JPS6053444B2 - Manufacturing method of acicular iron magnetic particle powder - Google Patents

Manufacturing method of acicular iron magnetic particle powder

Info

Publication number
JPS6053444B2
JPS6053444B2 JP57054038A JP5403882A JPS6053444B2 JP S6053444 B2 JPS6053444 B2 JP S6053444B2 JP 57054038 A JP57054038 A JP 57054038A JP 5403882 A JP5403882 A JP 5403882A JP S6053444 B2 JPS6053444 B2 JP S6053444B2
Authority
JP
Japan
Prior art keywords
particles
acicular
iron
iron oxyhydroxide
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57054038A
Other languages
Japanese (ja)
Other versions
JPS58171801A (en
Inventor
規道 永井
雅雄 木山
利夫 高田
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP57054038A priority Critical patent/JPS6053444B2/en
Publication of JPS58171801A publication Critical patent/JPS58171801A/en
Publication of JPS6053444B2 publication Critical patent/JPS6053444B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、磁気記録用針状晶鉄磁性粒子粉末の製造法に
関するものであり、詳しくは、塩化第一鉄水溶液に酸素
含有ガスを通気して酸化することにより針状晶β−オキ
シ水酸化鉄粒子を生成させるにあたり、上記塩化第一鉄
水溶液に第二鉄塩を全鉄に対しFe’゛換算で0.1〜
15モル%添加し、しかる後、酸化することにより、比
表面積が大きな針状晶β−オキシ水酸化鉄粒子を生成さ
せ、次いで彪φ−オキシ水酸化鉄粒子の形態、特に針状
晶を保持継承しながら、加熱焼成及び加熱還元すること
により、比表面積が大きな針状晶鉄磁性粒子″粉末を得
ることを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing acicular iron magnetic particles for magnetic recording, and more specifically, the present invention relates to a method for producing acicular iron magnetic particles for magnetic recording. In producing crystalline β-iron oxyhydroxide particles, a ferric salt was added to the above ferrous chloride aqueous solution in an amount of 0.1 to 0.1 to 0.1 to 0.1 in terms of Fe'゛ based on total iron.
By adding 15 mol% and then oxidizing, acicular β-iron oxyhydroxide particles with a large specific surface area are produced, and the morphology of the Biao φ-iron oxyhydroxide particles, especially the acicular crystals, is maintained. It is characterized by obtaining acicular ferromagnetic particles with a large specific surface area by heating, firing and thermal reduction while inheriting the powder.

近年、磁気記録再生用の機器の小型軽量化が進むにつれ
て磁気テープ、磁気ディスク等の磁気記録媒体に対する
高性能化の必要性が益々生じてきている。
In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance magnetic recording media such as magnetic tapes and magnetic disks.

すなわち、高密度記録特性、高出力特門性、高感度特性
、周波数特性の向上、及びノイズレベルの低下が要求さ
れている。磁気テープ、磁気ディスク等磁気記録媒体の
出力特性、感度特性は、残留磁束密度Brに依存し、残
留磁速密度Brは、磁性粒子粉末のビークル中での分散
性、塗膜中での配向性及び充填性に依存している。
That is, high-density recording characteristics, high output characteristics, high sensitivity characteristics, improvement in frequency characteristics, and reduction in noise level are required. The output characteristics and sensitivity characteristics of magnetic recording media such as magnetic tapes and magnetic disks depend on the residual magnetic flux density Br, which is determined by the dispersibility of magnetic particles in the vehicle and the orientation in the coating film. and filling properties.

そして、ビークル中での分散性、塗膜中での配向性及び
充填性を向上させるためには、ビークル中に分散させる
磁性粒子粉末が針状晶であり、且つ、粒度が均斉で樹枝
状粒子が混在していないことが要求される。
In order to improve the dispersibility in the vehicle, the orientation and filling properties in the coating film, it is necessary that the magnetic particles dispersed in the vehicle have acicular crystals, uniform particle size, and dendritic particles. It is required that there is no mixture of

従来、磁気記録用材料として主に針状晶マグネタイト粒
子粉末、針状晶マグヘマイト粒子粉末及びこれら粒子粉
末にコバルトを含有させた針状晶磁性酸化鉄粒子粉末等
が使用されてきたが、近年、前述した磁気記録媒体に対
する高性能化の要求に伴つて針状晶磁性酸化鉄粒子粉末
に比べ、高い保磁力と大きな飽和磁化を有する針状晶鉄
磁性粒子粉末の実用化がなされている。
Conventionally, acicular magnetite particles, acicular maghemite particles, and acicular magnetic iron oxide particles containing cobalt have been mainly used as magnetic recording materials, but in recent years, With the above-mentioned demand for higher performance in magnetic recording media, acicular iron magnetic particles having higher coercive force and larger saturation magnetization than acicular magnetic iron oxide particles have been put into practical use.

これら針状晶鉄磁性粒子粉末は、一般に、針状晶オキシ
水酸化鉄粒子粉末を空気中で加熱焼成して針状晶α−F
e2α粒子とし、次いで、これを還元性ガス中35(代
)程度で加熱還元することにより得られている。
These acicular iron magnetic particles are generally produced by heating and baking acicular iron oxyhydroxide particles in air to produce acicular iron α-F particles.
It is obtained by converting the e2α particles into e2α particles and then heating and reducing them in a reducing gas at about 35°C.

針状晶鉄磁性粒子粉末の保磁力は、形状異方性に大きく
依存するものであり、針状晶鉄磁性粒子粉末の針状晶は
、最も重要な特性の一つである。
The coercive force of the acicular ferromagnetic particles largely depends on the shape anisotropy, and the acicular structure of the acicular ferromagnetic particles is one of the most important properties.

上述したように、針状晶を有し、且つ、粒度が均斉で双
晶や樹枝状粒子が混在していない針状晶鉄磁性粒子粉末
は、現在、最も要求されているところであり、このよう
な特性を備えた針状晶鉄磁性粒子粉末を得るためには、
先ず、出発原料であ.るオキシ水酸化鉄粒子が針状晶を
有し、且つ、粒度が均斉で双晶や樹枝状粒子が混在して
いないことが必要であり、次に、いかにして粒子形態、
特に針状晶を保持継承させながら、加熱焼成及び加熱還
元して針状晶鉄磁性粒子粉末とするかが大き.な課題と
なつてくる。先ず、出発原料としてのオキシ水酸化鉄粒
子について述べる。
As mentioned above, acicular ferromagnetic particles with acicular crystals, uniform particle size, and no twin or dendritic particles are currently in high demand. In order to obtain acicular iron magnetic particle powder with such characteristics,
First, the starting materials. It is necessary for the iron oxyhydroxide particles to have acicular crystals, uniform particle size, and no twins or dendritic particles.
In particular, it is important to maintain and inherit the acicular crystals while heating and reducing them to obtain acicular ferromagnetic particles. This is becoming a major issue. First, iron oxyhydroxide particles as a starting material will be described.

オキシ水酸化鉄としては、結晶構造の異なるα一オキシ
水酸化鉄、β−オキシ水酸化鉄、及びγ−ーオキシ水酸
化鉄等が知られている。
As iron oxyhydroxide, α-iron oxyhydroxide, β-iron oxyhydroxide, and γ-iron oxyhydroxide, which have different crystal structures, are known.

β−オキシ水酸化鉄粒子粉末は、α−オキシ水酸化鉄粒
子粉末及びγ−オキシ水酸化鉄粒子粉末と比べて、粒度
が均斉で双晶や樹枝状粒子が混在していない針状形態を
呈した粒子が得やすいという特徴を有しているので、磁
気記録用磁性酸化鉄粒子の出発原料として非常に好まし
いものである。
Compared to α-iron oxyhydroxide particles and γ-iron oxyhydroxide particles, β-iron oxyhydroxide particles have a uniform particle size and an acicular morphology without twins or dendritic particles. Since it has the characteristic that it is easy to obtain particles exhibiting the same characteristics, it is very preferable as a starting material for magnetic iron oxide particles for magnetic recording.

