JPS6052890B2 - Wire cut electrical discharge machining control method - Google Patents

Wire cut electrical discharge machining control method

Info

Publication number
JPS6052890B2
JPS6052890B2 JP7827077A JP7827077A JPS6052890B2 JP S6052890 B2 JPS6052890 B2 JP S6052890B2 JP 7827077 A JP7827077 A JP 7827077A JP 7827077 A JP7827077 A JP 7827077A JP S6052890 B2 JPS6052890 B2 JP S6052890B2
Authority
JP
Japan
Prior art keywords
machining
feed rate
workpiece
electrical
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7827077A
Other languages
Japanese (ja)
Other versions
JPS5413096A (en
Inventor
豊 田中
剛 弥富
和彦 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7827077A priority Critical patent/JPS6052890B2/en
Publication of JPS5413096A publication Critical patent/JPS5413096A/en
Publication of JPS6052890B2 publication Critical patent/JPS6052890B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Description

【発明の詳細な説明】 この発明はワイヤ電極を用いて放電加工するワイヤカ
ット放電加工装置において、被加工物材料 の板厚変化
および材質に応じて加工電気条件を最適に制御する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for optimally controlling machining electrical conditions according to changes in the thickness and material quality of a workpiece material in a wire-cut electrical discharge machining device that performs electrical discharge machining using a wire electrode. be.

この種のワイヤカット放電加工装置は0.05〜0.
3mφ程度の金属線を電極として被加工物との間にXY
方向の相対送りを与えて所要輪部形状の切断、抜き取り
等の加工を行なう物である。
This type of wire cut electrical discharge machining equipment is 0.05~0.
A metal wire of about 3mφ is used as an electrode to connect the workpiece to the XY
This is a device that performs processing such as cutting and extracting a desired ring shape by applying relative feed in the direction.

この場合の制御送りは通常1パルス1μm単位のステッ
プ定速送りを与えて放電させ、放電エネルギー等は制御
せす加工間隙において一定電圧の放電を行わせる。しカ
ル被加工物の板厚が一定である時は上記の定速送りでも
加工はうまく行なわれるが、例えば被加工物の厚さが一
定でない時は短絡、ワイヤ電極の切断を防ぐため当初に
最大板厚(最大加工面積)の場合での加工送り速度に設
定して加工を行なうため、加工途中において板厚が薄く
なつても当初に設定した遅い速度のまま送られることに
なり極めて能率が悪い。また被加工物の板厚が一定の場
合でも角のある形状に加工する時などは周知のように加
工送り速度を早めたり、1放電エネルギーを弱めた方が
角が丸まることなく、鋭利に加工出来、定速送りでは都
合が悪い。 又、上記の定速送り加工の欠点を補う方法
として従来行なわれているのは加工間隙の電圧、すなわ
ち加工電圧を検出して、これを一定になるように加工送
り速度を制御するものである。第1図にこの従来装置の
構成と動作を示す。ワイヤ電極1と被加工物2との間に
は加工電源3により加工電流が供給されている。加工電
圧の平均値Egと基準電圧E。とが誤差増巾器4に入力
され加工電圧の平均値Egと基準電圧E。との差である
誤差電圧に比例した加工送り速度Fが決定され、この加
工送り速度Fが速度分配器5によりX軸成分FxとY軸
成分Fyに分配されて、それぞれx軸モータMx6,Y
軸モータMy7を駆動する。ここでFx2十Fy2=F
2である。従来装置は上記のように構成されているが、
この様な構成ではワイヤ電極1と被加工物2の加工間隙
が小さくなり加工電FEE,gが基準電圧E。
In this case, the controlled feed is usually performed by giving a constant speed feed in steps of 1 μm per pulse to cause discharge, and the discharge energy etc. are caused to be discharged at a constant voltage in the machining gap to be controlled. When the thickness of the workpiece is constant, machining can be performed successfully even with the constant speed feed described above, but for example, when the thickness of the workpiece is not constant, the initial feed speed is Since machining is performed by setting the machining feed rate at the maximum plate thickness (maximum machining area), even if the plate thickness becomes thinner during machining, the feed rate remains at the slow speed set at the beginning, making it extremely efficient. bad. In addition, even when the thickness of the workpiece is constant, when machining into a shape with corners, it is better to increase the machining feed rate or weaken the 1 discharge energy so that the corners will not be rounded and can be machined sharply. Yes, constant speed feeding is not convenient. Additionally, a conventional method to compensate for the drawbacks of constant-speed feed machining described above is to detect the voltage in the machining gap, that is, the machining voltage, and control the machining feed rate so that this remains constant. . FIG. 1 shows the configuration and operation of this conventional device. A machining current is supplied between the wire electrode 1 and the workpiece 2 by a machining power source 3. Average value Eg of machining voltage and reference voltage E. are input to the error amplifier 4, and the average value Eg of the machining voltage and the reference voltage E. A machining feed rate F proportional to the error voltage that is the difference between the
Drives shaft motor My7. Here, Fx20Fy2=F
It is 2. The conventional device is configured as above, but
In such a configuration, the machining gap between the wire electrode 1 and the workpiece 2 becomes small, and the machining electric current FEE,g becomes the reference voltage E.

