JPS6052871B2 - Method of manufacturing self-purifying coating layer - Google Patents

Method of manufacturing self-purifying coating layer

Info

Publication number
JPS6052871B2
JPS6052871B2 JP55032973A JP3297380A JPS6052871B2 JP S6052871 B2 JPS6052871 B2 JP S6052871B2 JP 55032973 A JP55032973 A JP 55032973A JP 3297380 A JP3297380 A JP 3297380A JP S6052871 B2 JPS6052871 B2 JP S6052871B2
Authority
JP
Japan
Prior art keywords
catalyst
coating layer
phosphate
alkali
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032973A
Other languages
Japanese (ja)
Other versions
JPS56129058A (en
Inventor
邦夫 木村
敦 西野
和則 曾根高
善博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55032973A priority Critical patent/JPS6052871B2/en
Publication of JPS56129058A publication Critical patent/JPS56129058A/en
Publication of JPS6052871B2 publication Critical patent/JPS6052871B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Cookers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 本発明は、自己浄化型調理装置の壁面に形成される自
己浄化被覆層に関し、特に酸化反応に対してすぐれた触
媒活性を有する被覆層を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-purifying coating layer formed on the wall surface of a self-purifying cooking device, and particularly aims to provide a coating layer having excellent catalytic activity against oxidation reactions. .

この種の自己浄化型調理装置の壁面の被覆層は、従来
ガラス質フリットを結合剤したホーロー質のものと、ケ
イ酸塩を結合剤としたものとがある。前者の代表的なも
のとしては、特公昭49一33腋愕公報に示されている
ように、ある適当な酸化触媒をガラス質母体中に溶融配
合し、永久的にホーロー質被覆全体にわたり固定させた
ものである。また、特公昭47−178329公報に記
載されているように、市販の酸化触媒と市販のガラス質
フリットを混合してスリップを合成し、金属基質上に形
成されたエナメル基質上にこのスリップを吹付け焼付け
たものなどである。一方、後者においては、特公昭49
−2812的公報にみられるように、アルカリ金属ケイ
酸塩を結合剤として、触媒を分散し、金属基質に担持し
たものである。これらはそれぞれ一長一短があり、ガラ
ス質フリットを結合剤とした前者は、製造過程において
、500〜850℃で焼付けるため、基材の種類や形状
、板厚が限定されてしまう。また、ガラス質フリットが
ある程度溶融しないことには、結合されないため、被覆
層の表面積が小さくなり、触媒作用が発揮されないとい
う欠点がある。また、アルカリ金属ケイ酸塩を結合剤と
した後者は、結合力が弱く、機械的な衝撃によつて基板
から剥離してしまう欠点がある。さらに重大な問題点は
、ケイ酸塩が水蒸気に対して溶解してしまうことである
。このように、自己浄化型調理装置は市販されてはいる
ものの、製造上からくるコスト、触媒性能、あるいは品
質といつた点において問題があり、満足のいくものでは
なかつた。
The coating layer on the wall of this type of self-cleaning cooking device has conventionally been made of enamel using a glass frit as a binder, or coated with a silicate as a binder. A typical example of the former is as shown in Japanese Patent Publication No. 49-33, in which a suitable oxidation catalyst is melt-blended into a vitreous matrix and permanently fixed over the entire enamel coating. It is something that Furthermore, as described in Japanese Patent Publication No. 47-178329, a slip is synthesized by mixing a commercially available oxidation catalyst and a commercially available vitreous frit, and this slip is blown onto an enamel substrate formed on a metal substrate. It is something that has been baked on. On the other hand, in the latter case,
As seen in Publication No. 2812, a catalyst is dispersed and supported on a metal substrate using an alkali metal silicate as a binder. Each of these has advantages and disadvantages, and the former, which uses glass frit as a binder, is baked at 500 to 850°C during the manufacturing process, which limits the type, shape, and thickness of the base material. Furthermore, the fact that the glassy frit does not melt to some extent has the disadvantage that it is not bonded, so the surface area of the coating layer becomes small and the catalytic action is not exhibited. Furthermore, the latter, which uses an alkali metal silicate as a binder, has a weak bonding force and has the disadvantage of peeling off from the substrate due to mechanical impact. A more serious problem is that silicates dissolve in water vapor. As described above, although self-cleaning cooking devices are commercially available, they have been unsatisfactory due to problems in manufacturing costs, catalyst performance, and quality.