従来、針状晶β−オキシ水酸化鉄粒子の製造法としては
、大別して二通りの方法が知られている。
Conventionally, two methods are known for producing acicular β-iron oxyhydroxide particles.

その一つは、塩化第二鉄水溶液を加水分解する方法であ
り、他の一つは、塩化第=鉄水溶液に酸・素含有ガスを
通気して酸化反応を行うものである。
One method is to hydrolyze an aqueous ferric chloride solution, and the other method is to perform an oxidation reaction by passing an oxygen/element-containing gas through the aqueous ferric chloride solution.

第一の方法は、得られるβ−オキシ水酸化鉄の形状が紡
錘状である為、該粒子を用いて還元して得られた鉄磁性
粒子は軸比が得られたものとは言い難く、従つて、高い
保磁力を得ることが難かしい為、磁気記録用鉄磁性粒子
の出発原料としては好ましくない。
In the first method, since the shape of the β-iron oxyhydroxide obtained is spindle-shaped, it is difficult to say that the ferromagnetic particles obtained by reduction using the particles have an axial ratio. Therefore, since it is difficult to obtain a high coercive force, it is not preferred as a starting material for ferromagnetic particles for magnetic recording.

本発明は、第二の方法に属するものである。The present invention belongs to the second method.

従来、塩化第一鉄水溶液に酸素含有ガスを通気して酸化
反応を行うことにより針状晶β−オキシ水酸化鉄を製造
する方法として最も代表的な方法は、特公昭47−25
95鰐公報に記載されている方法であり、第一鉄塩水溶
液に酸素含有ガスを通気して酸化反応を行うことにより
、PH2以下の反応溶液中に針状晶β−オキシ水酸化鉄
粒子を生成させるものである。次に、出発原料である針
状晶β−オキシ水酸化鉄粒子の粒子形態、特に針状晶を
保持継承させながら加熱焼成及び加熱還元して針状晶鉄
磁性粒子粉末とするかが大きな課題となつてくる。
Conventionally, the most typical method for producing acicular β-iron oxyhydroxide by passing an oxygen-containing gas through an aqueous solution of ferrous chloride to perform an oxidation reaction was disclosed in Japanese Patent Publication No. 47-25.
This is a method described in the 95 Wani Publication, in which acicular β-iron oxyhydroxide particles are produced in a reaction solution with a pH of 2 or less by performing an oxidation reaction by passing an oxygen-containing gas through an aqueous ferrous salt solution. It is something that generates. Next, the major issue is how to maintain and inherit the particle morphology of the acicular β-iron oxyhydroxide particles, which is the starting material, and in particular, how to heat-sinter and heat-reduce the acicular crystal iron magnetic particles while retaining and inheriting the acicular crystals. It's coming.

加熱焼成工程に関して言えば、出発原料である針状晶β
−オキシ水酸化鉄粒子は、300℃以上で加熱焼成して
α−Fe2O3粒子とする際には、針状晶がくずれ塊状
の粒子となつてしまう。
Regarding the heating and calcination process, the starting material acicular crystal β
- When the iron oxyhydroxide particles are heated and fired at 300° C. or higher to form α-Fe2O3 particles, the needle-like crystals break down and become lump-like particles.

このように加熱焼成時にα−Fe2O3粒子の針状晶が
くずれ塊状の粒子となつてしまうのは、針状晶β−オキ
シ水酸化鉄粒子粉末に含有されるCl−根に起因するも
のである。
The reason why the acicular crystals of the α-Fe2O3 particles break down and become lump-like particles during heating and firing is due to the Cl- roots contained in the acicular β-iron oxyhydroxide particles. .

このように針状晶β−オキシ水酸化鉄粒子粉末にC1一
根が含有されるのは、前述したように、第一及び第二の
いずれの方法による場合にも針状晶β−オキシ水酸化鉄
粒子粉末の生成に際して鉄原料として塩化鉄水溶液を使
用する為であり、粒子中に含有されたCl一根は洗浄を
繰り返しても完全には除去することが出来ず、針状晶β
−オキシ水酸化鉄粒子は2〜8重量%のC1一根を含有
している。
As mentioned above, the reason why the acicular β-oxyhydroxide particles contain one C1 root is because the acicular β-oxyhydroxide particles are contained in the acicular β-oxyhydroxide particles in both the first and second methods. This is because iron chloride aqueous solution is used as the iron raw material when producing iron oxide particles, and the Cl contained in the particles cannot be completely removed even after repeated washing, resulting in needle-shaped β crystals.
- The iron oxyhydroxide particles contain 2-8% by weight of C1 roots.

本発明者は、長年に亘り、針状晶β−オキシ水酸化鉄粒
子の製造及び開発にたずさわつているものであるが、そ
の研究過程において、出発原料である針状晶β−オキシ
水酸化鉄粒子を加熱焼成してその針状晶をくずすことな
く針状晶α−Fe2O,粒子を得る方法を既に開発して
いる。
The present inventor has been engaged in the production and development of acicular β-oxyhydroxide particles for many years, and during the research process, the starting material acicular β-oxyhydroxide particles We have already developed a method of heating and firing iron oxide particles to obtain acicular α-Fe2O particles without destroying the acicular crystals.

例えば、次に述べるようである。For example, as described below.

即ち、出発原料である針状晶β−オキシ水酸化鉄粒子の
針状晶を保持継承した針状晶α−Fe2O3粒子は、出
発原料である針状晶β−オキシ水酸化鉄粒子に該針状晶
β−オキシ水酸化鉄粒子に対しSO,−2換算で0.5
〜5.0重量%の硫酸塩を含ませた後空気中300〜5
00′Cの温度範囲で加熱焼成することにより得ること
ができる。
That is, the acicular α-Fe2O3 particles that retain and inherit the needle crystals of the acicular β-iron oxyhydroxide particles that are the starting material are 0.5 in terms of SO,-2 for crystalline β-iron oxyhydroxide particles
300-5 in air after impregnation with ~5.0% by weight of sulfate
It can be obtained by heating and firing in a temperature range of 00'C.

この方法について説明すれば、次のようである。This method will be explained as follows.

針状晶β−オキシ水酸化鉄粒子を加熱焼成してFe2O
3粒子とする過程を更に詳細に観察すると、先ず、針状
晶β−オキシ水酸化鉄粒子は加熱脱水されて針状晶β−
Fe2O3粒子となり、次いで該針状晶β−Fe2O3
粒子がα−Fe2O,粒子に結晶変態する。
Acicular β-iron oxyhydroxide particles are heated and fired to form Fe2O
Observing the process of forming three particles in more detail, first, the acicular β-iron oxyhydroxide particles are heated and dehydrated to form acicular β-
Fe2O3 particles, and then the acicular β-Fe2O3
The particles undergo crystal transformation into α-Fe2O particles.

針状晶β−オキシ水酸化鉄粒子から針状晶β−Fe2O
3への変化はトポタクテイツク反応である為粒子形状の
変化はなく、従つて、生成p−Fe2O3粒子は、針状
晶β−オキシ水酸化鉄粒子の針状晶を保持継承したもの
であるが、引き続いて生起する針状晶β−Fe2O3粒
子からα−Fe2O3粒子への結晶変態の際にはC卜根
が作用して針状晶がくずれ塊上の粒子となつてしまう。
Needle crystal β-Fe2O from needle crystal β-iron oxyhydroxide particles
Since the change to 3 is a topotactic reaction, there is no change in particle shape. Therefore, the generated p-Fe2O3 particles retain and inherit the needle-like crystals of the needle-like β-iron oxyhydroxide particles. During the subsequent crystal transformation from the acicular β-Fe2O3 particles to the α-Fe2O3 particles, the carbon root acts and the acicular crystals break down and become particles on a lump.

