria that would normally be discharged out of the fermenter 1 together with the moromi when the moromi is taken out are separated from the mortar using the ultrafiltration device 15 and returned to the fermenter 1 in the form of acetic acid bacteria concentrated moromi. By reusing the ultraviolet filtration device 15, the concentration of acetic acid bacteria in the moromi in the fermenter 1 can be increased compared to when the ultraviolet filtration device 15 is not used. It becomes possible to carry out semi-continuous fermentation at a high production rate by supplementing the growth activity and fermentation ability of .

なお、限外p過装置15を利用して発酵槽1内の醪中の
酢酸菌濃度を高くすれはする程生産速度は向上するので
あるが、半連続発酵法の場合も連続発酵法の場合と同様
使用した発酵装置で得られる最高の酸素供給能によつて
生産速度の向上には限界が存在するわけであり、最高の
生産速度が得られる程の酢酸菌濃度に到達した時には、
醪中の溶存酸素濃度を測定するとほとんどゼロ近くにな
つているのがわかる。そこで前記の連続発酵法の場合と
同様に、好ましくは溶存酸素濃度が0.2ppm以下と
ならないうちに酸素ボンベ29より酸素ガスの供給を開
始し酸素濃度を高めた空気を通気する。
Note that the higher the concentration of acetic acid bacteria in the moromi in the fermenter 1 using the ultrapolar filtration device 15, the higher the production rate, but in both the semi-continuous fermentation method and the continuous fermentation method Similarly, there is a limit to improving the production rate depending on the maximum oxygen supply capacity that can be obtained with the fermentation equipment used, and when the concentration of acetic acid bacteria is reached to the extent that the maximum production rate can be obtained,
When we measure the dissolved oxygen concentration in the moromi, we find that it is almost zero. Therefore, as in the case of the continuous fermentation method described above, supply of oxygen gas from the oxygen cylinder 29 is preferably started before the dissolved oxygen concentration becomes 0.2 ppm or less, and air with increased oxygen concentration is aerated.

そして以下、空気と酸素ガスの流量及びそれらの混合比
を醪中の酢酸菌による酸素消費速度に応じて変化させ醪
中の溶存酸素濃度が0.2ppm以上を維持するように
溶存酸素計35によつて醪中の溶存酸素濃度を測定しつ
つ、酸素ガスの流量を増し空気との混合比を高めて醪中
への酸素溶解速度を高めることも、また酸素ガスを供給
する要領も前記の連続発酵法の楊合と同様である。そし
て限外ろ過装置15による発酵槽1内の醪中の酢酸菌の
濃縮度合と酸素ガス及び空気の流量と混合比によつて生
産速度が決定されるのであり、目的とするある一定の生
産速度が達成されたあかつきには、その生産速度ないし
は酢酸菌濃度を維持できるような程度で限外枦過を加え
れば良く、1つのサイクルで限外枦過を実施して酢酸菌
濃度及び生産速度を限界まで高めたならば、次のサイク
ルでは限外淵過の実施をやめ、また生産能が低下し始め
たことが認められるようになれば再びそのサイクルで限
外淵過を実施するとかして適宜限外ろ過を実施すること
によりほぼ最高の生産能を維持することもできるし、こ
の場合も0.2ppm以上の溶存酸素濃度を維持するよ
うに酸素含有量を高めた空気を通気することは連続発酵
法の場合と同様である。
Then, the flow rate of air and oxygen gas and their mixing ratio are changed according to the oxygen consumption rate by the acetic acid bacteria in the moromi, and the dissolved oxygen meter 35 is adjusted so as to maintain the dissolved oxygen concentration in the moromi at 0.2 ppm or more. Therefore, while measuring the dissolved oxygen concentration in the moromi, it is possible to increase the flow rate of oxygen gas and increase the mixing ratio with air to increase the rate of oxygen dissolution into the moromi, and the method of supplying oxygen gas can also be done in the same manner as described above. It is similar to the fermentation method Yanghe. The production rate is determined by the degree of concentration of acetic acid bacteria in the fermentation tank 1 by the ultrafiltration device 15, the flow rate and mixing ratio of oxygen gas and air, and the production rate is determined at a certain target production rate. Once this has been achieved, it is sufficient to add ultra-filtration to the extent that the production rate or acetic acid bacteria concentration can be maintained. Once the limit has been reached, ultra-deep filtration will be stopped in the next cycle, and if it is recognized that the production capacity has begun to decline, ultra-deep filtration will be carried out again in that cycle as appropriate. Almost maximum productivity can be maintained by carrying out ultrafiltration, and in this case as well, continuous aeration of air with increased oxygen content is necessary to maintain a dissolved oxygen concentration of 0.2 ppm or more. The same is true for the fermentation method.

なお上記のようにして得られた貯蔵タンク27中の醪は
枦過、殺菌して食酢製品とし、また貯蔵タンク26中の
清澄醪は必要な場合に殺菌して食酢製品とする。
The moromi in the storage tank 27 obtained as described above is filtered and sterilized to produce a vinegar product, and the clarified moromi in the storage tank 26 is sterilized if necessary to produce a vinegar product.

このように通気発酵で連続発酵法または半連続発酵法に
より食酢を製造する際に限外酒過装置を用いて醪をp過
し、その際得られる酢酸菌濃縮醪をもとの発酵タンクに
還元して醪中の酢酸菌濃度を高める一方、発酵槽内の醪
中の溶存酸素濃度が0.2ppm以上を維持するように
酸素を用いて酸素含有量を高めた空気を通気することに
より高い酢酸濃度や高い温度て抑制されている生産能を
高めることが可能であるが、その際もとの発酵槽中に還
元される酢酸菌の増殖活性や発酵能が失活してしまつて
いては意味が無いわけである。
In this way, when producing vinegar using the continuous or semi-continuous fermentation method using aerated fermentation, the moromi is filtered using an ultra-filtering device, and the resulting acetic acid bacteria concentrated moromi is returned to the original fermentation tank. While increasing the concentration of acetic acid bacteria in the moromi through reduction, the concentration of dissolved oxygen in the moromi in the fermenter is maintained at 0.2 ppm or higher by aerating air with increased oxygen content. It is possible to increase production capacity, which has been suppressed by acetic acid concentration and high temperature, but in doing so, the growth activity and fermentation ability of the acetic acid bacteria that are returned to the original fermenter have been deactivated. is meaningless.

そこで本発明者等は、特に酢酸菌はその特性からして酸
素不足に対しては敏感であるので、限外沖過装置による
酢酸菌の再利用をほとんど酢酸菌に影響を与えず効率良
く実施するためにはどのような醪の循環速度であれば良
いのか、すなわち発酵槽1から取り出された醪が醪循環
ポンプ14及び限外枦過装置15を経て酢酸菌濃縮醪と
なつて・再びもとの発酵槽1内に還元されるまでの時間
をどの程度としたら良いのかを決定するために以下の如
き実験を行なつた。
Therefore, since acetic acid bacteria in particular are sensitive to oxygen deficiency due to their characteristics, the present inventors efficiently reused acetic acid bacteria using an ultraviolet filtration device with little impact on the acetic acid bacteria. In order to do this, what kind of circulation speed should be used for the moromi? In other words, the moromi taken out from the fermenter 1 passes through the mortar circulation pump 14 and the ultra-filtering device 15, becomes an acetic acid bacteria-concentrated mortar, and is recycled again. The following experiment was conducted in order to determine how much time should be taken for the fermentation tank 1 to be reduced.

すなわち80′容発酵槽1、最高揚程20m及び最高吐
出流量20′/分の醪循環ポンプ14、枦過面・積が0
.2rr1で最高p過速度が10′/時間(食酢)及び
分画分子量が約13000の限外ろ過装置15、最高使
用圧力が10k91cIiで毎分75eの送気能を持つ
コンプレッサー28、150k91cItで7ポの純酸
素を内蔵せる酸素ボンベ29等からなる図面に示しフた
ような発酵装置を用い、発酵槽1内に酒粕浸出液、アル
コール、酢酸発酵液及び水よりなり酢酸濃度及びアルコ
ール濃度がそれぞれ1重量/容量%及び5容量%に調製
した発酵開始用の醪45eを原料醪投入管8より投入し
、電動機4を作動させて攪拌軸3の先端に取り付けられ
た攪拌翼2を約700回転/分の回転速度で回転させて
醪を攪拌しつつ蛇管10内に60′Cの温水を通じて醪
を32′Cまで加温した。
That is, an 80' capacity fermenter 1, a maximum lift of 20 m, a maximum discharge flow rate of 20'/min, a mash circulation pump 14, and a filtration surface/area of 0.
.. Ultrafiltration device 15 with a maximum p overrate of 10'/hour (vinegar) at 2rr1 and a molecular weight cut-off of approximately 13,000, a compressor 28 with a maximum working pressure of 10k91cIi and an air supply capacity of 75e per minute, and a 7-point compressor with a maximum working pressure of 10k91cIi and 75e per minute. Using a fermentation device as shown in the drawing, which consists of an oxygen cylinder 29 containing pure oxygen, etc., the fermentation tank 1 contains sake lees infusion, alcohol, acetic acid fermentation liquid, and water, each having an acetic acid concentration and an alcohol concentration of 1 weight. /volume% and 5% by volume of fermentation starting fermentation fermentation fermentation paste 45e is introduced from the raw material moromi input pipe 8, and the electric motor 4 is operated to rotate the stirring blade 2 attached to the tip of the stirring shaft 3 at approximately 700 revolutions/minute. The moromi was heated to 32'C by passing warm water at 60'C into the cork tube 10 while stirring the moromi by rotating at a rotational speed of .