本発明は、上記従来の欠点を解消するもので、自己浄化
被覆層の結合剤を、一般式MO・XP2O5・YH2O
(Mは金属、X,yは実数)で示されるリン酸塩とする
ことを特徴の1つとするものである。
The present invention solves the above-mentioned conventional drawbacks, and uses a binder of the general formula MO・XP2O5・YH2O for the self-purifying coating layer.
One of the characteristics is that it is a phosphate represented by (M is a metal, and X and y are real numbers).

ここで、MはAe,Mg,Ca,Fe,Cu,Ba,T
i,Mn,Zn等の金属である。
Here, M is Ae, Mg, Ca, Fe, Cu, Ba, T
These are metals such as i, Mn, and Zn.

例えば、第一リンー酸アルミニウム、第二リン酸アルミ
ニウム、第三リン酸アルミニウム、リン酸マグネシウム
などがある。リン酸塩の硬化機構は、加熱することによ
り次に示すような高分子の縮合リン酸塩となることに.
よる。
Examples include primary aluminum phosphate, secondary aluminum phosphate, tertiary aluminum phosphate, and magnesium phosphate. The curing mechanism of phosphate is that when heated, it becomes a polymeric condensed phosphate as shown below.
evening.

この縮合リン酸塩をさらに高温に加熱すると結晶化し、
硬化する。
When this condensed phosphate is heated to a higher temperature, it crystallizes,
harden.

例えば第一リン酸アルミニウムを加熱すると、次のよう
な反応によつて結晶化し、硬化する。この反応において
、加熱温度が50(代)以下のときは、脱水を完了した
Ae2O3・3p205およびA′203・P2O5の
結晶と非結晶のもの、それに脱水過程の中間生成物であ
る非晶質のAe2O3・3P20s−2H20などが一
様に存在し、一度は結晶化するが、空気中に放置すると
吸湿性の強いAe2O3・3P205・2H20が空気
中の水分を結晶水として取り入れ、Ae2O3・3p2
0.・6H20結晶が生成され、同時に体積が膨張し、
始めの結晶化組織を破壊して粉末状になつてしまう。
For example, when primary aluminum phosphate is heated, it crystallizes and hardens through the following reaction. In this reaction, when the heating temperature is below 50 degrees, the crystals and amorphous Ae2O3.3p205 and A'203.P2O5 that have completed dehydration, as well as the amorphous intermediate product of the dehydration process, Ae2O3・3P20s-2H20 etc. exist uniformly and will crystallize once, but when left in the air, Ae2O3・3P205・2H20, which is highly hygroscopic, takes in moisture from the air as crystal water and forms Ae2O3・3p2.
0.・6H20 crystals are generated and the volume expands at the same time,
It destroys the initial crystallized structure and turns into powder.

また、500℃以上に加熱したものは、安定で強固の結
晶体Ae2O3・3P20.を形成する。さらに、約1
00℃高め、600℃以上になると、Ae2O3・3p
205→Ae2O,・P2O5+2H20の熱分解を起
こして、より強固な耐熱性のものが得られる。このよう
にリン酸塩を単独で用いる場合は500℃以上の加熱が
必要である。
In addition, when heated to 500°C or higher, a stable and strong crystalline Ae2O3.3P20. form. Furthermore, about 1
If the temperature rises by 00℃ or exceeds 600℃, Ae2O3・3p
By causing thermal decomposition of 205→Ae2O, .P2O5+2H20, a stronger heat-resistant product can be obtained. When using a phosphate alone as described above, heating to 500° C. or higher is required.

しかしながら、自己浄化被覆層を形成させる基材は、通
常、鋼材が使用されているため、900C以上に温度を
上げることはできないので、500〜800Cの範囲で
加熱するのが好ましい。また、第一リン酸塩のような場
合、末端に解離性のHを、耐水性のよいもので置換封鎖
させることができる。
However, since the base material on which the self-cleaning coating layer is formed is usually made of steel, the temperature cannot be raised above 900C, so it is preferable to heat the base material in the range of 500 to 800C. Furthermore, in the case of primary phosphates, the dissociable H at the terminal can be substituted and blocked by a substance with good water resistance.