得られるα一Fe2OJ粒子の針状晶がくずれ塊状の粒
子となるのは、針状晶β−Fe2O3粒子中に含有され
るCl一根が加熱焼成の際にβ−Fe2O,と反応して
FeCl3の液相を生じ、次いで彪Cecl3が加熱分
解することにより塊状のα−Fe2O3粒子が生成する
と同時に分解生成したClは針状晶β−Fe2O3粒子
と反応してFeCl3の液相を生じるというように、F
eCl,の液相を介在して針状晶β−Fe2O3粒子の
溶解とα一Fe2O3粒子の析出が生起するいわゆる溶
解析出過程を経ることに起因するものであろうと考えら
れる。そこで、針状晶β−オキシ水酸化鉄粒子の粒子形
態、特に、針状晶を保持継承した針状晶α−Fe2O3
粒子を得るためには、先ず、針状晶β−Fe2O3粒子
を安定して存在させることが必要であり、次いで、針状
晶β−Fe2O3粒子から針状晶α−Fe2O3粒子の
結晶変態に際してはFeCl3の液相を生成させないこ
とが必要であると考え、そのような作用効果を有する物
質について検討を重ねた結果、硫酸塩が有効であること
を知つたのである。
The reason why the needle-like crystals of the obtained α-Fe2OJ particles collapse and become lump-like particles is because one Cl root contained in the needle-like β-Fe2O3 particles reacts with β-Fe2O during heating and sintering, and FeCl3 Then, Biao Cecl3 is thermally decomposed to produce lumpy α-Fe2O3 particles, and at the same time, the decomposed Cl reacts with the acicular β-Fe2O3 particles to produce a liquid phase of FeCl3. ,F
This is thought to be due to the so-called dissolution precipitation process in which the acicular β-Fe2O3 particles are dissolved and the α-Fe2O3 particles are precipitated through a liquid phase of eCl. Therefore, the particle morphology of the acicular crystal β-iron oxyhydroxide particles, especially the acicular crystal α-Fe2O3 that retains and inherited the acicular crystals.
In order to obtain particles, it is first necessary to stably exist acicular β-Fe2O3 particles, and then, during crystal transformation from acicular β-Fe2O3 particles to acicular α-Fe2O3 particles, They believed that it was necessary to prevent the formation of a liquid phase of FeCl3, and as a result of repeated studies on substances that have such effects, they found that sulfates are effective.

即ち、針状晶β−オキシ水酸化鉄粒子に硫酸塩を含ませ
た後、空気中300〜500Cの温度範囲で加熱焼成し
た場合には、硫酸塩の存在により針状晶β−オキシ水酸
化鉄粒子から針状晶β−Fe2O3粒子を安定して生成
することができ、且つ、針状晶β−Fe2α粒子から針
状晶α−Fe2O3粒子への結晶変態に際してはFeC
l3の液相を生成しないので針状晶がくずれることなく
、針状晶β−オキシ水酸化鉄粒子の粒子形態を保持継承
した針状晶α一Fe2OJ粒子を得ることができるので
あろうと考えられる。
That is, when acicular β-oxyhydroxide particles are impregnated with sulfate and then heated and calcined in the air at a temperature range of 300 to 500C, the acicular β-oxyhydroxide particles are reduced due to the presence of the sulfate. Acicular β-Fe2O3 particles can be stably produced from iron particles, and FeC
It is thought that since the liquid phase of l3 is not generated, the needle crystals do not collapse, and it is possible to obtain needle-shaped α-Fe2OJ particles that retain and inherit the particle morphology of the needle-shaped β-iron oxyhydroxide particles. .

上記の方法において使用される硫酸塩としては、硫酸ナ
トリウム、硫酸第二鉄、硫酸コバルト、硫酸アルミニウ
ム、硫酸ニッケル等を使用することができる。
As the sulfate used in the above method, sodium sulfate, ferric sulfate, cobalt sulfate, aluminum sulfate, nickel sulfate, etc. can be used.

硫酸塩は、固体状態又は、溶液状態のいずれの状態でも
使用することができるが、均一に混合する為には溶液状
態で使用することが好ましい。
The sulfate can be used in either a solid state or a solution state, but it is preferably used in a solution state in order to mix uniformly.

硫酸塩の量は、針状晶β−オキシ水酸化鉄粒子に対しS
O,−2換算で0.5〜原腫量%である。硫酸塩が針状
晶β−オキシ水酸化鉄粒子に対しSO,−2換算で0.
踵量%以下の場合には、針状晶β−オキシ水酸化鉄粒子
粉末の粒子形態、特に針状晶を保持継承している針状晶
α−Fe2O3粒子粉末・を得るという効果は十分では
ない。原重量%以上である場合も、針状晶β−オキシ水
酸化鉄粒子粉末の粒子形態、特に針状晶を保持継承して
いる針状晶α−Fe2O,粒子粉末を得ることができる
が、該針状晶α−Fe2O3粒子粉末を)加熱還元して
得られた針状晶鉄磁性粒子粉末は純度の低下により、飽
和磁化が大巾に減少し好ましくない。
The amount of sulfate is S
It is 0.5% to original tumor volume in terms of O,-2. The amount of sulfate is 0.0% in terms of SO,-2 relative to the acicular β-iron oxyhydroxide particles.
If the heel weight is less than %, the particle morphology of the acicular β-iron oxyhydroxide particles, especially the effect of obtaining acicular α-Fe2O3 particles that retain and inherit the acicular crystals, is not sufficient. do not have. Even if the amount is more than % of the original weight, it is possible to obtain acicular α-Fe2O particles that retain and inherit the particle morphology of the acicular β-iron oxyhydroxide particles, especially the acicular crystals. The acicular iron magnetic particles obtained by thermal reduction of the acicular α-Fe2O3 particles are undesirable because the saturation magnetization is greatly reduced due to a decrease in purity.

硫酸塩との処理温度は、常温においても十分所期の目的
を達成することができる。
As for the treatment temperature with the sulfate, the desired purpose can be sufficiently achieved even at room temperature.

加温した場合にも同様の効果が得られることは当然であ
る。
It goes without saying that similar effects can be obtained when heated.

加熱焼成温度は、300〜・500℃の温度範囲である
The heating and firing temperature is in a temperature range of 300 to 500°C.

加熱焼成温度が30(代)以下である場合には針状晶α
−Fe2O3粒子を得るのに長時間を要し、500℃以
上である場合には生成α−Fe2O3粒子中の単一粒子
の成長が過度となり、粒子の変形と粒子及び粒子相互間
の焼結を引き起す。
If the heating and firing temperature is below 30s, acicular crystals α
-If it takes a long time to obtain Fe2O3 particles and the temperature is above 500°C, the growth of single particles in the generated α-Fe2O3 particles will be excessive, resulting in deformation of the particles and sintering between the particles and each other. bring up

ところで、磁気記録媒体に起因するノイズレベルは、特
に磁性粒子粉末の比表面積による影響が大きく、磁性粒
子粉末の比表面積が大きくなる程、ノイズレベルが低下
する傾向にあることが一般的によく知られている。
By the way, it is generally well known that the noise level caused by magnetic recording media is greatly affected by the specific surface area of the magnetic particles, and that the noise level tends to decrease as the specific surface area of the magnetic particles increases. It is being

即ち、この現象は、電子通信学会技術研究報告MR8l
−11第2頂23−9の「Fig3」から明らかである
That is, this phenomenon is explained in the Institute of Electronics and Communication Engineers technical research report MR8l.
-11 It is clear from "Fig 3" of the second vertex 23-9.

「Fig3」はCO被着針状晶マグヘマイト粒子粉末に
おける粒子の比表面積とノイズレベルとの関係を示す図
であり、粒子の比表面積が大きくなる程ノイズレベルは
直線的に低下している。
"Fig. 3" is a diagram showing the relationship between the specific surface area of the particles and the noise level in CO-coated acicular maghemite particle powder, and the noise level decreases linearly as the specific surface area of the particles increases.

この現象は、針状晶鉄磁性粒子粉末についても同様に言
えることである。
This phenomenon also applies to acicular iron magnetic particles.

上述したように、磁気記録用鉄磁性粒子粉末としては、
更にノイズレベルの低い磁性粒子粉末の開発が要求され
ており、より比表面積の大きな磁性粒子粉末とすること
が必要である。
As mentioned above, as the ferromagnetic particle powder for magnetic recording,
Furthermore, there is a need to develop magnetic particles with a lower noise level, and it is necessary to develop magnetic particles with a larger specific surface area.