醪の温度が3第となつたところで以後は醪の温度を32
〜32.5℃の間に保持した。そしてコンプレッサー2
8を作動させ減圧バルブ32を開いて空気導入管5及び
散気管6より発酵槽1内の発酵開始用の醪を空気を通気
した。なお、空気は減圧バルブ32により1k91dの
圧力に、また流量計30により毎分5eの流量に調節し
て通気させた。そして充分醪に酸素が供給されたところ
で酢酸菌を接種して発酵を開始させた。
When the temperature of the moromi reaches 32, the temperature of the moromi is set to 32.
The temperature was maintained between ~32.5°C. and compressor 2
8 was activated to open the pressure reducing valve 32, and air was aerated through the air introduction pipe 5 and the aeration pipe 6 to the fermentation starting moromi in the fermentation tank 1. Note that the air was adjusted to a pressure of 1k91d using a pressure reducing valve 32 and a flow rate of 5e per minute using a flowmeter 30 for ventilation. After sufficient oxygen was supplied to the moromi, acetic acid bacteria were inoculated to start fermentation.

この場合、接種は25kt容の通気発酵槽で30℃にて
酢酸濃度が5〜5.5重量/容量%で連続発酵を行なつ
ている醪約5eを1聞′以内に発酵槽1内に移動するこ
とによつて実施した。その後、酢酸菌が増殖し発酵が進
行して醪の酢酸濃度が5重量/容量%となつたところで
酒粕浸出液、アルコール、酢酸発酵液及び水よりなり酢
酸濃度及びアルコール濃度がそれぞれ1重量/容量%及
び5容量%に調製した原料醪を原料醪投入管8より醪の
酢酸濃度が5〜5.5重量/容量%を維持するように生
産能力に応じて定量的かつ連続的に投入し、かつ醪取出
管9のバルブ12を開いて貯蔵タンク25へ醪を溢れ出
させた。
In this case, the inoculation is carried out by inoculating approximately 5e of moromi, which is continuously fermented at 30°C in a 25 kt aerated fermenter with an acetic acid concentration of 5 to 5.5% by weight/volume, into fermenter 1 within one minute. This was done by moving. After that, when the acetic acid bacteria proliferate and fermentation progresses, and the acetic acid concentration in the moromi reaches 5% by weight/volume, it is composed of sake lees infusion, alcohol, acetic acid fermentation liquid, and water, and the acetic acid concentration and alcohol concentration are each 1% by weight/volume. Quantitatively and continuously injecting the raw material moromi prepared to 5% by volume from the raw material mortar input pipe 8 according to production capacity so as to maintain the acetic acid concentration of the moromi at 5 to 5.5% by weight/volume, and The valve 12 of the mortar removal pipe 9 was opened to cause the mortar to overflow into the storage tank 25.

32〜32.5℃の発酵温度で約1週間程安定した発酵
を実施させた後、バルブ21,22及び23を開ぎ醪循
環ポンプ14を作動させて発酵槽1内の醪を発酵槽1−
バイブ16→醪循環ポンプ14→4バイブ17→限外沖
過装置15→バイブ18→発酵槽1の順に循環させ、同
時にバルブ21,22及び23の開き具合を調節しつつ
限外ろ過装置15で醪の沖過を開始した。
After stably fermenting for about one week at a fermentation temperature of 32 to 32.5°C, the valves 21, 22, and 23 are opened and the mash circulation pump 14 is activated to transfer the mash in the fermenter 1 to the fermenter 1. −
Circulate in the order of vibrator 16 → moromi circulation pump 14 → vibrator 17 → ultrafiltration device 15 → vibrator 18 → fermentation tank 1, and at the same time adjust the opening degree of valves 21, 22, and 23 with ultrafiltration device 15. The fermentation process has begun.

そしてバルブ21,22及び23の開き具合をJ加減す
ることによつて醪が発酵槽1から取り出されて醪循環ポ
ンプ14及び限外?過装置15を経て酢酸菌濃縮醪とな
つて再びもとの発酵槽1に還元されるまての時間を種々
変動させて生産能力がどのように変動するかを観察した
Then, by adjusting the opening degree of the valves 21, 22, and 23, the moromi is taken out from the fermenter 1, and the moromi circulation pump 14 and the limiter are removed. The amount of time it took for the acetic acid bacteria to pass through the filtration device 15, become a concentrated mash of acetic acid bacteria, and return to the original fermenter 1 was varied to see how the production capacity varied.

その結果を示・すと第1表のとおりである。第1表の結
果から、限外淵過装置を作動させな・い場合は2.3y
/e/時間の生産速度であつたものが、限外p過装置を
作動させて発酵槽1内の醪中の酢酸菌濃度を高めてやる
ことによつて生産速度を3.3y/l/時間と非常に高
い生産速度にまで向上させることができることがわかる
The results are shown in Table 1. From the results in Table 1, 2.3y if the ultrafiltration device is not activated.
The production rate was 3.3 y/l/hour by operating the ultrapolar filtration device and increasing the concentration of acetic acid bacteria in the moromi in the fermenter 1. It can be seen that the production speed can be increased up to a very high time.

そして3.3y/f/時間の生産速度が最高であること
から、この場合にはこの発酵装置の酸素供給能が制限因
子となつていることが推定できる。また醪の循環に要す
る時間を1分以上にすると、限外ろ過装置を作動させ醪
中の酢酸菌濃度を高めてもかえつて生産速度は低下して
しまうこともわかり、このことから限外淵過装置を作動
させて発酵槽1内の醪中の酢酸菌濃度を高める操作を加
える場合には醪の循環速度を1分以内とするのが好まし
いことがわかる。
Since the production rate of 3.3 y/f/hour is the highest, it can be inferred that the oxygen supply capacity of this fermentation apparatus is the limiting factor in this case. It was also found that if the time required for circulation of the moromi is longer than 1 minute, even if the ultrafiltration device is activated to increase the concentration of acetic acid bacteria in the moromi, the production rate will actually decrease. It can be seen that when operating the filtration device to increase the concentration of acetic acid bacteria in the moromi in the fermenter 1, it is preferable to keep the circulation speed of the moromi within 1 minute.

次に限外ろ過装置を用いて発酵槽から取り出される醪よ
り酢酸菌を分離して活性を低下させることなく発酵槽中
へ還元して発酵槽内の醪中の酢酸菌濃度を高める一方、
高濃度となつた酢酸菌の酸素消費に対応させるために酸
素を用いて酸素濃度を高めた空気を通気することにより
生産速度をよソー層向上させうることを明らかにするた
めに以下の実験及びその結果を示す。
Next, acetic acid bacteria are separated from the moromi taken out from the fermenter using an ultrafiltration device and returned to the fermenter without reducing activity, increasing the concentration of acetic acid bacteria in the moromi in the fermenter.
In order to cope with the high concentration of oxygen consumed by acetic acid bacteria, we carried out the following experiments and experiments to clarify that the production rate can be improved by aerating air with increased oxygen concentration using oxygen. The results are shown below.

すなわち前記の実験と同様に図面に示した発酵装置を用
い発酵槽1内に前記と同様の発酵開始用の醪約45eを
原料投入管8より投入し、電動機4を作動させて攪拌軸
3の先端に取り付けられた攪拌翼2を毎分約700回転
で回転させて醪を攪拌しつつ蛇管10内に60℃の温水
を通じ醪を30′Cにまで加温した。
That is, using the fermentation apparatus shown in the drawings in the same way as in the previous experiment, about 45 e of fermentation starting material was introduced into the fermentation tank 1 through the raw material input pipe 8, and the electric motor 4 was operated to turn the stirring shaft 3 on. The stirring blade 2 attached to the tip was rotated at about 700 revolutions per minute to stir the mash, and hot water at 60°C was passed through the cork tube 10 to warm the mash to 30'C.

醪の温度30℃となつたところで、以後は醪の温度を3
0〜30.5℃の間で保持し、そして前記と同様に1k
gIcItの圧力で毎分5′の通気速度で通気を開始し
て充分醪に酸素が供給されたところで酢酸菌を接種して
発酵を開始させた。
When the temperature of the moromi reaches 30℃, the temperature of the moromi should be increased to 30℃.
maintained at between 0 and 30.5°C, and heated to 1k in the same manner as above.
Aeration was started at a pressure of gIcIt at an aeration rate of 5' per minute, and when sufficient oxygen was supplied to the mash, acetic acid bacteria were inoculated to start fermentation.