より小さくなると、加工送り速度Fが小さくなり加工間
隙を広げて、加工電圧Egを基準電圧E。に近づける働
きをする。逆に、加工電圧Egが基準電圧EOより大き
くなると、加工送り速度Fが大きくなり結局加工電圧E
gは基準電圧E。に近づくことになる。このように加工
電圧をフィードバックして加工送り速度を変化させる装
置では板厚の薄い所を加工すると加工送り速度は早くな
り、逆に板厚の厚い所では加工送り速度が遅くなつて単
位加工面積当たりの加工速度はほぼ一定となる。上記の
様に加工電圧を一定化する加工送り速度制御を行なえは
定常送りの時に見られる加工送り速度の損失はある程度
回避することができる。ここで、第2図は充放電用コン
デワサを充電するための電流波形で、その設定要素とし
ては充電.パルス電流のピーク電流1p,パルス巾Tp
,休止巾Tr,等がある。また、第3図は第1図の加工
電源3の内部を示し、9はコンデンサでその容量は加工
面アラサに影響し、10は電流制限抵抗Rで充電ピーク
電流1pを決定する。11はスイッチ、ングトランジス
タ、12は発振器でこれにより加工電流のパルス巾γP
,休止巾γrが定まる。
When it becomes smaller, the machining feed rate F becomes smaller, the machining gap is widened, and the machining voltage Eg becomes the reference voltage E. It works to bring it closer to. Conversely, when the machining voltage Eg becomes larger than the reference voltage EO, the machining feed rate F increases and eventually the machining voltage E
g is the reference voltage E. will come close to. In this way, with a device that feeds back the machining voltage to change the machining feed rate, the machining feed rate becomes faster when machining a thinner plate, and conversely, the machining feed rate becomes slower when the plate is thicker, resulting in an increase in the unit machining area. The machining speed per hit is almost constant. By controlling the machining feed rate to keep the machining voltage constant as described above, the loss in machining feed rate that occurs during steady feed can be avoided to some extent. Here, Fig. 2 shows the current waveform for charging the charge/discharge condenser, and its setting elements are charging and discharging. Peak current 1p of pulse current, pulse width Tp
, pause width Tr, etc. Further, FIG. 3 shows the inside of the machining power supply 3 of FIG. 1, where 9 is a capacitor whose capacity affects the roughness of the machined surface, and 10 is a current limiting resistor R that determines the charging peak current 1p. 11 is a switch, a switching transistor, and 12 is an oscillator, which controls the pulse width γP of the machining current.
, the pause width γr is determined.

13は内部の直流電源である。13 is an internal DC power supply.