比表面積の大きな磁性粒子粉末を得る為には、出発原料
である針状晶β−オキシ水酸化鉄粒子粉末の比表面積が
出来るだけ大きいことが必要であ.る。
In order to obtain magnetic particles with a large specific surface area, it is necessary that the specific surface area of the starting material, acicular β-iron oxyhydroxide particles, be as large as possible. Ru.

前出特公昭47−2595吋公報に記載の公知方法によ
れば、得られる針状晶β−オキシ水酸化鉄粒子粉末のB
ET比表面積は、実施例1に示されるように34Tft
If程度である。
According to the known method described in the aforementioned Japanese Patent Publication No. 47-2595, B of the obtained acicular β-iron oxyhydroxide particle powder is
The ET specific surface area is 34Tft as shown in Example 1.
It is about If.

また、同法は、得られる針状晶β−オキシ水酸化鉄粒子
粉末の比表面積を大きくする方法を何ら開示するもので
はない。
Further, the method does not disclose any method for increasing the specific surface area of the obtained acicular β-iron oxyhydroxide particles.

本発明者は、上述したところに鑑み、粒度が均斉で双晶
や樹枝状粒子が混在していない針状晶βーオキシ水酸化
鉄粒子粉末の比表面積を一層増加させる方法について種
々検討した結果、本発明に到達したのである。
In view of the above, the present inventor has conducted various studies on methods for further increasing the specific surface area of acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles. The present invention has been achieved.

即ち、本発明は、塩化第一鉄水溶液に酸素含有ガスを通
気して酸化することにより針状晶β−オキシ水酸化鉄粒
子を生成させるにあたり、上記塩化第一鉄水溶液に第二
鉄塩を全鉄に対しFe3+換算で0.1〜15モル%添
加し、しかる後、酸化することにより針状晶β−オキシ
水酸化鉄粒子を生成させ、次いで、この針状晶β−オキ
シ水酸化鉄粒子に該粒子に対しSO4−2換算で0.5
〜5.0重量%の硫酸塩を含ませた後空気中300〜5
0C)Cの温度範囲で加熱焼成することにより、前記針
状晶β−オキノシ水酸化鉄粒子の針状晶を保持継承した
針状晶α−Fe2O3粒子とし、次いで、該針状晶α−
Fe2O,粒子を還元性ガス中で加熱還元して針状晶鉄
磁性粒子とすること、又は、必要により、前記針状晶α
−Fe2O,粒子を焼結防止剤で被覆処理した後、―還
元性ガス中で加熱還元して針状晶鉄磁性粒子とすること
を特徴とするものである。
That is, the present invention involves adding a ferric salt to the ferrous chloride aqueous solution in producing acicular β-iron oxyhydroxide particles by passing an oxygen-containing gas through the ferrous chloride aqueous solution to oxidize it. 0.1 to 15 mol% calculated as Fe3+ based on total iron is added, and then oxidized to produce acicular β-iron oxyhydroxide particles. 0.5 in terms of SO4-2 for the particles
300-5 in air after impregnation with ~5.0% by weight of sulfate
By heating and firing in a temperature range of 0C)C, the acicular α-Fe2O3 particles that retain and inherit the acicular crystals of the acicular β-oxyiron hydroxide particles are formed, and then the acicular α-
Fe2O, the particles may be thermally reduced in a reducing gas to form acicular iron magnetic particles, or if necessary, the acicular crystals α
-Fe2O particles are coated with an anti-sintering agent and then heated and reduced in a -reducing gas to form acicular iron magnetic particles.

次に、本発明の完成するに至つた技術的背景及び本発明
の構成について述べる。
Next, the technical background that led to the completion of the present invention and the configuration of the present invention will be described.

本発明者は、粒度が均斉で双晶や樹枝状粒子が混在して
いない針状晶β−オキシ水酸化鉄粒子粉末の比表面積を
一層増加させるべく、添加剤の種類及びその添加量につ
いて種々検討した結果、塩化第一鉄水溶液に酸素含有ガ
スを通気して酸化することにより針状晶β−オキシ水酸
化鉄粒子を生成させるにあたり、上記塩化第一鉄水溶液
に第二鉄塩を全鉄に対しFe3+換算で0.1〜15モ
ル%添加し、しかる後、酸化した場合には、針状晶β−
オキシ水酸化鉄粒子粉末の比表面積を一層増加させるこ
とができるという新規な知見を得た。
In order to further increase the specific surface area of acicular β-iron oxyhydroxide particles having a uniform particle size and containing no twins or dendritic particles, the inventors have developed various types and amounts of additives. As a result of our investigation, we found that in producing acicular β-iron oxyhydroxide particles by passing an oxygen-containing gas through the ferrous chloride aqueous solution to oxidize it, we added ferric salt to the ferrous chloride aqueous solution. When 0.1 to 15 mol% is added in terms of Fe3+ and then oxidized, acicular crystal β-
We have obtained a new finding that the specific surface area of iron oxyhydroxide particles can be further increased.

塩化第一鉄水溶液に第二鉄塩を全鉄に対しFe3+換算
で0.1〜15モル%添加し、しかる後、酸化して得た
針状晶β−オキシ水酸化鉄粒子粉末の比表面積が大きく
なるという現象についての理論的解明は未だ行えてはい
ないが、本発明者は、一般に、針状晶β−オキシ水酸化
鉄粒子の生成は、針状晶β−オキシ水酸化鉄核の発生ど
該針状晶β−オキシ水酸化鉄核の成長の二段階からなる
が、あらかじめFe3+を塩化第一鉄水溶液中に添加し
ておくことにより、針状晶β−オキシ水酸化鉄の核の生
成が促進されて針状晶β−オキシ水酸化鉄の核が多数生
成するためであろうと考えている。
Specific surface area of acicular β-iron oxyhydroxide particles obtained by adding 0.1 to 15 mol% of ferric salt (calculated as Fe3+ based on total iron) to a ferrous chloride aqueous solution and then oxidizing Although the theoretical explanation of the phenomenon of the increase in the size of acicular β-iron oxyhydroxide particles has not yet been theoretically elucidated, the present inventors believe that, in general, the formation of acicular β-iron oxyhydroxide particles is due to the formation of acicular β-iron oxyhydroxide nuclei. The generation process consists of two stages of growth of acicular β-iron oxyhydroxide nuclei, and by adding Fe3+ to the ferrous chloride aqueous solution in advance, the acicular β-iron oxyhydroxide nuclei can be grown. It is thought that this is because the formation of acicular crystal β-iron oxyhydroxide is promoted and a large number of nuclei of acicular β-iron oxyhydroxide are formed.

上述した現象について、本発明者が行つた数多くの実験
例から、その一部を抽出して説明すれば、次の通りであ
る。図1は、Fe3+の添加量と生成針状晶β−オキシ
水酸化鉄粒子粉末の比表面積との関係図である。
The above-mentioned phenomenon will be explained as follows by extracting some of the many experimental examples conducted by the present inventor. FIG. 1 is a diagram showing the relationship between the amount of Fe3+ added and the specific surface area of the produced acicular β-iron oxyhydroxide particles.

即ち、全鉄に対しFe3+換算で0〜25.0モル%の
塩化第二鉄を添加して得られた全容51の塩化第一鉄水
溶液(1.75〜1.98n1011e)に温度70C
において毎分10eの空気を通気して酸化反応を行わせ
ることにより得られた針状晶β−オキシ水酸化鉄粒子の
比表面積とFe3+の添加量の関係を示したものである
That is, a ferrous chloride aqueous solution (1.75 to 1.98n1011e) with a total volume of 51 obtained by adding 0 to 25.0 mol% of ferric chloride in terms of Fe3+ to the total iron was heated at a temperature of 70C.
This figure shows the relationship between the specific surface area of acicular β-iron oxyhydroxide particles obtained by blowing air at a rate of 10 e/min to carry out an oxidation reaction and the amount of Fe3+ added.