この場合、接種は25k1容の通気発酵槽で30′Cに
て酢酸濃度が5〜5.5重量/容量%で連続発酵を行な
つている醪約5fを158以内に発酵槽1内に移動する
ことによつて実施した。接種後、酢酸菌が増殖し発酵が
進行して醪の酢酸濃度が5重量/容量%となつたところ
で、前記と同様の原料醪を原料醪投入管8より醪の酢酸
濃度が5〜5.5重量/容量%を維持するように生産能
力に応じて定量的かつ連続的に投入し、かつ醪取出管9
のバルブ12を開いて貯蔵タンク25へ醪を溢れ出させ
た。
In this case, the inoculation is carried out in a 25k1 aerated fermenter at 30'C with an acetic acid concentration of 5 to 5.5 wt/vol%, and approximately 5f of the mash is transferred to fermenter 1 within 158 mL. This was carried out by After inoculation, when the acetic acid bacteria proliferate and fermentation progresses until the acetic acid concentration in the moromi reaches 5% by weight/volume, the same raw material moromi as described above is poured into the raw material moromi from the raw material moromi input tube 8 so that the acetic acid concentration in the moromi is 5 to 5%. Quantitatively and continuously inputting the mortar according to production capacity to maintain 5% by weight/volume, and removing the mash from the pipe 9
The valve 12 was opened to allow the moromi to overflow into the storage tank 25.

このようにして30〜30.5℃で約1週間安定した発
酵を実施させた後、バルブ21,22及び23を開き、
醪循環ポンプ14を作動させて発酵槽1内の醪を前記と
同様にして循環させ、同時にバルブ21,22及び23
の開き具合を調節しつつ限外ろ過装置15で醪の沖過を
開始した。
After carrying out stable fermentation for about one week at 30 to 30.5°C in this way, valves 21, 22 and 23 are opened,
The moromi circulation pump 14 is operated to circulate the moromi in the fermenter 1 in the same manner as described above, and at the same time the valves 21, 22 and 23 are activated.
The ultrafiltration device 15 started filtering the moromi while adjusting the degree of opening.

この場合、醪の循環時間は約1印2となるようにした。
かくして限外ろ過を実施しつつ生産能に応じて原料醪の
投入速度を調節しながら醪の酢酸濃度が5〜5.5重量
/容量%を維持できるようにして連続発酵を継続した。
そして安定した生産が可能となつたところで溶存酸素計
35及びセンサー36を作動させて発酵槽1内の醪中の
溶存酸素濃度を測定したところ、ほとんどゼ狛近くとな
つていることがわかつた。
In this case, the circulation time of the moromi was set to about 1 mark 2.
Continuous fermentation was thus continued while carrying out ultrafiltration and adjusting the input rate of raw material moromi according to production capacity so as to maintain the acetic acid concentration in the moromi at 5 to 5.5% by weight/volume.
When stable production became possible, the dissolved oxygen meter 35 and sensor 36 were activated to measure the dissolved oxygen concentration in the mash in the fermenter 1, and it was found that it was almost at zero.

そこで限外沖過装置15による醪のろ過を継続しつつバ
ルブ33及び減圧バルブ34を開き圧力を1k91c1
1に調節し、かつ流量計31で流量を調節しつつ酸素ガ
スの供給による酸素含有量を高め−た空気の通気を開始
した。そして酸素ガスの供給による酸素含有量を高めた
空気を通気している間は溶存酸素計35及びセンサー3
6によつて発酵槽1内の醪中の溶存酸素濃度を測定し、
その値が0.2ppm以上を維持するように酸素ガスの
流量を一次第に増大させてやつた。かくして最終的には
毎分約2fの酸素ガスを供給するようにしたところで生
産速度が安定するのを待つたが、この場合は酸素ガスの
供給量を毎分約2fと一定にした時から醪中の溶存酸素
濃度は次第に低下し始めたの−で、0.2ppm以上を
維持するのが困難になりそうになつたところで限外ろ過
装置15による醪の限外ろ過を中断し、再び溶存酸素濃
度が上昇し始めると限外沖過を開始するというようにし
てほぼ安定した生産を維持させた。以上の実験の結果を
第2表に示す。第2表の結果から限外ろ過を加えること
により生産速度は向上するが、さらに酸素ガスを用いて
酸素濃度を通常の濃度よりも高めた空気を通気し、醪中
の溶存酸素濃度を0.2ppm以上に維持して発酵させ
ると生産速度を飛躍的に向上させうることがわかる。
Therefore, while continuing the filtration of the mash by the ultraviolet filtration device 15, the valve 33 and the pressure reducing valve 34 were opened to reduce the pressure to 1k91c1.
1, and while adjusting the flow rate with the flow meter 31, ventilation of air with increased oxygen content by supplying oxygen gas was started. Then, while aerating air with increased oxygen content by supplying oxygen gas, the dissolved oxygen meter 35 and sensor 3
6 to measure the dissolved oxygen concentration in the moromi in the fermenter 1,
The flow rate of oxygen gas was gradually increased so that the value was maintained at 0.2 ppm or more. In this way, we finally decided to supply oxygen gas at a rate of about 2 f/min and waited for the production rate to stabilize. The dissolved oxygen concentration in the moromi began to gradually decrease, and when it became difficult to maintain the concentration above 0.2 ppm, the ultrafiltration of the moromi using the ultrafiltration device 15 was interrupted, and the dissolved oxygen concentration was again reduced. When the concentration started to rise, the limit offshore flow was started, thereby maintaining almost stable production. The results of the above experiments are shown in Table 2. From the results in Table 2, the production rate can be improved by adding ultrafiltration, but in addition, oxygen gas is used to aerate air with a higher oxygen concentration than normal, reducing the dissolved oxygen concentration in the moromi to 0. It can be seen that if the concentration is maintained at 2 ppm or more during fermentation, the production rate can be dramatically improved.

上述したように、本発明によれば、通気発酵で連続発酵
法または半連続発酵法による食酢を製造する場合、限外
沖過装置を用いて発酵槽から取り出される醪より酢酸菌
を分離し活性を低下させることなく発酵槽内に還元して
発酵槽内の醪中の酢酸菌濃度を高める一方、高濃度とな
つた酢酸菌の酸素消費に対応させるために酸素を用いて
酸素濃度を高めた空気を通気することにより従来考えら
れなかつた程にまで生産速度を向上させることができる
ので、本発明は通気発酵による食酢の製造法としてきわ
めて有利な方法である。
As described above, according to the present invention, when producing vinegar by a continuous fermentation method or a semi-continuous fermentation method by aerated fermentation, acetic acid bacteria are separated and activated from the moromi taken out from a fermenter using an ultraviolet filtration device. While increasing the concentration of acetic acid bacteria in the moromi in the fermenter without reducing the concentration of acetic acid bacteria, we used oxygen to increase the oxygen concentration in order to cope with the increased oxygen consumption of the acetic acid bacteria. The present invention is an extremely advantageous method for producing vinegar by aerated fermentation, since the production rate can be increased to an extent that was previously unimaginable by aerating air.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 80e容発酵槽1、最高揚程20m.及ひ最高吐出流量
20e/分の醪循環ポンプ1牡ろ過面積が0.2dで最
高沖過速度が10′/時間(食酢)及び分画分子量が約
13000の限外淵過装置15、最高使用圧力が10k
91cItで毎分75′の送気能を持つコンプレッサー
28、150k91c1iで7dの純酸素を内蔵せる酸
素ボンベ29等からなる図面に示すような発酵装置を用
い、発酵槽1内へ酒粕浸出液、アルコール、酢酸発酵液
及び水よりなり酢酸濃度及びアルコール濃度がそれぞれ
2重量/容量%及び6容量%の発酵開始用の醪約45e
を原料醪投入管8を通じて充填し、電動機4を作動させ
攪拌軸3の先端に取り付けられている攪拌翼2を約70
0回転/分の回転速度で回転させて醪を攪拌した。
Example 1 80e capacity fermenter 1, maximum lifting height 20m. and an ultrafiltration device 15 with a maximum discharge flow rate of 20 e/min, a filtration area of 0.2 d, a maximum overspeed of 10'/hour (vinegar), and a molecular weight cut-off of approximately 13,000, maximum usage. pressure is 10k
Sake lees infusion, alcohol, Approximately 45e of moromi for starting fermentation, consisting of acetic acid fermentation liquid and water, with acetic acid concentration and alcohol concentration of 2% by weight/volume and 6% by volume, respectively.
is charged through the raw material mash injection pipe 8, and the electric motor 4 is operated to move the stirring blade 2 attached to the tip of the stirring shaft 3 to about 70 m
The moromi was stirred by rotating at a rotational speed of 0 revolutions/minute.