放電加工のエネルギーはこれら電気条件の設定により、
平均加工電FEEgが同一であつても大巾・に異なり、
一般に薄い物を加工する場合集中放電を起し易く上記の
電気条件を変化させることにより加工エネルギーを低く
して加工しないとワイヤ電極の切断が発生する。
The energy for electrical discharge machining is determined by setting these electrical conditions.
Even if the average machining electric power FEEg is the same, the width is different,
Generally, when processing thin objects, concentrated discharge tends to occur, and unless the processing energy is lowered by changing the electrical conditions described above, the wire electrode will break.

前記の加工電旦ヂgを一定にするよう加工送り速度を制
御する装置で板厚の変化する物を加工する時電気条件は
板厚の最も薄い所でワイヤ電極が切れない様に設定する
ため、板厚の厚い所では電気条件が弱すぎて加工速度が
低下する。
When machining objects with varying plate thickness using a device that controls the machining feed rate so as to keep the machining electric power constant, the electrical conditions are set so that the wire electrode does not break at the thinnest part of the plate. , where the plate is thick, the electrical conditions are too weak and the machining speed decreases.

また加工精度も板厚の厚い所では電気条件を上げた方が
良い事がわかつている。また加工形状がコーナーの点で
は実質的に板厚が薄くなつたのと等価になり、この場合
は電気条l件を下げた方が鋭利なエッジが得られる。
It has also been found that increasing the electrical conditions is better for machining accuracy in areas where the plate thickness is thicker. Further, the processed shape becomes substantially equivalent to a thinner plate at the corners, and in this case, sharper edges can be obtained by lowering the electrical conditions.

この様に従来の定速送りや、加工電圧を一定化する加工
速度制御では加工速度、精度が十分に得られず、また電
気条件の設定を手動で行なうため経験的要素が入り、設
定が大変困難でワイヤ電極を切る可能性もあり、信頼性
が低かつた。この発明はこの様な点に鑑みてなされたも
ので、ワイヤ電極と被加工物との対向する加工間隙に放
電を生じさせて上記被加工物を加工し、加工間隙の電圧
もしくは加工電流により加工送り速度を制御するワイヤ
カット放電加工制御方法において、被加工物の各板厚に
最適な加工電源の電気条件と、これに対応する加工送り
速度を組にしたデータを複数個メモリーに記憶し、加工
中の加工送り速度に対応して、上記メモリーに記憶され
たデータをシフトして電気条件を変更し、加工中の加工
送り速度と上記メモリに記憶された加工送り速度とを概
略一致させるようにしたものである。
In this way, conventional constant-speed feed and machining speed control that maintains a constant machining voltage do not provide sufficient machining speed and accuracy, and the electrical conditions are manually set, which requires empirical elements and is difficult to set. It was difficult and there was a possibility of cutting the wire electrode, resulting in low reliability. This invention was made in view of these points, and the workpiece is machined by generating an electrical discharge in the machining gap where the wire electrode and the workpiece face each other, and the machining is performed using the voltage or machining current of the machining gap. In a wire-cut electric discharge machining control method that controls the feed rate, a plurality of sets of data are stored in memory, each pairing the electrical conditions of the machining power source that are optimal for each thickness of the workpiece and the corresponding machining feed rate. The electrical conditions are changed by shifting the data stored in the memory in accordance with the machining feed rate during machining, so that the machining feed rate during machining and the machining feed rate stored in the memory are roughly matched. This is what I did.

第4図はこの発明の一実施例の構成図て第1図に8の計
算機もしくはそれに相当する装置(以下計算機と称する
。)8が迫加されている。計算機8は加工送り速度Fを
入力として、これの変化を板厚の変化としてとらえて加
工電源3の電気条件、すなわちピーク電源1p,パルス
巾γP,休止巾γR,コンデンサ容量Cを変化させる。
以下にこの発明の発明の詳細な説明を行なう。
FIG. 4 is a block diagram of an embodiment of the present invention, in which a computer 8 or an equivalent device (hereinafter referred to as a computer) 8 is added to FIG. The computer 8 inputs the machining feed rate F, and changes the electrical conditions of the machining power source 3, that is, the peak power source 1p, pulse width γP, rest width γR, and capacitor capacity C, by interpreting changes in this as changes in plate thickness.
A detailed explanation of the invention will be given below.