図1に示されるようにFe3+の添加量の増加に伴つて
針状晶β−オキシ水酸化鉄粒子の比表面積は大きくなる
傾向を示す。
As shown in FIG. 1, the specific surface area of the acicular β-iron oxyhydroxide particles tends to increase as the amount of Fe3+ added increases.

次に、本発明方法実施にあたつて諸条件について述べる
Next, conditions for carrying out the method of the present invention will be described.

本発明において使用される第二鉄塩としては、酸化第二
鉄をはじめ硫酸第二鉄、硝酸第二鉄等を使用することが
できる。
As the ferric salt used in the present invention, ferric oxide, ferric sulfate, ferric nitrate, etc. can be used.

本発明において、第二鉄塩の添加量は、全鉄に対しFe
3+換算で0.1〜15モル%である。
In the present invention, the amount of ferric salt added is Fe based on total iron.
It is 0.1 to 15 mol% in terms of 3+.

第二鉄塩の添加量が全鉄に対しFe3+換算で0.1モ
ル%以下である場合には針状晶β−オキシ水酸化鉄粒子
粉末の比表面積を増加させる効果は十分ではない。15
モル%以上である場合も、比表面積の大きな針状晶β−
オキシ水酸化鉄粒子粉末を得ることができるが、その効
果は顕著ではない。
When the amount of the ferric salt added is 0.1 mol % or less in terms of Fe3+ based on the total iron, the effect of increasing the specific surface area of the acicular β-iron oxyhydroxide particles is not sufficient. 15
Even if the amount is more than mol%, the acicular crystal β-
Iron oxyhydroxide particle powder can be obtained, but its effect is not significant.

尚、0.1〜15モル%の第二鉄塩を添加するに際して
は、前述した通り、添加量の増加に伴つて得られる針状
晶β−オキシ水酸化鉄粒子の比表面積が大きくなる傾向
にある。
In addition, when adding 0.1 to 15 mol% of ferric salt, as mentioned above, the specific surface area of the obtained acicular β-iron oxyhydroxide particles tends to increase as the amount added increases. It is in.

従つて、上記添加量を調整することにより、所望する比
表面積を有する針状晶β−オキシ水酸化鉄粒子を得るこ
とができる。以上の通りの構成の本発明は、次の通りの
効果を奏するものである。
Therefore, by adjusting the amount added, acicular β-iron oxyhydroxide particles having a desired specific surface area can be obtained. The present invention configured as described above has the following effects.

即ち、本発明によれば、比表面積が大きく、粒度が均斉
で双晶や樹枝状粒子が混在していない針状晶β−オキシ
水酸化鉄粒子粉末を生成させ、この針状晶β−オキシ水
酸化鉄粒子粉末の粒子形態、特に、針状晶を保持継承し
ながら加熱焼成及び加熱還元することにより、比表面積
が大きく、粒度が均斉で双晶や樹枝状粒子が混在してい
ない針状晶鉄磁性粒子粉末を得ることができる。
That is, according to the present invention, acicular β-oxyhydroxide particles having a large specific surface area, uniform particle size, and no twin or dendritic particles are produced, and the acicular β-oxyhydroxide particles are The particle morphology of iron hydroxide particles, in particular, is achieved through heat firing and heat reduction while retaining acicular crystals, resulting in a large specific surface area, uniform particle size, and an acicular shape with no twins or dendritic particles. A crystalline iron magnetic particle powder can be obtained.

本件発明の加熱還元工程においては、所望により、針状
晶β−オキシ水酸化鉄粒子の粒子形態、特に針状晶を保
持継承しながら、加熱焼成して得られた針状晶α−Fe
2O3粒子をあらかじめ、焼結防止剤で被覆処理するこ
とができ、この場合には針状晶が一層優れた針状晶鉄磁
性粒子粉末を得ることができる。この事実について以下
に説明する。
In the thermal reduction step of the present invention, if desired, the particle form of the acicular β-iron oxyhydroxide particles, particularly the acicular crystals, is retained and inherited while the acicular α-Fe particles are heated and fired.
The 2O3 particles can be coated with an anti-sintering agent in advance, and in this case, acicular iron magnetic particles with even better acicular crystals can be obtained. This fact will be explained below.

粒度が均斉で双晶や樹枝状粒子が混在していない針状晶
β−オキシ水酸化鉄粒子をその粒子形態、特に針状晶を
保持継承しながら加熱焼成してα−Fe2O3粒子とし
、次いで還元性ガス中で加熱還元して針状晶鉄磁性粒子
粉末を得る場合、加熱還元温度が高くなると、この針状
晶鉄磁性粒子粉末の針状晶粒子の変形と粒子および粒子
相互間の焼結が著しくなり、得られた針状晶鉄磁性粒子
粉末の保磁力が極度に低下することとなる。
Acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles are heated and calcined to form α-Fe2O3 particles while preserving and inheriting the particle morphology, especially the acicular crystals, and then When obtaining acicular ferromagnetic particles by heating reduction in a reducing gas, when the heating reduction temperature becomes high, the acicular ferromagnetic particles of the acicular ferromagnetic particles are deformed and the particles and their mutual interactions are sintered. The coercive force of the obtained acicular iron magnetic particles becomes extremely low.

殊に、雰囲気が還元性である場合には、粒子の形状は加
熱温度の影響を受けやすく、粒子成長が著しく、単一粒
子が形骸粒子の大きさを越えて成長し、形骸粒子の外形
は漸次消え、粒子形状の変形と粒子および粒子相互間の
焼結を引き起こす。
In particular, when the atmosphere is reducing, the shape of the particles is easily affected by the heating temperature, and particle growth is significant, with single particles growing to a size exceeding the size of the shell particles, and the outer shape of the shell particles becoming smaller. It gradually disappears, causing deformation of the particle shape and sintering of the particles and each other.

その結果、保磁力が低下するのである。従つて、粒度が
均斉で双晶や樹枝状粒子が混在していない針状晶β−オ
キシ水酸化鉄粒子の粒子形態、特に針状晶を保持継承し
ながら加熱焼成して得られた針状晶α−Fe2O3粒子
の針状晶をこわさないようにする為、通常、加熱還元は
、300〜4500Cで行なわれる。
As a result, the coercive force decreases. Therefore, the particle morphology of acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles, especially the acicular shape obtained by heating and firing while retaining and inheriting the acicular crystals. In order not to destroy the needle-like crystalline α-Fe2O3 particles, the thermal reduction is usually carried out at 300 to 4500C.

上述したように、還元性ガス中において粒子形状の変形
と粒子および粒子相互間の焼結が生起するのは、針状晶
β−オキシ水酸化鉄粒子を周知の通り、加熱焼成して得
られた針状晶α−Fe2O3粒子が、−粒子成長力汁分
ではなく、従つて、粒子の結晶度合が小さいために加熱
還元工程において生成粒子の単一粒子の粒子成長が急激
であるため、単一粒子の均一な粒子成長が生起し難く、
従つて、単一粒子の粒子成長が急激に生起した部分では
粒子および粒子相互間の焼結が生起して粒子形状が崩れ
やすくなると考えられる。
As mentioned above, deformation of the particle shape and sintering between particles in a reducing gas occur when acicular β-iron oxyhydroxide particles are heated and calcined, as is well known. The acicular α-Fe2O3 particles are not part of the particle growth force, and therefore, the crystallinity of the particles is small, so the growth of a single particle of the produced particles is rapid in the thermal reduction process. Uniform particle growth of a single particle is difficult to occur,
Therefore, it is considered that in the portion where the grain growth of a single grain has rapidly occurred, sintering of grains and grains occurs, and the shape of the grain is likely to collapse.