この時点ではバルブ13は勿論、バルブ12,21,2
2,23及び24も閉じておいた。またバルブ32,3
3及び34も閉じておいた。しかる後に蛇管10に約6
0℃の温水を通して醪を約33℃まで加温し、その後は
温調計を作動させて温度が33〜33.5℃に保持でき
るようにした。
At this point, not only valve 13 but also valves 12, 21, 2
2, 23 and 24 were also closed. Also valves 32, 3
3 and 34 were also closed. After that, about 6 to 10
The moromi was heated to about 33°C by passing warm water at 0°C, and then a temperature controller was operated to maintain the temperature at 33 to 33.5°C.

そしてコンプレッサー28を作動させ減圧バルブ32を
開いて空気導入管5及び散気管6より発酵槽1内の発酵
開始用の醪に空気を通気した。なお、空気は減圧バルブ
32により1k91c!iの圧力に、また流量計30に
より毎分5eの流量に調節して通気させた。このように
して、温度が33〜33.5℃で圧力が1k91cIの
空気を毎分51の通気量で通気しつつ毎分約700回転
の回転速度で攪拌しつつ発酵槽1内の醪に充分酸素がゆ
きわたつたところで、別の発酵槽で酢酸濃度5〜5.5
重量/容量%で30〜30.5゜Cの温度で連続発酵を
行なつている酢酸菌を含む醪約5eを約比秒くらいて原
料醪投入管8を通じて移動し、全醪量を約50eとなし
て接種を完了した。
Then, the compressor 28 was activated, the pressure reducing valve 32 was opened, and air was aerated through the air introduction pipe 5 and the aeration pipe 6 into the fermentation-starting mash in the fermenter 1. In addition, the air is 1k91c due to the pressure reducing valve 32! Ventilation was carried out at a pressure of 5e per minute and a flow rate of 5e per minute using a flowmeter 30. In this way, air at a temperature of 33 to 33.5°C and a pressure of 1 k91 cI is aerated at an air flow rate of 51 per minute and stirred at a rotational speed of about 700 revolutions per minute, and the fermentation tank 1 is sufficiently filled with air. Once the oxygen is flowing, the acetic acid concentration is 5 to 5.5 in another fermenter.
Approximately 5e of the mash containing acetic acid bacteria, which is undergoing continuous fermentation at a temperature of 30 to 30.5°C in weight/volume%, is transferred through the raw material mash input pipe 8 in about a ratio of seconds, and the total amount of mash is approximately 50e. The vaccination was completed.

接種完了直後の醪の酢酸濃度は2.鍾量/容量%であり
、アルコール濃度は5.熔量%であつたが、接種後23
時間目には醪の酢酸濃度は2.8重量/容量%となり、
発酵が開始していることが認められた。
The acetic acid concentration in the moromi immediately after inoculation is 2. The alcohol concentration is 5. The melt amount was %, but after inoculation it was 23%.
At the hour, the acetic acid concentration in the moromi was 2.8% by weight/volume.
It was observed that fermentation had started.

さらに接種後7S!間目には醪の酢酸濃度は6.7重量
/容量%でアルコール濃度は0.熔量%となつた。そこ
で酒粕浸出液、アルコール、酢酸発酵液及び水よりなり
酢酸濃度及びアルコール濃度がそれぞれ1重量/容量%
及び7容量%の原料醪を原料醪投入管8を通じて定量ポ
ンプを用い連続的に投入し、醪の酢酸濃度が7〜7.5
重量/容量%を維持するよう投入速度を調節した。
Furthermore, 7S after vaccination! In the middle, the acetic acid concentration in the moromi is 6.7% by weight/volume, and the alcohol concentration is 0. The melt amount was %. Therefore, it consists of sake lees infusion, alcohol, acetic acid fermentation liquid, and water, and the acetic acid concentration and alcohol concentration are each 1% by weight/volume.
and 7% by volume of the raw material moromi is continuously introduced through the raw material moromi input pipe 8 using a metering pump until the acetic acid concentration of the moromi is 7 to 7.5.
Dosing speed was adjusted to maintain weight/volume %.

なお原料醪を投入し始めると同時に醪取出管9のバルブ
12を開き発酵槽1内の醪を外の貯蔵タンク25に溢れ
出させたが、その際、醪取出管9の高さを調節して発酵
槽1内の醪の液量は常に約50eを維持できるようにし
た。このようにして醪の酢酸濃度が7〜7.5重量/容
量%でアルコール濃度が0.3〜0.喀量%を維持する
よう原料醪の投入速度を調節しつつ発酵を継続させたと
ころ、1.5y酢酸/e醪/時間の生産速度で安定した
。そこで発酵開始後約7日目にバルブ21,22、及び
23を開き、醪循環ポンプ14を作動させバイブ16,
17及び18を通じて醪を循環させると同時にバルブ2
1,22及び23の開き具合を調節し醪の循環時間が約
w秒て限外枦過装置15の枦過圧力が平均1.0k9ノ
dになるように調節して限外ろ過装置15による枦過を
開始した。
At the same time as starting to add raw material moromi, the valve 12 of the moromi take-out pipe 9 was opened to cause the moromi in the fermenter 1 to overflow into the storage tank 25 outside, but at that time, the height of the moromi take-out pipe 9 was adjusted The liquid volume of the moromi in the fermenter 1 was always maintained at about 50e. In this way, the acetic acid concentration of the moromi is 7-7.5% by weight/volume and the alcohol concentration is 0.3-0. Fermentation was continued while adjusting the input rate of the raw material moromi to maintain the stoichiometry %, and the production rate stabilized at 1.5y acetic acid/e moromi/hour. Therefore, about 7 days after the start of fermentation, the valves 21, 22, and 23 are opened, the moromi circulation pump 14 is activated, and the vibrator 16,
While circulating the moromi through 17 and 18, the valve 2
1, 22, and 23 so that the circulation time of the moromi is about w seconds and the overpressure of the ultrafiltration device 15 is 1.0 k9 nod on average. I started overdoing it.

このようにして醪循環ポンプ14により醪を循環しつつ
限外枦過装置15によつて醪を淵過して清澄醪と酢酸菌
濃縮醪とに分離し、酢酸菌濃縮醪はもとの発酵槽1内へ
還元しつつ発酵を継続させたところ、醪中の酢酸菌濃度
は次第に高くなり、それとともに生産速度も向上し始め
たので、生産速度に応じて原料醪の投入速度を大きくし
て醪の酢酸濃度が7〜7.5重量/容量%でアルコール
濃度が0.3〜0.喀量%を維持するように調節しなが
らさらに発酵を継続した。限外ろ過装置15を用いた酢
酸菌の濃縮を始めてから約6日後には生産速度は約3.
1y酢酸/′醪/時間となつた。
In this way, the moromi is circulated by the moromi circulation pump 14 and passed through the ultrafiltration device 15 to separate it into clear moromi and acetic acid bacteria-enriched moromi, and the acetic acid bacteria-enriched moromi is the original fermented moromi. When fermentation was continued while being returned to tank 1, the concentration of acetic acid bacteria in the moromi gradually increased, and at the same time, the production rate began to increase, so the input rate of raw material moromi was increased according to the production rate. The acetic acid concentration of the moromi is 7-7.5% by weight/volume and the alcohol concentration is 0.3-0. Further fermentation was continued while adjusting to maintain the % loading. Approximately 6 days after starting concentration of acetic acid bacteria using the ultrafiltration device 15, the production rate reached approximately 3.5 days.
The ratio was 1y acetic acid/'moromi/hour.

この時点で溶存酸素計35及びセンサー36を作動させ
発酵槽1内の溶存酸素濃度を測定したところ、0.2〜
0.5ppm程度となつており、このままてはもはやこ
れ以上の生産速度の向上は無理と判断された。そこで限
外沖過装置15による醪の沖過を継続しつつバルブ33
及び減圧バルブ34を開けて酸素ガスの圧力を1k91
cILとして酸素ガスの供給を開始したが、この時点で
の酸素ガスの流量は0.5e/分であつた。
At this point, the dissolved oxygen meter 35 and sensor 36 were activated to measure the dissolved oxygen concentration in the fermenter 1, and it was found to be 0.2~
It was approximately 0.5 ppm, and it was judged that it would be impossible to further increase the production speed if the situation remained as it was. Therefore, while continuing to pass the moromi using the limit passing device 15, the valve 33
and open the pressure reducing valve 34 to reduce the pressure of oxygen gas to 1k91
Supply of oxygen gas was started as cIL, and the flow rate of oxygen gas at this point was 0.5 e/min.