リン酸塩は水溶液中で酸性を示すために0H基中のHと
金属とは置換反応が行われる。この目的に用いられてい
る金属は、酸化亜鉛など、リン酸塩に対し相当激しく反
応するものと、反応性の緩慢なAe,Si,Ti,Fe
,Snなどの酸化物との複合酸化物が用いられている。
リン酸塩と複合酸化物による硬化は、中和によるリン酸
金属塩の生成に伴う金属によるリン酸基の架橋反応とが
相乗的に作用しているものと思われ、比較的低温(12
0〜150℃)で硬化し、耐水性の良好なものが得られ
る。その他にMgO,Mg(0H)2,Ca0,Ca(
0H)2,石綿、タルク、フライアッシュ等の塩基性物
質を硬化促進剤として用いることもできる。
Since phosphates exhibit acidity in aqueous solution, a substitution reaction occurs between H in the OH group and the metal. The metals used for this purpose include those that react quite violently with phosphates, such as zinc oxide, and those that are slowly reactive, such as Ae, Si, Ti, and Fe.
, Sn, and other oxides are used.
Curing by phosphate and composite oxide is thought to be due to the synergistic effect of the crosslinking reaction of phosphate groups by the metal accompanied by the formation of metal phosphate by neutralization, and is caused by the synergistic effect of the cross-linking reaction of phosphate groups by the metal, which occurs at relatively low temperatures (12
It hardens at a temperature of 0 to 150°C) and has good water resistance. In addition, MgO, Mg(0H)2, Ca0, Ca(
0H) 2, basic substances such as asbestos, talc, and fly ash can also be used as hardening accelerators.

しかしながら、これらの方法はP(リン)とM(金属)
のモル比に大きく支配され、結合性、耐熱、耐水性に大
きく影響する。
However, these methods require P (phosphorus) and M (metal)
It is largely controlled by the molar ratio of , and has a large effect on bonding properties, heat resistance, and water resistance.

リン酸塩単独で用いる場合のPとMのモル比は、小さい
方が耐水性は向上するが特にその比が1以下では付着性
、水溶液での安定性が低下する。これはM(金属)の種
類によつても値は変わつてくるが、通常1〜4の範囲が
好ましい。また、リン酸塩に複合酸化物を併用した場合
は、PとMのモル比によつて温度と耐水性に影響を及ぼ
し、P<5Mのモル比が3より大きい場合は、高温度に
ならないと耐水性が向上されないし、この比が小さい場
合は比較的低温で耐水性のあるものが得られる。
When using a phosphate alone, the smaller the molar ratio of P and M, the better the water resistance, but if the ratio is less than 1, the adhesion and stability in an aqueous solution will deteriorate. Although this value varies depending on the type of M (metal), it is usually preferably in the range of 1 to 4. In addition, when a complex oxide is used in combination with phosphate, the temperature and water resistance are affected by the molar ratio of P and M, and if the molar ratio of P<5M is greater than 3, high temperatures will not occur. If this ratio is small, water resistance will not be improved, and if this ratio is small, a product with water resistance can be obtained at a relatively low temperature.

しかしながら、P<15Mのモル比が例えば0.5以下
になると、室温にて急速に凝結するので、最適作業温度
を考慮した場合、PとMのモル比は0.5〜3が最適で
ある。さらに、このPとMのモル比は自己浄化被覆層の
性能に大きく影響する。
However, if the molar ratio of P<15M becomes 0.5 or less, it will rapidly condense at room temperature, so when considering the optimum working temperature, the optimum molar ratio of P and M is 0.5 to 3. . Furthermore, the molar ratio of P and M greatly affects the performance of the self-cleaning coating layer.