従つて、加熱還元工程において粒子形状の変形と粒子お
よび粒子相互間の焼結を防止するためには、加熱還元工
程に先立つて、予め、粒度が均斉で双晶や樹枝状粒子が
混在していない針状晶α一Fe2O3粒子を焼結防止効
果を有する有機、無機化合物で被覆処理しておく方法が
ある。
Therefore, in order to prevent particle shape deformation and sintering between particles and particles in the thermal reduction process, it is necessary to prepare particles with uniform particle size and a mixture of twins and dendritic particles prior to the thermal reduction process. There is a method in which acicular α-Fe2O3 particles are coated with an organic or inorganic compound that has a sintering prevention effect.

尚、ここで焼結防止効果とは、加熱還元工程における生
成粒子中の単一粒子の急激な粒子成長を抑制する効果を
言い、このような作用効果を有する物質を以下、焼結防
止剤という。
Note that the sintering prevention effect here refers to the effect of suppressing the rapid particle growth of single particles in the particles produced during the heating reduction process, and substances that have this effect are hereinafter referred to as sintering inhibitors. .

焼結防止剤で被覆処理した粒度が均斉で双晶や樹枝状粒
子が混在していない針状晶α−Fe2O3粒子は、周知
の通り350C〜50(代)で加熱還元して粒度が均斉
で双晶や樹枝状粒子が混在していない針状晶鉄磁性粒子
粉末を得ることができる。
As is well known, the acicular α-Fe2O3 particles, which are coated with an anti-sintering agent and have a uniform particle size and are not mixed with twins or dendritic particles, can be heated and reduced at 350C to 50C to make the particle size uniform. It is possible to obtain acicular ferromagnetic particles that do not contain twins or dendritic particles.

350C以下である場合には還元反応の進行が遅く、長
時間を要する。
If the temperature is below 350C, the reduction reaction progresses slowly and takes a long time.

また、500℃以上である場合には還元反応が急激に進
行して針状晶粒子の変形と、粒子および粒子相互間の焼
結を引き起こしてしまう。
Furthermore, if the temperature is 500° C. or higher, the reduction reaction rapidly progresses, resulting in deformation of the acicular crystal particles and sintering of the particles and each other.

焼結防止結果を有する有機、無機化合物としては周知の
Si..A]、Cr,.Mn,.Cu..NilP等の
化合物、例えば、ケイ酸ナトリウム、コロイダルシリカ
、硫酸アルミニウム、アルミン酸ソーダ、硫酸クロム、
硫酸ニッケル、メタリン酸ソーダ等の一種又は二種以上
を使用することができる。
The well-known organic and inorganic compounds having anti-sintering properties include Si. .. A], Cr, . Mn,. Cu. .. Compounds such as NilP, such as sodium silicate, colloidal silica, aluminum sulfate, sodium aluminate, chromium sulfate,
One or more of nickel sulfate, sodium metaphosphate, etc. can be used.

焼結防止剤の被覆方法は、針状晶α−Fe2O3粒子粉
末を焼結防止剤を含む水溶液中に添加、混合する方法で
も効果があるが、粒子表面に均一に被覆されることが好
ましい。
Although a method of coating the sintering inhibitor by adding and mixing acicular α-Fe2O3 particle powder into an aqueous solution containing the sintering inhibitor is effective, it is preferable that the particle surface is coated uniformly.

上述した様に、本発明方法により得られた針状晶鉄磁性
粒子粉末を用いて磁気テープを製造した際には、ビーク
ル中での分散性、塗膜中での配向性及び充填性が極めて
優れている為、現在、最も一要求されているノイズレベ
ルが低く、高出力、高感度であり、記録の高密度化が可
能な磁気記録媒体を得ることができる。
As mentioned above, when a magnetic tape is manufactured using the acicular iron magnetic particles obtained by the method of the present invention, the dispersibility in the vehicle, the orientation in the coating film, and the filling properties are extremely high. Because of its excellent properties, it is possible to obtain a magnetic recording medium that has a low noise level, high output, high sensitivity, and is capable of high-density recording, which are currently most required.

次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、前出実験例及び以下の実施例並びに比較例における
粒子の比表面積はBET法により示したものであり、長
軸及び軸比は、電子顕微鏡写真から測定した数値の平均
値で示した。
In addition, the specific surface area of the particles in the above experimental examples and the following examples and comparative examples is shown by the BET method, and the long axis and axial ratio are shown as the average value of the values measured from electron micrographs.

また、針状晶β−オキシ水酸化鉄粒子粉末は、二X線回
折法により同定し、SO,及びCl一根の含有量は螢光
X線分析により測定した。
Further, the acicular β-iron oxyhydroxide particles were identified by two X-ray diffraction method, and the SO and Cl single root contents were measured by fluorescent X-ray analysis.

〈針状晶β−オキシ水酸化鉄粒子粉末の製造)実施例1
〜8 比較例1; 実施例1 3m01′eの塩化第一鉄水溶液3.3eと2m01′
eの塩化第二鉄水溶液0.05e(全鉄に対しFe3+
換算で1.0モル%に相当。
(Production of acicular β-iron oxyhydroxide particles) Example 1
~8 Comparative Example 1; Example 1 Ferrous chloride aqueous solution of 3m01'e 3.3e and 2m01'
e of ferric chloride aqueous solution 0.05e (Fe3+
Equivalent to 1.0 mol%.

)に更に水を加えて全容5eに調整した混合水溶液に温
度70Cにおいて毎分10eの空気を2m間通気して粒
子粉末を生成した。生成粒子は、常法により、水洗、枦
別、乾燥、粉砕した。ノ 生成粒子は、X線回折法で同
定した結果、100%針状晶β−オキシ水酸化鉄粒子粉
末であつた。
) was further added with water to adjust the total volume to 5e, and air was passed through the mixed aqueous solution at a rate of 10e/min for 2m at a temperature of 70C to produce particulate powder. The resulting particles were washed with water, separated, dried, and crushed by a conventional method. The produced particles were identified by X-ray diffraction and were found to be 100% acicular β-iron oxyhydroxide particles.

得られた針状晶β−オキシ水酸化鉄粒子は、比表面積が
40.1rt1′であり、また、電子顕微鏡観察の結果
、平均値で長軸0.6PTnであり、粒度が均一斉で双
晶や樹枝状粒子が混在しないものであつた。実施例2〜
8 塩化第一鉄水溶液の使用量、第二鉄塩の種類、使用量及
び反応温度を種々変化させた以外は実施例1と同様にし
て粒子粉末を生成した。
The obtained acicular β-iron oxyhydroxide particles have a specific surface area of 40.1rt1', and as a result of electron microscopy observation, the average long axis is 0.6PTn, and the particle size is uniform and twin-shaped. It did not contain any crystals or dendritic particles. Example 2~
8 Particle powder was produced in the same manner as in Example 1, except that the amount of the ferrous chloride aqueous solution used, the type and amount of ferric salt used, and the reaction temperature were varied.

生成粒子は、いずれもX線回折法で同定した結果、10
0%針状晶β−オキシ水酸化鉄粒子粉末であつた。この
時の主要製造条件及び特性を表1に示す。実施例2〜8
で得られた針状晶β−オキシ水酸化鉄粒子粉末は、いず
れも電子顕微鏡観察の結果、粒度が均斉で双晶や樹枝状
粒子が混在しないものであつた。比較例1 塩化第二鉄を添加しないで、他の諸条件は実施例1と同
様にして針状晶β−オキシ水酸化鉄粒子粉末を生成した
All produced particles were identified by X-ray diffraction method, and as a result, 10
The powder was 0% acicular β-iron oxyhydroxide particles. Table 1 shows the main manufacturing conditions and characteristics at this time. Examples 2-8
As a result of electron microscopy, the acicular β-iron oxyhydroxide particles obtained in the above were all uniform in particle size and free of twins and dendritic particles. Comparative Example 1 Acicular crystal β-iron oxyhydroxide particles were produced in the same manner as in Example 1 except that ferric chloride was not added.