そして溶存酸素計35及びセンサー36を作動させて、
発酵槽1内の醪中の溶存酸素濃度を測定しつつ、その値
がほぼ0.2〜2ppm゛程度の範囲を維持するように
、限外ろ過装置15でのp過による発酵槽1内の醪中の
酢酸菌の濃縮度合に応じて、酸素ガスの流量を次第に増
大させていつた。なお、酸素ガスの供給にあたつては、
1本の酸素ボンベ中の酸素ガスが消費されつくす前に次
の酸素ガスの供給が中断しないようにして行なつた。酸
素ガスの供給を開始してから約5日目には発酵槽1で得
られる生産速度は約6.3g酢酸/e醪/時間に達し、
この時の酸素ガスの供給量は約12′/分となつた。
Then, the dissolved oxygen meter 35 and sensor 36 are activated,
While measuring the dissolved oxygen concentration in the fermentation tank 1, the concentration of dissolved oxygen in the fermentation tank 1 is controlled by the ultrafiltration device 15 to maintain the dissolved oxygen concentration in the range of approximately 0.2 to 2 ppm. The flow rate of oxygen gas was gradually increased depending on the degree of concentration of acetic acid bacteria in the moromi. In addition, when supplying oxygen gas,
This was done in such a way that the supply of the next oxygen gas was not interrupted before the oxygen gas in one oxygen cylinder was completely consumed. About 5 days after starting the supply of oxygen gas, the production rate obtained in fermenter 1 reached about 6.3 g acetic acid/e moromi/hour,
At this time, the supply rate of oxygen gas was about 12'/min.

そして酸素ガスの供給を約2e/分とし、溶存酸素計3
5及びセンサー36を作動させて、発酵槽1内の醪中の
溶存酸素濃度を測定しつつ、その値がほぼ0.2〜2p
pm程度の範囲を維持するようにするために、限外ろ過
装置15での淵過による発酵槽1内の醪中の酢酸菌の濃
縮が進み酸素の消費が増大してきて醪中の溶存酸素濃度
が0.7!Ppm以上を維持するのが困難となりかけた
ところで一旦限外ろ過装置15による醪の淵過を中断し
た。しはらくして生産速度がやや低下し発酵槽1内の醪
中の溶存酸素濃度が上昇してきて今度は2ppm以上と
なりかけたところで再び限外淵過を行ない、また約6.
3y酢酸/e醪/時間の生産速度となり発酵槽1内の醪
中の溶存酸素濃度が0.2ppm以下となりかけるころ
に限外ろ過装置15による醪の?過を中止し、さらに生
産速度が低下し発酵槽1内の醪中の溶存酸素濃度が上昇
し始めると限外p過を再関するというふうにして、酸素
ガスにより酸素含有量を高めた空気を通気しつつ発酵槽
1内の醪中の溶存酸素濃度がほぼ0.2〜2ppmの範
囲を維持するようにして平均6y酢酸/′醪/時間とい
う非常に高い生産速度で約3週間程連続発酵を継続させ
た。上記のようにして得られた貯蔵タンク25中の醪は
P過、殺菌して食酢製品とし、また、貯蔵タンク26中
の清澄醪は必要な場合に殺菌して食酢製品とする。
Then, the oxygen gas supply was set to about 2e/min, and the dissolved oxygen meter 3
5 and the sensor 36 to measure the dissolved oxygen concentration in the moromi in the fermenter 1, and check that the value is approximately 0.2 to 2p.
In order to maintain the concentration of acetic acid bacteria in the mash in the fermenter 1 through filtration in the ultrafiltration device 15, the consumption of oxygen increases, and the dissolved oxygen concentration in the mash increases. is 0.7! When it became difficult to maintain the mash at Ppm or higher, the process of passing the mash through the ultrafiltration device 15 was temporarily interrupted. After a while, the production rate slowed down a little and the dissolved oxygen concentration in the mash in the fermenter 1 rose, and when it was about to reach 2 ppm or more, ultrafiltration was performed again.
When the production rate is 3y acetic acid/e moromi/hour and the dissolved oxygen concentration in the moromi in the fermenter 1 is about to drop to 0.2 ppm or less, the ultrafiltration device 15 filters out the moromi. When the filtration is stopped and the production rate further decreases and the dissolved oxygen concentration in the mash in the fermenter 1 begins to rise, the ultrapolar filtration is restarted and the air with increased oxygen content is replaced with oxygen gas. Continuous fermentation was carried out for about 3 weeks at a very high production rate of an average of 6y acetic acid/'moromi/hour, while maintaining the dissolved oxygen concentration in the moromi in the fermenter 1 within the range of approximately 0.2 to 2 ppm while providing ventilation. continued. The moromi in the storage tank 25 obtained as described above is sterilized by P filtration to produce a vinegar product, and the clarified moromi in the storage tank 26 is sterilized if necessary to produce a vinegar product.

実施例2 実施例1に記載したと同様の図面に示すような発酵装置
を用い、発酵槽1内へ酒粕浸出液、アルコール、酢酸発
酵液及び水よりなり酢酸濃度及びアルコール濃度がそれ
ぞれ6.5重量/容量%及び2.喀量%の発酵開始用の
醪約45eを原料醪投入管8を通じて充填し、電動機4
を作動させて攪拌軸3の先端に取り付けられた攪拌翼2
を約700回転/分の回転速度て回転させて醪を攪拌し
た。
Example 2 Using a fermentation apparatus as shown in the drawing similar to that described in Example 1, a fermentation tank 1 containing sake lees infusion, alcohol, acetic acid fermentation liquid, and water with an acetic acid concentration and an alcohol concentration of 6.5 weight each. /volume% and 2. Approximately 45 e of mortar for starting fermentation is filled through the raw material mortar input pipe 8, and the electric motor 4
The stirring blade 2 attached to the tip of the stirring shaft 3
was rotated at a rotational speed of about 700 revolutions/minute to stir the moromi.

この時点ではバルブ12,13,21,22,23,2
4,32,33及び34は閉じておいた。そして蛇管1
0に約60℃の温水を通して醪を約30′Cにまで加温
し、その後は温調計を作動させて醪の温度を29.5〜
30.5℃に保持した。しかる後に、コンプレッサー2
8を作動させ減圧バルブ32を開いて空気導入管5及び
散気管6より発酵槽1内の発酵開始用の醪に空気を通気
した。なお、空気は減圧バルブ32により1k91c!
iの圧力に、また流量計30により毎分5eの流量に調
節して通気させた。このようにして、温度が29.5〜
30.5℃で圧力が1k91cI1の空気を毎分5′の
通気量で通気しつつ毎分約700回転の回転速度で攪拌
しつつ発酵槽1内の醪に充分酸素がゆきわたつたところ
で、接種を行なつた。
At this point, valves 12, 13, 21, 22, 23, 2
4, 32, 33 and 34 were closed. and snake pipe 1
Heat the moromi to about 30'C by pouring hot water at about 60°C into the oven, and then operate the temperature controller to keep the temperature of the moromi at 29.5~29.5°C.
It was maintained at 30.5°C. After that, compressor 2
8 was activated to open the pressure reducing valve 32, and air was aerated through the air introduction pipe 5 and the aeration pipe 6 into the mash in the fermentation tank 1 for the start of fermentation. In addition, the air is 1k91c due to the pressure reducing valve 32!
Ventilation was carried out at a pressure of 5e per minute and a flow rate of 5e per minute using a flowmeter 30. In this way, the temperature is 29.5 ~
While aerating air at a temperature of 30.5°C and a pressure of 1k91cI1 at an aeration rate of 5' per minute and stirring at a rotational speed of about 700 revolutions per minute, when sufficient oxygen has spread to the moromi in the fermenter 1, the inoculation is carried out. I did this.

すなわち半連続発酵法によつて発酵を行なつている別の
発酵槽より醪の酢酸濃度が約7.5重量/容量%の酢酸
菌を含む醪約5eを約10秒以内に原料醪投入管8を通
じて発酵槽1に移動して全醪量を約50′となして接種
を完了した。接種完了直後の醪の酢酸濃度は6.鍾量/
容量%でアルコール濃度は2.喀量%であつたが、接種
後17Vff間目には酢酸濃度が7.鍾量/容量%でア
ルコール濃度は1.2容量%となつた。そこでアルコー
ル濃度が約5喀量%のアルコール溶液を毎時約200m
1の速度で原料醪投入管8を通じて連続的に添加しつつ
発酵を継続させたが、酢酸濃度が14.1重量/容量%
となつた時、合計10.5eのアルコール溶液の添加を
完了し、その時醪のアルコール濃度は1.7容量%とな
つた。さらに発酵を継続させて酢酸濃度が15.鍾量/
容量%となつた時にバルブ21及び24を開け、同時に
醪循環ポンプ14を作動させて発酵槽1内の醪が約20
eとなるように醪をバイブ16,17及び20を通じて
貯蔵タンク27に取り出した。
In other words, about 5e of moromi containing acetic acid bacteria with an acetic acid concentration of about 7.5% by weight/volume is transferred from another fermentation tank in which fermentation is carried out by a semi-continuous fermentation method to the raw material moromi injecting tube within about 10 seconds. The inoculation was completed by transferring to the fermenter 1 through 8 to make the total mash to be about 50'. The acetic acid concentration in the moromi immediately after inoculation is 6. Weight/
Alcohol concentration in volume % is 2. However, at 17 Vff after inoculation, the acetic acid concentration was 7. The alcohol concentration was 1.2% by volume (volume/volume%). Therefore, an alcohol solution with an alcohol concentration of about 5% by volume is poured at a rate of about 200ml per hour.
Fermentation was continued by continuously adding raw materials through the moromi input tube 8 at a rate of 1, but the acetic acid concentration was 14.1% by weight/volume.
At this time, the addition of a total of 10.5 e of alcohol solution was completed, and the alcohol concentration of the moromi was 1.7% by volume. Further fermentation is continued until the acetic acid concentration reaches 15. Weight/
When the volume reaches %, the valves 21 and 24 are opened, and the moromi circulation pump 14 is operated at the same time, so that the moromi in the fermenter 1 reaches approximately 20%.
The moromi was taken out to the storage tank 27 through the vibrators 16, 17, and 20 so that