第4図では第1図の作用説明と同様に加工電圧E?く基
準電圧E。と比較されて、加工電圧Egは常に基準電E
EEOの値に近づく様に加工送り速度Fが変化する。こ
のような構成で板厚一定の加工を終え板厚が厚くなる場
合を考える。板厚が厚くなつても加工間隙の極間電圧が
一定に保つように加工送り速度Fが制御され、電気条件
も同一とすると加工エネルギーはほぼ一定と考えられる
ので、加工面積当たりの加工速度もほぼ一定となり加工
送り速度は板厚に反比例して遅くなる。計算機8には加
工送り速度Fが入力されており、加工送り速度Fの減少
を被加工物2の板厚の増大としてとらえ計算機8内部の
メモリーに記憶されている電気条件設定テーブルにより
加工送り速度F1すなわち被加工物2の板厚に最適の電
気条件を選び出し、これを加工電源3に指令する。加工
の電気条件を強くすると加工エネルギーが増大し加工送
り速度Fが若干増加するので計算機8は増大した加工送
り速度Fを新たな入力として現在出力している電気条件
を考慮して電気条件をさらに変化させる必要がある場合
には新たな設定指令を加工電源3に対して行なう。この
ようにして最終的に被加工物2の板厚に最適の電気条件
の下で加工をすることができる。第5図は従来方式で電
気条件(加工エネルギー)ECを板厚の最も薄い点に設
定してワイヤ電極1の切断がないようにして加工する場
合の被加工物2の板厚tと加工送り速度Fとの関係を示
したもので、電気条件が一定であるために、板厚tにほ
ぼ反比例して加工送り速度Fが減少しているのがわかる
In Fig. 4, the machining voltage E? Reference voltage E. is compared, the machining voltage Eg is always equal to the reference voltage E
The machining feed rate F changes so as to approach the value of EEO. Let us consider a case where the plate thickness becomes thicker after finishing processing with a constant plate thickness in such a configuration. The machining feed rate F is controlled to keep the machining gap voltage constant even when the plate thickness increases, and if the electrical conditions are also the same, the machining energy is considered to be almost constant, so the machining speed per machining area also increases. The processing feed rate becomes almost constant and decreases in inverse proportion to the plate thickness. The machining feed rate F is input to the calculator 8, and the decrease in the machining feed rate F is regarded as an increase in the thickness of the workpiece 2, and the machining feed rate is determined based on the electrical condition setting table stored in the memory inside the calculator 8. F1, that is, the optimum electrical conditions for the thickness of the workpiece 2 is selected and commanded to the machining power source 3. When the electric conditions for machining are strengthened, the machining energy increases and the machining feed rate F increases slightly, so the calculator 8 uses the increased machining feed rate F as a new input and further increases the electric conditions by taking into account the current output electric conditions. If a change is necessary, a new setting command is issued to the machining power source 3. In this way, the workpiece 2 can finally be processed under the optimal electrical conditions for its thickness. Figure 5 shows the plate thickness t and machining feed of the workpiece 2 when machining is performed using the conventional method by setting the electrical condition (machining energy) EC to the thinnest point of the plate thickness so that the wire electrode 1 is not cut. This shows the relationship with the speed F, and it can be seen that since the electrical conditions are constant, the machining feed speed F decreases in almost inverse proportion to the plate thickness t.