P<5Mのモル比が小さい場合は影響はないが、P/M
比を大きくするにしたがつて、自己浄化被覆層の性能が
低下してしまう。これはP(リン)が触媒毒になるため
で、Pのモル数が大であればその影響も大きくなる。な
お、PとMのモル比が4.0までは、影響は小さいが、
4.@).上になると、性能の低下が著しい。このよう
に、PとMのモル比は0.5〜4.0が本発明において
は最も好ましい値である。次に、リン酸塩の添加量は、
自己浄化被覆層の表面硬度や、基材との密着に大きく影
響する。
There is no effect when the molar ratio of P<5M is small, but P/M
As the ratio increases, the performance of the self-cleaning coating layer decreases. This is because P (phosphorus) becomes a catalyst poison, and the greater the number of moles of P, the greater the effect. In addition, the effect is small until the molar ratio of P and M is 4.0, but
4. @). As the temperature increases, the performance deteriorates significantly. Thus, the molar ratio of P and M is most preferably 0.5 to 4.0 in the present invention. Next, the amount of phosphate added is
It greatly affects the surface hardness of the self-purifying coating layer and its adhesion to the base material.

触媒あるいは硬化促進剤などの固形分に対して、リン酸
塩を少なくとも5重量%を含有していなければならない
。すなわち、5重量%以下では、リン酸塩と触媒との結
合が弱く、表面がやわらかい。また、基材との密着も弱
く、剥離しやすい。またリン酸塩を大量に用いたとして
も、リン酸塩自体が温度を加えることによつて多孔質を
形成するのと、リン酸塩と固形分との何らかの相乗効果
によつて触媒作用、あるいは表面硬度、密着に対して影
響を及ぼさないものと思われる。よつて、リン酸塩は少
なくとも5重量%であればよいが、大量に入れてもコス
トが高くなるだけなので5〜5…駐量%が好ましい。こ
のように、リン酸塩は、単独あるいは硬化促進剤を併用
することにより、耐水性のよい。
It must contain at least 5% by weight of phosphate based on the solid content of the catalyst or curing accelerator. That is, if it is less than 5% by weight, the bond between the phosphate and the catalyst is weak and the surface is soft. In addition, the adhesion to the base material is weak and it is easy to peel off. Furthermore, even if a large amount of phosphate is used, the phosphate itself becomes porous when heated, and some synergistic effect between the phosphate and the solid content causes catalytic action or It does not seem to have any effect on surface hardness or adhesion. Therefore, the amount of phosphate should be at least 5% by weight, but since adding a large amount only increases the cost, it is preferably 5 to 5% by weight. As described above, phosphate has good water resistance when used alone or in combination with a curing accelerator.

しかも密着、表面硬度の優れた被覆層が得られ、さなに
は触媒作用に影響を及ぼすことのない特徴を有している
。リン酸塩は結合剤として上記のような特徴を有するが
、これを用いて触媒を担持した自己浄化被覆層には大き
な問題がある。
In addition, a coating layer with excellent adhesion and surface hardness can be obtained, and it also has the characteristics of not affecting the catalytic action. Although phosphate has the above-mentioned characteristics as a binder, there are major problems with self-purifying coating layers in which catalysts are supported using phosphate.

それは、リン酸塩が触媒毒となつて活性を低下させてし
まうことである。一般に、触媒には触媒毒が存在し、触
媒の活性点に強く吸着して触媒能を死活させると云われ
ている。触媒毒となる物質は広く確認されており、P,
Pb,S,Aslおよびこれらの化合物が代表的なもの
である。したがつてリン酸塩の解離したPq−イオンは
、触媒毒となり焼成後も触媒に付着して、活性を低下さ
せてしまう。本発明は、このPC8−の触媒毒を、触媒
を予めアルカリ処理することによつて活性を維持させよ
うとするものである。
The problem is that phosphates act as catalyst poisons and reduce activity. It is generally said that catalyst poisons exist in catalysts and strongly adsorb to the active sites of the catalyst, rendering the catalyst inactive. Substances that act as catalyst poisons have been widely identified, including P,
Representative examples include Pb, S, Asl and their compounds. Therefore, the dissociated Pq- ions of the phosphate act as catalyst poisons and adhere to the catalyst even after calcination, reducing its activity. The present invention attempts to maintain the activity of this PC8- catalyst poison by treating the catalyst with an alkali in advance.