醪の取り出しはバルブ21及び24の開け具合を調節し
て3紛程で完了するようにし、取り出しが完了した後、
直ちに酒粕浸出液、アルコール、酢酸発酵液及び水より
なり酢酸濃度及びアルコール濃度が0.5重量/容量%
び3容量%の原料醪約30eを毎時約5′の速度て発酵
槽1に充填した。なお醪の取り出しが完了した後は醪循
環ポンプ14は勿論止め、バルブ21及び24も閉じた
。約6時間かかつて原料醪の充填を終えたが、充填直後
の醪の酢酸濃度は約6.7重量/容量%であり、アルコ
ール濃度は1.熔量%であつた。そして原料醪の充填後
約5時間目には醪の酢酸濃度は7.2重量/容量%でア
ルコール濃度は0.9容量%となつたので、ここで前記
と同様のアルコール溶液を毎時約250m1の速度で前
記と同様に添加してさらに発酵を継続させた。
The removal of the moromi is completed in 3 steps by adjusting the opening degree of the valves 21 and 24, and after the removal is completed,
Immediately made from sake lees infusion, alcohol, acetic acid fermentation liquid, and water, with acetic acid concentration and alcohol concentration of 0.5% by weight/volume.
Approximately 30 e of raw material mash of 3% by volume was charged into the fermenter 1 at a rate of approximately 5' per hour. After the removal of the moromi was completed, the mortar circulation pump 14 was of course stopped, and the valves 21 and 24 were also closed. It took about 6 hours to finish filling the raw material moromi, and the acetic acid concentration in the moromi immediately after filling was approximately 6.7% by weight/volume, and the alcohol concentration was 1. The melt amount was %. Approximately 5 hours after filling the raw material moromi, the acetic acid concentration in the moromi was 7.2% by weight/volume and the alcohol concentration was 0.9% by volume. Fermentation was further continued by adding at a rate similar to the above.

アルコール溶液の添加を開始してから約4詩間目には醪
の酢酸濃度は14.1重量/容量%でアルコール濃度が
1.喀量%、すなわち全濃度〔酢酸濃度(重量/容量%
)+アルコール濃度(容量%)〕15.7%となつたの
で、ここでアルコール溶液の添加をやめ、さらに発酵を
継続させた。そしてさらに5時間後には酢酸濃度が15
.3重量/容量%でアルコール濃度が0.4容量%とな
つたので、ここで前記と同様にして発酵槽1内に醪を2
0e残して他は取り出し、前記と同様の原料醪を30e
充填して以下前記と同様に発酵を行なわせた。
Approximately 4 minutes after starting addition of the alcohol solution, the acetic acid concentration in the moromi was 14.1% by weight/volume, and the alcohol concentration was 1.5%. Weight %, i.e. total concentration [acetic acid concentration (weight/volume %)
)+alcohol concentration (volume %)] was 15.7%, so the addition of the alcohol solution was stopped at this point, and the fermentation was continued. After another 5 hours, the acetic acid concentration was 15
.. Since the alcohol concentration was 0.4% by volume at 3% by weight/volume, 2% of the moromi was added to the fermenter 1 in the same manner as above.
Leave 0e and take out the rest, and add 30e of the same raw material moromi as above.
After filling, fermentation was carried out in the same manner as above.

このようにして酢酸濃度15重量/容量%以上となつた
時、発酵槽1内の醪を201だけ残して他は取り出し、
新たに原料醪を30e加え、更にアルコール溶液を添加
するというようにして半連続発酵を5サイクル繰り返し
たところ、平均の生産速度は発酵開始時の第1サイクル
を考慮しなければ約1.4y/e/時間となつた。
In this way, when the acetic acid concentration reached 15% by weight/volume or more, all of the moromi in the fermenter 1 was removed, leaving only 201.
When we repeated 5 cycles of semi-continuous fermentation by adding 30e of new raw material moromi and further adding alcohol solution, the average production rate was about 1.4y/y, not considering the first cycle at the start of fermentation. e/time has come.

そこで第6サイクル目以降では醪の酢酸濃度が15重量
/容量%以上となり醪を取り出す時期となつた時、バル
ブ21及び24のほかにバルブ22及び23も開き、醪
循環ポンプ14を作動させて醪をバイブ16,17及び
20を通じて貯蔵タンク27に取り出すとともに、限外
枦過装置15及び発酵槽1へ還元できるようにした。
Therefore, from the 6th cycle onward, when the acetic acid concentration in the moromi reaches 15% by weight/volume or higher and it is time to take out the moromi, the valves 22 and 23 are opened in addition to the valves 21 and 24, and the mortar circulation pump 14 is activated. The moromi was taken out to the storage tank 27 through the vibrators 16, 17 and 20, and could be returned to the ultrafiltration device 15 and the fermenter 1.

そしてこれらのバルブ21,22,23及び24の開き
具合を加減して限外ろ過装置15でのp過圧力が平均約
1.5kg1cT1でろ過速度が毎時15′となり、か
つ発酵槽1から取り出された醪が2@以内に発酵槽1へ
酢酸菌濃縮醪として還元できるような循環速度が得られ
るようにした。かくして約1時間かかつて醪を限外ろ過
しつつバイブ19より15′の清澄醪を、またバイブ2
0よりろ過しきれない分の醪約25′を取り出し、酢酸
菌濃縮醪を発酵槽1内へ還元して発酵槽1内の醪の量を
20eとなした後、限外ろ過をやめ直ちに前記と同様の
原料醪を前記と同様にして発酵槽1内の醪の全量が約5
0′となるように充填した。
Then, by adjusting the opening degree of these valves 21, 22, 23 and 24, the p overpressure in the ultrafiltration device 15 is on average about 1.5 kg 1 cT1, the filtration rate is 15'/hour, and the amount of water taken out from the fermenter 1 is adjusted. The circulation speed was such that the fermented moromi could be returned to the fermenter 1 as an acetic acid bacteria-concentrated moromi within 2 hours. In this way, for about an hour, while ultrafiltering the moromi, 15' of clear moromi was obtained from Vibe 19, and then again from Vibe 2.
Approximately 25' of the moromi that could not be filtered was taken out from 0, and the acetic acid bacteria concentrated moromi was returned to the fermenter 1 to make the amount of moromi in the fermenter 1 20e, and then the ultrafiltration was stopped and immediately the The same raw material moromi was prepared in the same manner as above until the total amount of moromi in the fermenter 1 was about 5.
It was filled so that it was 0'.

原料醪の充填後、発酵槽1内の醪の酢酸濃度は7.0重
量/容量%であり、アルコール濃度は13容量%てあつ
たが、4時間後には酢酸濃度は7.5重量/容量%とな
り、アルコール濃度は0.熔量%となつたので、ここで
前記のアルコール溶液を毎時約300m1の速度で添加
し始めた。そしてさらに発酵を継続させアルコール溶液
の添加開始後3時間目で10.5′のアルコール溶液を
添加し終えたところで酢酸濃度は14.踵量/容量%で
アルコール濃度は1.喀量%、すなわち全濃度は15.
9%となつた。さらに発酵を継続させ酢酸濃度が15.
鍾量/容量%でアルコール濃度が0.7容量%となつた
ところで前記と同様にして限外枦過を加えつつ醪の取り
出しを約1時間かかつて実施し、発酵槽1内の醪の量が
20eとなつたところで前記と同様に限外酒過及び醪の
取り出しをやめ、直ちに原料醪を前記と同様にして充填
した。
After filling the raw material moromi, the acetic acid concentration of the moromi in the fermenter 1 was 7.0% by weight/volume, and the alcohol concentration was 13% by volume, but after 4 hours, the acetic acid concentration was 7.5% by weight/volume. %, and the alcohol concentration is 0. When the melt amount reached %, addition of the alcohol solution was started at a rate of about 300 ml/hour. Then, the fermentation was further continued, and when the addition of 10.5' alcohol solution was completed 3 hours after the start of addition of alcohol solution, the acetic acid concentration was 14. The alcohol concentration is 1. The stent volume %, that is, the total concentration is 15.
It became 9%. Further fermentation is continued until the acetic acid concentration reaches 15.
When the alcohol concentration reached 0.7% by volume, the moromi was taken out for about 1 hour or more in the same manner as above while adding ultra-filtration, and the amount of moromi in the fermenter 1 was reduced. When the temperature reached 20e, the ultra-sake fermentation and removal of the mash were stopped in the same manner as above, and the raw mash was immediately filled in the same manner as above.