この時の主要製造条件及び特性を表1に示す。〈針状晶
鉄磁性粒子粉末の製造〉 実施例9〜16 比較例2; 実施例9 実施例1で得られた針状晶β−オキシ水酸化鉄粒子粉末
125yを1モル/eの硫酸ナトリウム水溶液51に加
えて菊分間攪拌混合した後、枦別、水洗、乾燥した。
Table 1 shows the main manufacturing conditions and characteristics at this time. <Production of acicular iron magnetic particles> Examples 9 to 16 Comparative Example 2; Example 9 The acicular β-oxyiron hydroxide particles 125y obtained in Example 1 were added to 1 mol/e of sodium sulfate. After adding to the aqueous solution 51 and stirring and mixing the chrysanthemum mixture, it was separated, washed with water, and dried.

得られた針状晶β−オキシ水酸化鉄粒子粉末は、7.0
重量%の塩素を含有しており、且つ、SO,−2換算で
0.閃重量%の硫酸ナトリウムが含まれていた。
The obtained acicular β-iron oxyhydroxide particles have a particle diameter of 7.0
Contains chlorine of % by weight, and 0.0% in terms of SO,-2. % sodium sulfate by weight.

この針状晶β−オキシ水酸化鉄粒子粉末125fを空気
中44(代)で加熱焼成してα−Fe2O3粒子粉末を
得た。
This acicular β-iron oxyhydroxide particle powder 125f was heated and calcined in air at 44°C to obtain α-Fe2O3 particle powder.

得られたα−Fe2O3粒子は、電子顕微鏡観察の結果
、長軸0.6PW1,で、出発原料である針状晶β−オ
キシ水酸化鉄粒子の針状晶を保持継承したものであり、
粒度が均斉で双晶樹枝状粒子が混在していないものであ
つた。
As a result of electron microscopic observation, the obtained α-Fe2O3 particles had a long axis of 0.6 PW1, and retained and inherited the needle-like crystals of the starting material, the needle-like β-iron oxyhydroxide particles.
The particle size was uniform and twinned dendritic particles were not mixed.

上記針状晶α−Fe2O3粒子粉末100fを3eの一
端開放型レトルト容器中に投入し、駆動回転させながら
H2ガスを毎分25eの割合で通気し、還元温度355
℃で加熱還元した。
The above acicular α-Fe2O3 particle powder 100f was put into a 3e retort container with one end open, and H2 gas was aerated at a rate of 25e per minute while driving and rotating.
Heat reduction was carried out at ℃.

還元して得られた針状晶鉄磁性粒子粉末は、空気中に取
り出したとき急激な酸化を起さないように、一旦トルエ
ン液中に浸漬して、これを蒸発させることにより、粒子
表面に安定な酸化皮膜を施した。
The acicular iron magnetic particles obtained by reduction are immersed in a toluene solution and evaporated to prevent rapid oxidation when taken out into the air. A stable oxide film has been applied.

得られた針状晶鉄磁性粒子粉末は、比表面積が34.1
イ1yと大きいものであり、電子顕微鏡観察の結果、長
軸0.6PTr1,で、粒度が均斉で双晶や樹枝状粒子
が混在していないものであつた。
The obtained acicular iron magnetic particles have a specific surface area of 34.1.
As a result of electron microscopic observation, it was found that the major axis was 0.6 PTr1, the particle size was uniform, and there were no twins or dendritic particles mixed together.

また、磁気特性は、保磁力が7430eであり、飽和磁
化σsは172emu′fであつた。
As for the magnetic properties, the coercive force was 7430e, and the saturation magnetization σs was 172 emu'f.

実施例10〜14 出発原料の種類、硫酸塩の種類、量、加熱焼成温度及び
加熱還元温度を種々変化させた以外は実施例9と同様に
して針状晶鉄磁性粒子粉末を得た。
Examples 10 to 14 Acicular iron magnetic particles were obtained in the same manner as in Example 9, except that the type of starting material, the type and amount of sulfate, the heating firing temperature, and the heating reduction temperature were varied.

得られた針状晶鉄磁性粒子粉末の主要製造条件及び諸特
性を表2に示す。
Table 2 shows the main manufacturing conditions and various properties of the obtained acicular iron magnetic particles.

実施例10〜14において得られた針状晶鉄磁性粒子粉
末は、いずれもBET比表面積の大きいものであり、電
子顕微鏡観察の結果、出発原料である針状晶β−オキシ
水酸化鉄粒子の針状晶を保持継承したものであり、粒度
が均斉で双晶や樹枝状粒子が混在していないものであつ
た。
All of the acicular iron magnetic particles obtained in Examples 10 to 14 had a large BET specific surface area, and as a result of electron microscopy observation, it was found that the acicular β-iron oxyhydroxide particles, which were the starting materials, had a large BET specific surface area. It retained and inherited acicular crystals, had uniform grain size, and did not contain twins or dendritic particles.

実施例15 出発原料の種類、硫酸塩の量及び加熱焼成温度を変化さ
せた以外は実施例9と同様にして得られた針状晶α−F
e2O3粒子粉末100fを4′の水中に懸濁させた後
、NaOH水溶液を添加して懸濁液のPHを10.0に
調整した。
Example 15 Acicular crystal α-F obtained in the same manner as in Example 9 except that the type of starting material, the amount of sulfate, and the heating and calcination temperature were changed.
After suspending 100f of e2O3 particles in 4' water, an aqueous NaOH solution was added to adjust the pH of the suspension to 10.0.

次いで、上記懸濁液にケイ酸ナトリウム(3号水ガラス
)10.0f(針状晶α−Fe2O3粒子粉末に対しS
iO2として2.8111%に相当する。
Next, 10.0 f of sodium silicate (No. 3 water glass) (S
This corresponds to 2.8111% as iO2.

)を添加し6紛間攪拌した後、懸濁液のPH値が7.0
となるように10%の硫酸を添加した後、ブレスフィル
ターにより針状晶α−Fe2O3粒子を枦別、乾燥して
Si化合物で被覆された針状晶α−Fe2O3粒子粉末
を得た。この時の主要製造条件を表2に示す。
) was added and stirred, the pH value of the suspension was 7.0.
After adding 10% sulfuric acid so as to give the following properties, the acicular α-Fe2O3 particles were separated using a breath filter and dried to obtain acicular α-Fe2O3 particles coated with a Si compound. Table 2 shows the main manufacturing conditions at this time.

上記針状晶α−Fe2O3粒子粉末を用いて加熱還元温
度を460℃とした以外は実施例9と同様にして針状晶
鉄磁性粒子粉末を得た。
Acicular ferromagnetic particles were obtained in the same manner as in Example 9, except that the acicular α-Fe2O3 particles were used and the heating reduction temperature was 460°C.

得られた針状晶鉄磁性粒子粉末は比表面積が70.4W
tIyと大きいものであり、電子顕微鏡観察の結果、長
軸0.3Bpmで、出発原料である針状晶β−オキシ水
酸化鉄粒子の針状晶を保持継承したものであり、粒度が
均斉で双晶や樹枝状粒子が混在していないものであつた
The obtained acicular iron magnetic particles have a specific surface area of 70.4W.
tIy, and as a result of electron microscopy observation, the long axis was 0.3 Bpm, and the particle size was uniform, retaining the acicular crystals of the starting material, acicular β-iron oxyhydroxide particles. It did not contain twins or dendritic particles.

また、磁気特性は、保磁力9660eであり、飽和磁化
σSは151emuIVであつた。
The magnetic properties were a coercive force of 9660e and a saturation magnetization σS of 151 emuIV.

実施例16 出発原料の種類、硫酸塩の種類、量及び加熱焼成温度を
変化させた以外は実施例9と同様にして得られた針状晶
α−Fe2O3粒子を用い、焼結防止剤の種類、量を変
化させた以外は実施例15と同様にして針状晶鉄磁性粒
子粉末を生成した。
Example 16 Acicular α-Fe2O3 particles obtained in the same manner as in Example 9 were used, except that the type of starting material, the type and amount of sulfate, and the heating and calcination temperature were changed, and the type of sintering inhibitor was changed. Acicular iron magnetic particles were produced in the same manner as in Example 15, except that the amounts were changed.

この時の主要製造条件を表2に示す。Table 2 shows the main manufacturing conditions at this time.