触媒のアルカリ処理とは、リン酸塩溶液と混合する前に
触媒をアルカリ溶液に浸漬し、触媒をアルカリで被覆す
ることである。
Alkali treatment of the catalyst is immersing the catalyst in an alkaline solution and coating the catalyst with alkali before mixing with the phosphate solution.

触媒をアルカリで被覆する効果は、前述のKtの付着を
阻止することにある。アルカリを予め触媒に吸着させた
場合、活性点に強く吸着され、その後リン酸塩中に・放
置しても一部が可溶するだけである。このアルカリ処理
をリン酸塩溶液と同時に混合すると、競争反応によつて
PO卜が触媒上に付着してしまう。したがつて触媒のア
ルカリ処理はリン酸塩との混合前に行う必要がある。ア
ルカリ処理に用いるアルカリ塩は、 Na2CO3,N4HCO3,KHCO3,NaOH,
K2Cα,KOHよりもる群より選択される。
The effect of coating the catalyst with alkali is to prevent the above-mentioned Kt deposition. When an alkali is adsorbed onto the catalyst in advance, it is strongly adsorbed to the active sites, and even if it is left in phosphate afterwards, only a portion of it becomes soluble. If this alkaline treatment is mixed at the same time as the phosphate solution, PO will adhere to the catalyst due to competitive reaction. Therefore, alkaline treatment of the catalyst must be carried out before mixing with the phosphate. Alkali salts used for alkali treatment include Na2CO3, N4HCO3, KHCO3, NaOH,
Selected from the group of K2Cα and KOH.

これらのアルカリ塩の特徴は、加熱後もNa2O,K2
OまたはK2cO3,Na2cO3となり触媒上に残存
することである。同じアルカリであつてもNH4OHは
加熱後、熱分解を起こし、触媒上から散逸し、その後、
Pq−が付着するので、本発明の目的を満足するもので
はない。通常、電解二酸化マンガンは、電解浴槽中のS
(Y,−イオンをを吸着し、2.0〜2.4重量%のS
O:ーを含有している。このSq−を除去するために、
工業的にはNH4OHを用いてアルカリ処理をし、電解
二酸化マンガンのPHを7以上に調整している。この場
合のアルカリ処理は、乾電池用のアルカリ処理であつて
、むしろアルカリの脱着が起こりやすいものの方が好ま
しいのである。本発明の特徴は、従来の電解二酸化マン
ガンで行われているアルカリ処理とは、主旨を異にして
おり、しかも本発明においては、アルカリとして、NH
4OHを含まない。本発明では、これらの塩以外のアル
カリでも使用可能であるが、価格、作業性等から上述し
たものが好ましい。中でも炭酸塩は、熱分解温度も高く
、本発明には好ましい材料と云える。アルカリ処理は、
上述した塩の適当な濃度の溶液中に一定時間浸漬後、乾
燥して行う。
The characteristics of these alkali salts are that they retain Na2O and K2 even after heating.
It becomes O, K2cO3, and Na2cO3 and remains on the catalyst. Even if the alkali is the same, NH4OH will undergo thermal decomposition after heating, dissipate from the catalyst, and then
Since Pq- is attached, the object of the present invention is not satisfied. Usually, electrolytic manganese dioxide is S in an electrolytic bath.
(Adsorbs Y,- ions, 2.0 to 2.4 wt% S
O: Contains -. In order to remove this Sq-,
Industrially, the pH of electrolytic manganese dioxide is adjusted to 7 or higher by alkali treatment using NH4OH. The alkali treatment in this case is an alkali treatment for dry batteries, and it is preferable that the alkaline treatment be one that easily causes alkali desorption. The feature of the present invention is that the gist is different from the conventional alkali treatment performed with electrolytic manganese dioxide, and in the present invention, as the alkali, NH
Contains no 4OH. In the present invention, alkalis other than these salts can also be used, but the above-mentioned ones are preferred in terms of cost, workability, etc. Among them, carbonate has a high thermal decomposition temperature and can be said to be a preferable material for the present invention. Alkaline treatment is
This is carried out by immersing the above-mentioned salt in a solution of an appropriate concentration for a certain period of time and then drying.