そして原料醪の充填後、発酵が進行し酢酸濃度が上昇し
てきたところで、アルコール溶液を醪中のアルコール濃
度が0.諸量%以下とならないようにして添加し醪の全
濃度が16%前後となつた時、アルコール溶液の添加を
やめ、さらに発酵を継続させて酢酸濃度が15重量/容
量%以上となつた時、醪中のアルコール濃度が0.3容
量%以下とならないうちに限外枦過を加えつつ醪の取り
出しを完了し、次に直ちに原料醪を充填するというよう
にして醪取り出し時に限外ろ過を加えつつ半連続発酵を
継続させた。
After filling the raw material moromi, as fermentation progresses and the acetic acid concentration increases, the alcohol solution is added until the alcohol concentration in the moromi reaches 0. When the total concentration of the moromi is around 16% by adding so as not to go below the various amount%, stop adding the alcohol solution and continue the fermentation until the acetic acid concentration reaches 15% by weight/volume or more. , Complete the extraction of the moromi while adding ultrafiltration before the alcohol concentration in the moromi becomes 0.3% by volume or less, and then immediately fill the raw moromi, and perform ultrafiltration when taking out the moromi. Semi-continuous fermentation was continued while adding

このように限外枦過を醪取り出し時に加えるようになつ
てからの各サイクルの平均生産速度は1.7y/e/時
間、2.1f1/e/時間、2.6f/e/時間という
ように次第に高くなり始めた。
In this way, the average production speed of each cycle after the addition of ultra-high filtration at the time of removing the mash was 1.7y/e/hour, 2.1f1/e/hour, and 2.6f/e/hour. It gradually started to rise.

そこで限外p過を醪取り出し時に加え始めてから4サイ
クル目において、醪の酢酸濃度が8.1重量/容量%と
なり、前記と同様にしてアルコール溶液を添加し始めた
頃から溶存酸素計35及びセンサー36を作動させて醪
中の溶存酸素濃度を測定し始めた。この測定を開始した
時点ては醪中の溶存酸素゛濃度は0.9〜1.2ppm
程度であつたが、その後発酵が進行し醪の酢酸濃度が上
昇してゆくとともに次第に溶存酸素濃度が低下してゆき
、酢酸濃度が10.種量/容量%となつたところで0.
2〜0.4ppmとなつた。この時点でバルブ33及び
減圧バルブ34を開けて酸素ガスの圧力を1kg1cI
tとして酸素ガスの供給を開始した。
Therefore, in the 4th cycle after the addition of ultrap-filtration at the time of taking out the moromi, the acetic acid concentration in the moromi became 8.1% by weight/volume, and from the time when the alcohol solution started to be added in the same manner as above, the dissolved oxygen meter 35 and The sensor 36 was activated to begin measuring the dissolved oxygen concentration in the moromi. At the beginning of this measurement, the dissolved oxygen concentration in the sake was 0.9 to 1.2 ppm.
However, as fermentation progressed and the acetic acid concentration in the moromi rose, the dissolved oxygen concentration gradually decreased until the acetic acid concentration reached 10. When the seed amount/volume % is reached, 0.
It was 2 to 0.4 ppm. At this point, open the valve 33 and pressure reducing valve 34 to reduce the pressure of oxygen gas to 1kg1cI.
At t, supply of oxygen gas was started.

酸素ガスの流量は2e/分とし、以後この流量で酸素ガ
スを供給して酸素濃度を高めた空気の通気を行ないつつ
半連続発酵を続・けた(なお本実施例では酸素ガスの流
量を一定としたが、状況によつてはこの流量を変化させ
ることもできる)。酸素ガスの供給を開始してから1叫
間目には醪の酢酸濃度は14.1重量/容量%、全濃度
16%となつたので、この時点でアルコール溶液の添加
をやめ、さらに発酵を継続させた。
The flow rate of oxygen gas was set to 2 e/min, and thereafter, semi-continuous fermentation was continued while supplying oxygen gas at this flow rate to aerate the air with increased oxygen concentration (in this example, the flow rate of oxygen gas was kept constant). (However, depending on the situation, this flow rate may be changed.) The acetic acid concentration in the moromi was 14.1% by weight/volume and the total concentration was 16% in the first minute after starting the supply of oxygen gas, so at this point, the addition of the alcohol solution was stopped and further fermentation was carried out. Continued.

そして醪の酢酸濃度が15.鍾量/容量%となつたとこ
ろで前記と同様にして限外沖過を加えつつ醪を発酵槽1
から取り出し、発酵槽1内の醪量が20eとなつたとこ
ろて限外ろ過装置15による酢酸菌の濃縮及び醪の取り
出しをやめて直ちに前記と同様の原料醪を前記と同様に
して発酵槽1内に醪の全量が50eとなるように充填し
た。そして原料醪の充填後、発酵が進行し酢酸濃度が上
昇してきたところで、アルコール溶液を醪中のアルコー
ル濃度が0.諸量%以下とならないようにして添加し、
醪の全濃度が16%前後となつた時、アルコール溶液の
添加をやめ、さらに発酵を継続させて酢酸濃度が15重
量/容量%以上となつた時、醪中のアルコール濃度が0
.3容量%以下とならないうちに限外沖過を加えつつ醪
の取り出しを完了し、次に直ちに原料醪を充填するとい
うようにして醪の取り出し時に限外p過を加えつつ前記
のように酸素濃度を高めた空気の通気を行ないながら半
連続発酵を継続させた。
And the acetic acid concentration of moromi is 15. When the mash amount/volume % is reached, the moromi is transferred to fermenter 1 while adding ultra-high filtration in the same manner as above.
When the amount of mash in the fermenter 1 reaches 20e, the concentration of acetic acid bacteria and the removal of the mash by the ultrafiltration device 15 are stopped, and the same raw mash as above is immediately poured into the fermenter 1 in the same manner as above. The total amount of moromi was 50e. After filling the raw material moromi, as fermentation progresses and the acetic acid concentration increases, the alcohol solution is added until the alcohol concentration in the moromi reaches 0. Add so that the amount does not exceed %,
When the total concentration of the moromi reaches around 16%, the addition of alcohol solution is stopped, and when the fermentation is continued and the acetic acid concentration reaches 15% by weight/volume or more, the alcohol concentration in the moromi becomes 0.
.. The extraction of the moromi is completed while adding an ultra-high filtration before the concentration becomes less than 3% by volume, and then the raw moromi is immediately filled, and when the moromi is taken out, an ultra-high filtration is applied and oxygen is added as described above. Semi-continuous fermentation was continued while aeration of concentrated air was carried out.

前記のように酸素ガスを供給して酸素濃度を高めた空気
の通気を開始してからの各サイクルの平均生産速度は3
.1y/e/時間、3.4f/l/時間、3.9y/e
/時間、4.3y/e/時間、4.5y/′/時間、4
.9y/e/時間、5.2y/e/時間、5.6y/e
/時間というように次第に高くなり始めたが、9サイク
ル目において酢酸濃度が10.5重量/容量%となつた
ところで醪中の溶存酸素が0.5〜0.7ppm程度と
なつた。
The average production rate of each cycle after supplying oxygen gas and starting ventilation of air with increased oxygen concentration as described above is 3.
.. 1y/e/hour, 3.4f/l/hour, 3.9y/e
/hour, 4.3y/e/hour, 4.5y/'/hour, 4
.. 9y/e/hour, 5.2y/e/hour, 5.6y/e
/hour, but at the 9th cycle, when the acetic acid concentration reached 10.5% by weight/volume, the dissolved oxygen in the moromi reached about 0.5 to 0.7 ppm.

その後この9サイクル目で酢酸濃度が15.5重量/容
量%となつたところで醪循環ポンプ14を作動させて発
酵槽1からの醪の取り出しを開始しようとしたが、ここ
で限外枦過装置15による醪の限外p過を加えると次の
サイクルにおいて多分醪中の溶存酸素濃度が0.2pp
m以下になつてしまうことが予想された。
Thereafter, in the ninth cycle, when the acetic acid concentration reached 15.5% by weight/volume, the mortar circulation pump 14 was operated to start taking out the mash from the fermenter 1, but at this point the ultrafiltration device If the ultrapolar filtration of the moromi by 15 is added, the dissolved oxygen concentration in the moromi will probably be 0.2pp in the next cycle.
It was expected that the value would be less than m.

従つてこの醪の取り出しの場合にはバルブ22は閉じて
しまい限外ろ過装置15による醪の限外沖過は加えなか
つた。しかし次のサイクルでは、原料醪の充填後、醪中
の酢酸濃度が上昇し15重量/容量%以上となり、醪の
取り出し及び原料醪の再充填を行なわねばならなくなつ
た時点でも醪の溶存酸素濃度が0.8〜1.0ppmく
らいであつたので、醪取り出し時に限外p過を加えた。
Therefore, when taking out the moromi, the valve 22 was closed, and the ultrafiltration of the moromi by the ultrafiltration device 15 was not applied. However, in the next cycle, after filling the raw moromi, the concentration of acetic acid in the moromi increases to 15% by weight/volume or more, and even when it is necessary to take out the moromi and refill the raw moromi, the dissolved oxygen in the moromi increases. Since the concentration was about 0.8 to 1.0 ppm, an ultrapolar filter was added when removing the mash.