実施例16で得られた針状晶鉄磁性粒子粉末は比表面積
が73.2イIfと大きいものであり、電子顕・微鏡観
察の結果、長軸0.30PTrL,であり、原料である
針状晶β−オキシ水酸化鉄粒子の針状晶を保持継承した
ものであり、粒度が均斉で双晶や樹枝状粒子が混在しな
いものであつた。
The acicular iron magnetic particles obtained in Example 16 had a large specific surface area of 73.2 If, and as a result of electron microscopic observation, the long axis was 0.30 PTrL, and it was a raw material. Acicular crystals The acicular crystals of β-iron oxyhydroxide particles were preserved, the particle size was uniform, and twins and dendritic particles were not mixed.

比較例2 比較例1の針状晶β−オキシ水酸化鉄粒子粉末を用いた
以外は実施例9と同様にして針状晶鉄磁性粒子粉末を得
た。
Comparative Example 2 Acicular iron magnetic particles were obtained in the same manner as in Example 9, except that the acicular β-iron oxyhydroxide particles of Comparative Example 1 were used.

この時の主要製造条件及び諸特性を表2に示す。Table 2 shows the main manufacturing conditions and various characteristics at this time.

l 得られた針状晶鉄磁性粒子粉末は比表面積が小さい
ものであつた。
l The obtained acicular iron magnetic particles had a small specific surface area.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、Fe3+の添加量と生成針状晶β−オキシ水酸
化鉄粒子粉末の比表面積との関係図である。
FIG. 1 is a diagram showing the relationship between the amount of Fe3+ added and the specific surface area of the produced acicular β-iron oxyhydroxide particles.

Claims (1)

【特許請求の範囲】 1 塩化第一鉄水溶液に酸素含有ガスを通気して酸化す
ることにより針状晶β−オキシ水酸化鉄粒子を生成させ
るにあたり、上記塩化第一鉄水溶液に第二鉄塩を全鉄に
対しFe^3^+換算で0.1〜15モル%添加し、し
かる後、酸化することにより針状晶β−オキシ水酸化鉄
粒子を生成させ、次いで、この針状晶β−オキシ水酸化
鉄粒子に該粒子に対し、SO_4^−^2換算で0.5
〜5.0重量%の硫酸塩を含ませた後空気中300〜5
00℃の温度範囲で加熱焼成することにより、前記針状
晶β−オキシ水酸化鉄粒子の針状晶を保持継承した針状
晶α−Fe_2O_3粒子とし、次いで、該針状晶α−
Fe_2O_3粒子を還元性ガス中で加熱還元して針状
晶鉄磁性粒子とすることを特徴とする針状晶鉄磁性粒子
粉末の製造法。 2 塩化第一鉄水溶液に酸素含有ガスを通気して酸化す
ることにより針状晶β−オキシ水酸化鉄粒子を生成させ
るにあたり、上記塩化第一鉄水溶液に第二鉄塩を全鉄に
対しFe^3^+換算で0.1〜15モル%添加し、し
かる後、酸化することにより針状晶β−オキシ水酸化鉄
粒子を生成させ、次いで、この針状晶β−オキシ水酸化
鉄粒子に該粒子に対しSO_4^−^2換算で0.5〜
5.0重量%の硫酸塩を含ませた後空気中300〜50
0℃の温度範囲で加熱焼成することにより、前記針状晶
β−オキシ水酸化鉄粒子の針状晶を保持継承した針状晶
α−Fe_2O_3粒子とし、次いで、該針状晶α−F
e_2O_3粒子を焼結防止剤で被覆処理した後、還元
性ガス中で加熱還元して針状晶鉄磁性粒子とすることを
特徴とする針状晶鉄磁性粒子粉末の製造法。 3 焼結防止剤がケイ酸ナトリウム、硫酸クロム、アル
ミン酸ソーダから選ばれた一種である特許請求の範囲第
2項に記載の針状晶鉄磁性粒子粉末の製造法。
[Scope of Claims] 1. In producing acicular β-iron oxyhydroxide particles by oxidizing an aqueous ferrous chloride solution by passing an oxygen-containing gas through the aqueous ferrous chloride solution, a ferric salt is added to the aqueous ferrous chloride solution. is added in an amount of 0.1 to 15 mol% in terms of Fe^3^+ based on the total iron, and then oxidized to produce acicular β-iron oxyhydroxide particles. - 0.5 in terms of SO_4^-^2 for the iron oxyhydroxide particles
300-5 in air after impregnation with ~5.0% by weight of sulfate
By heating and firing in a temperature range of 00°C, the acicular α-Fe_2O_3 particles retaining and inheriting the acicular crystals of the acicular β-iron oxyhydroxide particles are formed, and then the acicular α-
A method for producing acicular ferromagnetic particles, which comprises heating and reducing Fe_2O_3 particles in a reducing gas to obtain acicular ferromagnetic particles. 2. In producing acicular β-iron oxyhydroxide particles by passing an oxygen-containing gas through the ferrous chloride aqueous solution and oxidizing it, a ferric salt was added to the ferrous chloride aqueous solution to increase the amount of Fe relative to the total iron. 0.1 to 15 mol% in terms of ^3^+ is added, and then oxidized to produce acicular β-iron oxyhydroxide particles, and then the acicular β-iron oxyhydroxide particles 0.5 to 0.5 in terms of SO_4^-^2 for the particles.
300-50 in air after containing 5.0% by weight of sulfate
By heating and firing in a temperature range of 0° C., the needle crystals α-Fe_2O_3 particles are formed which retain and inherit the needle crystals of the needle crystal β-iron oxyhydroxide particles, and then the needle crystal α-F
A method for producing acicular ferromagnetic particles, which comprises coating e_2O_3 particles with an anti-sintering agent and then heating and reducing the particles in a reducing gas to obtain acicular ferromagnetic particles. 3. The method for producing acicular iron magnetic particles according to claim 2, wherein the sintering inhibitor is one selected from sodium silicate, chromium sulfate, and sodium aluminate.
JP57054038A 1982-03-31 1982-03-31 Manufacturing method of acicular iron magnetic particle powder Expired JPS6053444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054038A JPS6053444B2 (en) 1982-03-31 1982-03-31 Manufacturing method of acicular iron magnetic particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054038A JPS6053444B2 (en) 1982-03-31 1982-03-31 Manufacturing method of acicular iron magnetic particle powder

Publications (2)

Publication Number Publication Date
JPS58171801A JPS58171801A (en) 1983-10-08
JPS6053444B2 true JPS6053444B2 (en) 1985-11-26

Family

ID=12959417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054038A Expired JPS6053444B2 (en) 1982-03-31 1982-03-31 Manufacturing method of acicular iron magnetic particle powder

Country Status (1)

Country Link
JP (1) JPS6053444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464908C (en) * 2006-07-03 2009-03-04 南京大学 Method for preparing nanometer zero-valent iron grain using improved liquid phase reduction method

Also Published As

Publication number Publication date
JPS58171801A (en) 1983-10-08

Similar Documents

Publication Publication Date Title
US5599378A (en) Spindle-shaped magnetic iron based alloy particles and process for producing the same
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JPS6053444B2 (en) Manufacturing method of acicular iron magnetic particle powder
JPS5921366B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPS5921364B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JPS58151333A (en) Manufacture of needlelike iron oxide particle
JPS5921922B2 (en) Method for producing acicular Fe-Co-Zn alloy magnetic particle powder
JPS5932046B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5853687B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JPS5853686B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS5921363B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS5950607B2 (en) Method for producing acicular magnetic iron oxide particles
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPH026805B2 (en)
JPS6239203B2 (en)
JP2883962B2 (en) Method for producing acicular goethite particle powder
JPS5921365B2 (en) Method for producing acicular Fe-Co-Zn alloy magnetic particle powder
JPH0120201B2 (en)
JPS6015572B2 (en) Method for producing Co-containing acicular magnetic iron oxide particles
JPS59202610A (en) Magnetic recording acicular crystal iron alloy magnetic powderly grain and manufacture thereof
JPS58151334A (en) Manufacture of needlelike magnetic iron particle