第6図は実験的に最大加工送り速度Fを得るように電気
条件を設定した場合の被加工物2の板厚tと加工送り速
度Fとの関係を示したもので、板厚tが厚くなつても電
気条件も強くなるのて加工送り速度Fはそれ程低下しな
い。第7図はこの発明による電気条件自動設定方式を示
すもので、第6図の実験的に求められたグラフを折れ線
で近似している。ここでは被加工物2の板厚tが0−ち
の間では電気条件としてECOを、板厚tがち−t1の
間では電気条件EClで近似しており、その時の加工送
り速度FはそれぞれFO−F″0,F4−F″4の間と
なつている。第8図は計算機8の内部のメモリーに記憶
されるデータで各板厚tに対する電気条件ECの具体的
なパラメータ、すなわち加工ピーク電流1p,パルス巾
γP,休止巾γR,コンデンサ容量Cおよびその時の加
工送り速度Fの上限と下限が記載されている。第7図お
よび第8図を用いてこの発明のより詳細な作用を説明す
る。
Figure 6 shows the relationship between the plate thickness t of the workpiece 2 and the machining feed rate F when the electrical conditions are experimentally set to obtain the maximum machining feed rate F. Even as the temperature increases, the electrical conditions become stronger, so the machining feed rate F does not decrease that much. FIG. 7 shows the automatic electrical condition setting method according to the present invention, and the experimentally determined graph of FIG. 6 is approximated by a line. Here, the electrical condition is approximated as ECO when the thickness t of the workpiece 2 is between 0 and 1, and the electrical condition ECl is approximated between the thickness t and t1, and the machining feed rate F at that time is FO- It is between F″0, F4 and F″4. FIG. 8 shows data stored in the internal memory of the computer 8, showing specific parameters of the electrical conditions EC for each plate thickness t, namely machining peak current 1p, pulse width γP, rest width γR, capacitor capacity C, and the The upper and lower limits of the machining feed rate F are listed. A more detailed explanation of the operation of the present invention will be given with reference to FIGS. 7 and 8.

今板厚tがT3くt<T4であるような被加工物2を電
気条件EC4で加工しているとする。この電気条件すな
わち充電ピーク電流がIP4パルス巾γP4,休止巾γ
R4,コンデンサ容量C4で加工する場合加工送り速度
FはF4とF″4の間にある。今被加工物2の板厚tが
t1〈t<T2になつたとする。電気条件はEC4であ
るので加工送り速度Fは増大してF>F4となり電気条
件EC4の加工送り速度Fの上限を越えることになり計
算機8は電気条件を1段下げてEC3を加工電源3に指
令する。電気条件EC3ではIP3−γP3−γR3−
C3の条件で加工し、この時の上限の加工送り璋度Fは
F3であるが、実際の板厚が電気条件EC3に比して薄
いので加工送り速度FはF3を越える。計算機8は第8
図のテーブルを参照しながら、電気条件EC3からさら
に電気条件を下げて電気条件EC2を出力する。被加工
物2の板厚tはt1とT2の間であるので加工送り速度
FはF2とF″2の間となり計算機8はこの条件すなわ
ちIP2−γP2−γR2−C2の出力を続行する。被
加工物2の板厚tが厚くなる場合も同様にして自動的に
現在の加工送り速度がF上限とF下限の間に入るような
電気条件を選び出し出力することになる。上記説明では
計算機8の内部メモリーに、出力するものとして電気条
件パラメータであるIp−γp−γr−Cのみが記載さ
れていたが、この外に加工速度に影響する電源のオープ
ン電圧、加工電圧等もつけ加えればより細かな制御がで
きる。また電気条件パラメータを変える事により最大加
工速度を得たり、溝巾を一定にするなども容易に出来、
被加工物の材質による加工電気条件の相異も、テーブル
を別に設ければ対応できる。またこの外にワイヤ送り速
度,ワイヤテンション,加工液圧,加工液電導度なども
メモリー内にテーブルとして記憶することにより容易に
これらのパラメータを制御できる。以上のようにこの発
明によれば従来のように被加工物に応じて電気条件を設
定する必要が無くなり操作性が向上するとともに、条件
設定を誤まつてワイヤ電極を切つたり被加工物に損傷を
与える等の危険性が無くなる。
Assume that a workpiece 2 whose thickness t satisfies T3 x t<T4 is being machined under electrical conditions EC4. This electrical condition, that is, the charging peak current is IP4 pulse width γP4, pause width γ
When machining with R4 and capacitor capacity C4, the machining feed rate F is between F4 and F''4. Now suppose that the thickness t of the workpiece 2 becomes t1 < t < T2. The electrical conditions are EC4. Therefore, the machining feed rate F increases to F>F4, which exceeds the upper limit of the machining feed rate F of the electrical condition EC4, so the computer 8 lowers the electric condition by one level and commands EC3 to the machining power source 3.Electrical condition EC3. So IP3-γP3-γR3-
Machining is performed under conditions C3, and the upper limit machining feed speed F at this time is F3, but since the actual plate thickness is thinner than the electrical condition EC3, the machining feed rate F exceeds F3. Calculator 8 is the 8th
While referring to the table shown in the figure, the electrical condition is further lowered from the electrical condition EC3 to output the electrical condition EC2. Since the plate thickness t of the workpiece 2 is between t1 and T2, the machining feed rate F is between F2 and F''2, and the calculator 8 continues to output this condition, that is, IP2-γP2-γR2-C2. Similarly, when the thickness t of the workpiece 2 increases, electrical conditions such that the current machining feed rate falls between the F upper limit and the F lower limit are automatically selected and output.In the above explanation, the calculator 8 Only the electrical condition parameters Ip-γp-γr-C were recorded in the internal memory of the machine, but if you add the open voltage of the power supply, the machining voltage, etc. that affect the machining speed, you can get more detailed information. In addition, by changing the electrical condition parameters, it is easy to obtain the maximum machining speed and keep the groove width constant.
Differences in processing electrical conditions depending on the material of the workpiece can also be accommodated by providing a separate table. In addition, these parameters can be easily controlled by storing wire feed speed, wire tension, machining fluid pressure, machining fluid conductivity, etc. as a table in the memory. As described above, according to the present invention, there is no need to set electrical conditions according to the workpiece as in the past, and operability is improved. There is no risk of damage etc.