このアルカリ処理した触媒は、触媒活性点の保護以外に
、以下に示す重要な役割を果たしている。その一つは、
リン酸塩化合物の溶液のPH調整を行うことである。リ
ン酸塩化合物の溶液は、PHが1程度の強い酸性を有し
ていて、アルミニウムを基材にすると酸で溶出して、焼
成時もガス発生し、強い結合力や、美しい被覆層が得ら
れないのが現状である。このことは、金属表面と自己浄
化被覆層間にホーロー層や耐熱塗料から構成される耐食
層を設けた場合も同様である。その理由は、上述した耐
食層はミクロ的にみれば、必ずピンホールが存在してい
て、その中を通つてリン酸塩化合物溶液が金属表面に到
達するからである。したがつてリン酸塩化合物溶液のP
Hはできるだけ中性にすることが好ましい。この観点か
ら、アルカリ処理した触媒は、リン酸塩化合物の溶液内
で、一部アルカリが溶出し、溶液を中和させる作用を有
している。勿論、触媒に付着したアルカリの全てが溶出
するのではなく、触媒活性に必要な活性点にはアルカリ
が強く吸着されている。アルミニウムの安定PH領域は
4.0〜8.0程度で、アルカリ処理した触媒をリン酸
塩の溶液に混合する場合に、PHがこの範囲に入るよう
にアルカリ処理条件を決定する。リン酸塩を含んだ耐熱
塗料が強い酸性を示すため、これに中和剤を添加した中
性に近い耐熱塗料が市販されているが、こ・の様な形態
でアルカリを添加したリン酸溶液中に触媒を混合しても
、触媒にはPq−が吸着してしまい、本発明の主旨を満
足するものではない。次に、第2の特徴として、アルカ
リ処理によつて吸着されたアルカリが焼成後、被覆層内
にあつて触媒効果を発揮する点である。アルカリ金属や
アルカリ土類金属は、古くから油脂の分解触媒として作
用することが確認されている。その作用機構については
、未だ議論のあるところであるが、本発明者らの推察に
よれば、触媒上に吸着された″アルカリは、加熱後Na
2O,K2O,K2CO3,Na2cO3になり水蒸気
を吸収し、アルカリ金属イオンはNaOH,KOHとな
る。より安心な化合物になるために吸収された水を伴つ
てアルカリの存在化で油脂はケン化を起こし分解する。
この分解された油脂は、近傍の触媒でさらに酸化され、
CO2とH2Oにまで分解される。アルカリは被覆層内
に均一にあるよりも、触媒の近傍にあるため、完全酸化
に対しより有利である。以上の作用機構により、本発明
のアルカリ処理した触媒は油脂の浄化に対し効果を発揮
しているものと思われる。次に本発明に用いる触媒につ
いて述べる。本発明に用いることのできる触媒は金属酸
化物か複酸化物である。
This alkali-treated catalyst plays the following important role in addition to protecting the catalyst active sites. One of them is
This is to adjust the pH of a solution of a phosphate compound. Phosphate compound solutions have a strong acidity with a pH of about 1, and when aluminum is used as a base material, the acid dissolves and generates gas during firing, resulting in strong bonding strength and a beautiful coating layer. The current situation is that it cannot be done. This also applies to the case where a corrosion-resistant layer made of an enamel layer or a heat-resistant paint is provided between the metal surface and the self-cleaning coating layer. The reason is that the above-mentioned corrosion-resistant layer always has pinholes when viewed microscopically, and the phosphate compound solution reaches the metal surface through the pinholes. Therefore, P of the phosphate compound solution
It is preferable that H be as neutral as possible. From this point of view, the alkali-treated catalyst has the effect of partially eluting the alkali in the solution of the phosphate compound and neutralizing the solution. Of course, not all of the alkali attached to the catalyst is eluted, but the alkali is strongly adsorbed to the active sites necessary for catalytic activity. The stable pH range of aluminum is about 4.0 to 8.0, and when an alkali-treated catalyst is mixed into a phosphate solution, the alkali treatment conditions are determined so that the pH falls within this range. Since heat-resistant paints containing phosphates are highly acidic, nearly neutral heat-resistant paints with neutralizing agents added to them are commercially available. Even if a catalyst is mixed therein, Pq- will be adsorbed to the catalyst, which does not satisfy the gist of the present invention. Next, the second feature is that the alkali adsorbed by the alkali treatment remains in the coating layer after firing and exerts a catalytic effect. Alkali metals and alkaline earth metals have long been confirmed to act as decomposition catalysts for fats and oils. The mechanism of action is still debated, but according to the inventors' speculation, the "alkali" adsorbed on the catalyst becomes Na after heating.
It becomes 2O, K2O, K2CO3, and Na2cO3 and absorbs water vapor, and the alkali metal ions become NaOH and KOH. In the presence of an alkali, fats and oils saponify and decompose along with absorbed water to become safer compounds.
This decomposed oil and fat is further oxidized by a nearby catalyst,
It is decomposed into CO2 and H2O. Since the alkali is located near the catalyst rather than uniformly within the coating layer, it is more favorable for complete oxidation. Due to the above mechanism of action, the alkali-treated catalyst of the present invention is believed to be effective in purifying oils and fats. Next, the catalyst used in the present invention will be described. Catalysts that can be used in the present invention are metal oxides or double oxides.