このように酸素ガスを2e/分の流量で供給して酸素濃
度を高めた空気の通気を行ないつつ限外ろ過による酢酸
菌の濃縮を適宜行なつたりあるいは行なわずに醪の取り
出しを行ない、次に直ちに原料醪を充填するというよう
にして醪中の溶存酸素濃度を0.2ppm以上として半
連続発酵を行ない15重量/容量%以上の食酢の製造を
平均約4.8q/′/時間という高い生産速度で19サ
イクル継続させた。
In this way, while supplying oxygen gas at a flow rate of 2e/min to aerate the air with increased oxygen concentration, the moromi is taken out with or without concentrating the acetic acid bacteria by ultrafiltration as appropriate. Semi-continuous fermentation is carried out by immediately filling the raw material moromi with the dissolved oxygen concentration in the moromi at 0.2 ppm or more, and producing vinegar of 15% by weight/volume or more at an average rate of about 4.8 q/'/hour. It lasted 19 cycles at production speed.

このようにして得られた貯蔵タンク27中の醪は枦過、
殺菌して食酢製品とし、また貯蔵タンク中の清澄醪は必
要な場合に殺菌して食酢製品とする。
The moromi in the storage tank 27 obtained in this way is
The clarified moromi in the storage tank is sterilized and made into a vinegar product if necessary.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明で使用する装置の具体例を示す簡略断面図
てある。 1・・・・・・発酵槽、2・・・・・・攪拌翼、3・・
・・・・攪拌軸、4・・・・・・電動機、5・・・・・
・空気導入管、6・・・・・・散気管、7・・・・・・
排気管、8・・・・・・原料醪投入管、9・・・醪取出
管、10・・・・・・蛇管、11・・・・・・醪排出管
、12,13・・・・・・バルブ、14・・・・・・醪
循環ポンプ、15・・・・・・限外酒過装置、16,1
7,18・・・・・・バイブ、19・・・・・・清澄醪
排出管、20・・・・醪排出管、21,22,23,2
4・・・・・・バルブ、25,26,27・・・・・・
貯蔵タンク、28・・・・・・コンプレッサー、29・
・・・・・酸素ボンベ、30,31・・・・・・流量計
、32・・・・・・減圧バルブ、33・・・・・・バル
ブ、34・・・・減圧バルブ、35・・・・・溶存酸素
計、36・・・センサー。
The drawings are simplified cross-sectional views showing specific examples of the apparatus used in the present invention. 1... Fermentation tank, 2... Stirring blade, 3...
... Stirring shaft, 4 ... Electric motor, 5 ...
・Air introduction pipe, 6... Diffuser pipe, 7...
Exhaust pipe, 8... Raw material mash input pipe, 9... Mash removal pipe, 10... Serpentine pipe, 11... Mash discharge pipe, 12, 13...・・Valve, 14・・・Make circulation pump, 15・・・Extreme drinking device, 16, 1
7, 18... Vibrator, 19... Clear mash discharge pipe, 20... Mash discharge pipe, 21, 22, 23, 2
4... Valve, 25, 26, 27...
Storage tank, 28...Compressor, 29.
... Oxygen cylinder, 30, 31 ... Flow meter, 32 ... Pressure reduction valve, 33 ... Valve, 34 ... Pressure reduction valve, 35 ... ...Dissolved oxygen meter, 36...sensor.

Claims (1)

【特許請求の範囲】 1 通気発酵で連続発酵法または半連続発酵法によつて
食酢を製造する方法において、発酵槽より取り出される
醪を発酵槽外に設けた限外濾過装置により限外濾過して
酢酸菌を含まない清澄な醪と酢酸菌を元の状態より濃い
濃度で含有する醪とに濾別し、清澄な醪は発酵系外に排
出し、酢酸菌を元の状態より濃い濃度で含有する醪は、
醪が発酵槽より取り出されてから1分以内に発酵槽へ酢
酸菌を元の状態より濃い濃度で含有する醪として還元さ
れるように、発酵槽へ還元する工程を連続的にまたは間
欠的に加える一方、酸素を用いて酸素含有量を高めた空
気を通気して発酵槽内の醪中の溶存酸素濃度を0.2p
pm以上として発酵させることを特徴とする食酢の製造
法。 2 発酵槽内の醪中の溶存酸素濃度が0.2ppm近く
となつたところから、酸素を用いて酸素含有量を高めた
空気を通気して発酵槽内の醪中の溶存酸素濃度を0.2
ppm以上として発酵させることを特徴とする特許請求
の範囲第1項記載の食酢の製造法。
[Claims] 1. In a method for producing vinegar by a continuous fermentation method or a semi-continuous fermentation method using aerated fermentation, the moromi taken out from a fermenter is ultrafiltered by an ultrafiltration device installed outside the fermenter. The moromi is filtered into a clear moromi that does not contain acetic acid bacteria and a moromi that contains acetic acid bacteria in a higher concentration than the original state. The moromi contained in
The process of reducing the moromi to the fermenter is carried out continuously or intermittently so that the moromi is returned to the fermenter within 1 minute after it is taken out from the fermenter as a moromi containing acetic acid bacteria at a higher concentration than the original state. At the same time, the dissolved oxygen concentration in the moromi in the fermenter is reduced to 0.2p by aerating air with increased oxygen content using oxygen.
A method for producing vinegar, characterized by fermenting it at a temperature of pm or higher. 2. When the dissolved oxygen concentration in the moromi in the fermenter reached nearly 0.2 ppm, air with increased oxygen content was aerated using oxygen to bring the dissolved oxygen concentration in the moromi in the fermenter to 0.2 ppm. 2
2. The method for producing vinegar according to claim 1, wherein the vinegar is fermented at a concentration of ppm or more.
JP53128580A 1978-10-20 1978-10-20 Vinegar manufacturing method Expired JPS6053594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53128580A JPS6053594B2 (en) 1978-10-20 1978-10-20 Vinegar manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53128580A JPS6053594B2 (en) 1978-10-20 1978-10-20 Vinegar manufacturing method

Publications (2)

Publication Number Publication Date
JPS5554890A JPS5554890A (en) 1980-04-22
JPS6053594B2 true JPS6053594B2 (en) 1985-11-26

Family

ID=14988257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53128580A Expired JPS6053594B2 (en) 1978-10-20 1978-10-20 Vinegar manufacturing method

Country Status (1)

Country Link
JP (1) JPS6053594B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320308A (en) * 2013-07-08 2013-09-25 镇江丹和醋业有限公司 Table vinegar production and fermentation tank device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181685A (en) * 1981-05-01 1982-11-09 Kikkoman Corp Brewing of vinegar
JPS61192280A (en) * 1985-02-22 1986-08-26 Takeshi Kobayashi Apparatus for continuous cultivation of microorganism
US4948736A (en) * 1987-03-20 1990-08-14 Toshiba Ceramics Co., Ltd. Continuous microorganism cultivating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320308A (en) * 2013-07-08 2013-09-25 镇江丹和醋业有限公司 Table vinegar production and fermentation tank device

Also Published As

Publication number Publication date
JPS5554890A (en) 1980-04-22

Similar Documents

Publication Publication Date Title
JP2777385B2 (en) Biological cell culture method, culture system and culture device
CN107904129A (en) A kind of new process using vinasse making vinegar
CN113856593B (en) Preparation method and preparation device of iron phosphate powder concentrated by microfiltration
CN206396227U (en) A kind of hyaluronic acid production fermentation tank
CN206008631U (en) A kind of Agitation Tank for producing intensified loquet distillate
CN101351543A (en) Methods and processes of controlling fermentation
CN110892928A (en) Semi-continuous preparation method and device of black tea fungus fermentation liquor
CN105087272B (en) A kind of preparation method of tea wine
JPS63133978A (en) Cell cultivation device
JPS6053594B2 (en) Vinegar manufacturing method
US3345179A (en) Accelerated batch process for the fermentation of brewers wort
CN215939985U (en) Microporous filtering concentrated iron phosphate powder preparation device
CN107916209B (en) Method for producing rose vinegar by mechanical stirring method
CN110218633A (en) A kind of system and method for continuous production bacteria cellulose film
CN117143684A (en) Brewing process of brewing equipment
JPS63233780A (en) Cultivation processing using acetic acid as an index and unit therefor
CN206799631U (en) A kind of closed pure oxygen acetic acid fermentation device
CN107904133B (en) Method for producing rose vinegar by pump reflux method
CN107937236B (en) Method for producing rose vinegar by pneumatic stirring method
GB2197341A (en) Brewing beer
EP1167514B1 (en) Semiautomatic apparatus for re-hydration of yeasts and process for re-hydration thereof
JPS6232914B2 (en)
US4870022A (en) Apparatus and method for producing miso
CN1307202C (en) Method for reducing content of sugar in light corn extrcution
JPH0215189B2 (en)