また、電気条件設定に再現性が出てくるので加工精度も
向上する。
Furthermore, since the electrical condition settings become more reproducible, machining accuracy also improves.

特に板厚の変化する被加工物・を加工する場合、従来の
ものでは極端に加工速度が低下したり、精度が悪くなる
が、この発明によれば被加工物の板厚に応じて自動的に
最適の電気条件が設定されるため、加工速度,加工精度
が大巾に向上し、電気条件設定を誤まることもなく、ワ
イヤ切れが無くなり大巾に信頼性が向上する。また被加
工物の板厚が大巾に変化する場合従来のものでは無人運
転が事実上不可能であつたが、この発明によれば完全に
無人で高度の加工を実現できる。この発明の説明では電
気条件は板厚に応じて最適に設定されたが、メモリーか
ら電気条件を出力するのに板厚は特に必要では無く加工
中の加工送り速度さえ入力されれば良い事は自明である
In particular, when machining workpieces with varying thicknesses, conventional methods extremely slow down the machining speed and degrade accuracy, but with this invention, the processing speed is automatically adjusted according to the thickness of the workpiece. Since the optimal electrical conditions are set, machining speed and machining accuracy are greatly improved, there is no chance of incorrect electrical condition settings, wire breaks are eliminated, and reliability is greatly improved. In addition, when the thickness of the workpiece varies widely, unmanned operation is practically impossible with conventional machines, but according to the present invention, highly advanced machining can be achieved completely unmanned. In the explanation of this invention, the electrical conditions were optimally set according to the plate thickness, but the plate thickness is not particularly necessary to output the electrical conditions from the memory, and it is sufficient to input the machining feed rate during machining. It's self-evident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のワイヤカット放電加工機で加工中の極間
電圧を一定にするように加工送り速度Fを制御する装置
を示す図、第2図は第1図の加工電源の電流パルス波形
を示す図、第3図は加工電源の内部詳細図、第4図はこ
の発明の一実施例を示す図、第5図は従来の加工電圧一
定でかつ電気条件も一定にして加工を行なつた場合の被
加工物の板厚に対する加工送り速度の関係を示す図、第
6図はこの発明による加工送り速度の変化に対応して電
気条件を変化させる場合の被加工物の板厚に対する電気
条件、加工送り速度を示す図、第7図は第6図を折れ線
で近似して計算機のメモリーに記憶させる時のグラフ図
、第8図は第7図を計算機のメモリーに記憶させるため
の一形式を示す図である。 図において、1はワイヤ電極、2は被加工物、3は加工
電源、8は計算機である。
Figure 1 shows a device that controls the machining feed rate F to keep the machining voltage constant during machining in a conventional wire-cut electrical discharge machine, and Figure 2 shows the current pulse waveform of the machining power source shown in Figure 1. 3 is a detailed internal view of the machining power source, FIG. 4 is a diagram showing an embodiment of the present invention, and FIG. 5 is a conventional machining method in which machining is carried out at a constant voltage and electrical conditions. Figure 6 shows the relationship between the machining feed rate and the thickness of the workpiece when the electrical conditions are changed in response to changes in the machining feed rate according to the present invention. A diagram showing the conditions and machining feed speed. Figure 7 is a graph when Figure 6 is approximated by a polygonal line and stored in the computer's memory. Figure 8 is a graph for storing Figure 7 in the computer's memory. It is a figure showing a format. In the figure, 1 is a wire electrode, 2 is a workpiece, 3 is a processing power source, and 8 is a computer.

Claims (1)

【特許請求の範囲】 1 ワイヤ電極と被加工物との対向する加工間隙に放電
を生じさせて上記被加工物を加工し加工間隙の電圧もし
くは加工電流により加工送り速度を制御するワイヤカッ
ト放電加工制御方法において、被加工物の各板厚に最適
な加工電源の電気条件と、これに対応する加工送り速度
を組にしたデータを複数個メモリーに記憶し、加工中の
加工送り速度に対応して、該メモリーに記憶されたデー
タをシフトして電気条件を変更し、加工中の加工送り速
度と該メモリーに記憶された加工送り速度とを概略一致
させることを特徴とするワイヤカット放電加工制御方法
。 2 メモリーに記憶される内容は、外部から設定できる
ことを特徴とする特許請求の範囲第1項記載のワイヤカ
ット放電加工制御方法。 3 加工速度に関与する条件は被加工物の材質毎に選定
できるものであることを特徴とする特許請求の範囲第1
項又は第2項記載のワイヤカット放電加工制御方法。
[Claims] 1. Wire-cut electrical discharge machining in which the workpiece is machined by generating electrical discharge in the opposing machining gap between a wire electrode and the workpiece, and the machining feed rate is controlled by the voltage or machining current in the machining gap. In the control method, multiple sets of data are stored in memory, each pairing the electrical conditions of the machining power supply that are optimal for each thickness of the workpiece and the corresponding machining feed rate, and the data is set in memory to correspond to the machining feed rate during machining. wire cut electric discharge machining control characterized in that the data stored in the memory is shifted to change the electrical conditions, and the machining feed rate during machining and the machining feed rate stored in the memory are approximately matched. Method. 2. The wire-cut electric discharge machining control method according to claim 1, wherein the contents stored in the memory can be set from the outside. 3. The first claim characterized in that the conditions related to the processing speed can be selected for each material of the workpiece.
The wire cut electric discharge machining control method according to item 1 or 2.
JP7827077A 1977-06-30 1977-06-30 Wire cut electrical discharge machining control method Expired JPS6052890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7827077A JPS6052890B2 (en) 1977-06-30 1977-06-30 Wire cut electrical discharge machining control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7827077A JPS6052890B2 (en) 1977-06-30 1977-06-30 Wire cut electrical discharge machining control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11760378A Division JPS5481593A (en) 1978-09-25 1978-09-25 Wire-cut electric-discharge processing device

Publications (2)

Publication Number Publication Date
JPS5413096A JPS5413096A (en) 1979-01-31
JPS6052890B2 true JPS6052890B2 (en) 1985-11-21

Family

ID=13657282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7827077A Expired JPS6052890B2 (en) 1977-06-30 1977-06-30 Wire cut electrical discharge machining control method

Country Status (1)

Country Link
JP (1) JPS6052890B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120931A (en) * 1979-03-07 1980-09-17 Mitsubishi Electric Corp Wire cut-type electric discharge machining
JPS55125936A (en) * 1979-03-22 1980-09-29 Mitsubishi Electric Corp Wire cut electrical discharge machine
WO1980002003A1 (en) * 1979-03-22 1980-10-02 Mitsubishi Electric Corp Wire-cut electrical discharge machine
JPS55137837A (en) * 1979-04-03 1980-10-28 Mitsubishi Electric Corp Wire cut type electric discharge machining
JPS5652129A (en) * 1979-09-27 1981-05-11 Mitsubishi Electric Corp Control of wire-cut electric spark machining
JPS56139834A (en) * 1980-03-29 1981-10-31 Fanuc Ltd Automatic working condition switching apparatus
JPS57114329A (en) * 1980-12-30 1982-07-16 Fanuc Ltd Control of wire-cut electric discharge processor
JPS58109224A (en) * 1981-12-17 1983-06-29 Fanuc Ltd Wire cut electric discharge machining system
JPS5976719A (en) * 1982-10-25 1984-05-01 Fanuc Ltd Change-over system of term of wire cut electrical discharge machining
JPS6089204A (en) * 1983-10-21 1985-05-20 Fanuc Ltd Retrieving system for processing condition of processing system
JPS6195824A (en) * 1985-09-30 1986-05-14 Mitsubishi Electric Corp Wire cut electric discharge machining
WO1988003071A1 (en) * 1986-10-24 1988-05-05 Mitsubishi Denki Kabushiki Kaisha Wire cut electrical discharge machine
JP2575743Y2 (en) * 1992-03-28 1998-07-02 コマニー株式会社 L-shaped bracket for supporting a horizontal rail of a partition frame and a frame using the L-shaped bracket

Also Published As

Publication number Publication date
JPS5413096A (en) 1979-01-31

Similar Documents

Publication Publication Date Title
JPS6052890B2 (en) Wire cut electrical discharge machining control method
US4292491A (en) Wire electrode electric discharge machine with controlled electrical parameters
GB1453901A (en) Welding system
US4208256A (en) Fluid pumping control method and apparatus for machine tools
JPH027772B2 (en)
US4695696A (en) Electric discharge machine with control of the machining pulse&#39;s current value in accordance with the delay time
US3860779A (en) Method and apparatus for positioning an electrode-tool relative to a workpiece in electrical discharge machining
JP2682310B2 (en) Wire electric discharge machining method and apparatus
US4152569A (en) Servo feed circuit for electrical discharge machining apparatus
US3666906A (en) Carbide deposition structure and method
US4814052A (en) Method for the electrochemical processing of workpieces
EP0081587B1 (en) Wire cut electric discharge machining power source
US4983800A (en) Interelectrode distance controlling device in electric discharge machining apparatus
JPS6195824A (en) Wire cut electric discharge machining
JPH078456B2 (en) Electric discharge machine
JPS61131824A (en) Numerical control device
JPS6161711A (en) Power source for electric discharge machining
JP2578999B2 (en) Electric discharge machine
JPS61252071A (en) Device for controlling grinding of grinding machine
JPS6240125B2 (en)
US4891486A (en) Device for feed control of electrode-tool in spark erosion machines
JP2762198B2 (en) Electric discharge machining method and apparatus
JPH0138615B2 (en)
JPS6211969B2 (en)
JPH0138613B2 (en)