金属酸化物は、触媒作用を有するものであればいずれも
使用可能で、Mn,Cu,CO,Ni,Fe,Crなど
の金属の酸化物が適している。これらの金属酸化物は、
金属酸化物として耐熱塗料と混合してもよいが、焼成後
金属酸化物となる炭酸塩、水酸化物として用いてもよい
。本発明では、上述した化合物にアルカリ処理を行うが
、この操作によつて触媒の熱的特性が変化する。図面は
、電解二酸化マンガン(γ一MnO2)の熱処理温度と
比表面積との関係を示したもので、曲線1は本発明のア
ルカリ処理を行つたもの、2はアルカリ処理をしないも
のである。
Any metal oxide can be used as long as it has a catalytic action, and oxides of metals such as Mn, Cu, CO, Ni, Fe, and Cr are suitable. These metal oxides are
It may be mixed with a heat-resistant paint as a metal oxide, but it may also be used as a carbonate or hydroxide, which becomes a metal oxide after firing. In the present invention, the above-mentioned compound is treated with an alkali, and this operation changes the thermal properties of the catalyst. The drawing shows the relationship between heat treatment temperature and specific surface area of electrolytic manganese dioxide (γ-MnO2), where curve 1 is for the one subjected to the alkali treatment of the present invention and curve 2 is for the one without the alkali treatment.

アルカリ処理条件は、アルカリとしてNa2cO3の2
規定水溶液を用い、40Cで2S間浸漬したものである
。この試料と、アルカリ処理をしないものとを各温度で
1時間熱処理してBET法により比表面積を測定した。
図から明らかな様に、アルカリ処理したものは高温にな
つて比表面積の低下が未処理品に比べて少ないことが解
かる。
The alkali treatment conditions were Na2cO3 2 as alkali.
It was immersed for 2S at 40C using a specified aqueous solution. This sample and one without alkali treatment were heat treated at each temperature for 1 hour, and the specific surface area was measured by the BET method.
As is clear from the figure, the specific surface area of the alkali-treated specimens decreases less at high temperatures than the untreated specimens.

このことは、次の様に推察される。触媒表面上に吸着さ
れたアルカリは、高温での加熱時もNa2O,K2O,
K2CO3,Na2CO,となつて残存し、二酸化マン
ガン粒子のシンタリングの抑制剤となつていて、比表面
積の低下を阻止しているものと思われる。このため、ア
ルカリ処理をした触媒は耐熱性や長寿命にも寄与してい
るものと推察される。本発明に用いる好ましい金属酸化
物触媒は、上述した中でも、特に二酸化マンガンで、油
脂の完全酸化反応に対して有利である。
This can be inferred as follows. The alkali adsorbed on the catalyst surface becomes Na2O, K2O,
It is thought that they remain in the form of K2CO3 and Na2CO, and act as inhibitors of sintering of manganese dioxide particles, thereby preventing a decrease in the specific surface area. Therefore, it is presumed that the alkali-treated catalyst contributes to heat resistance and long life. Among the metal oxide catalysts mentioned above, the preferred metal oxide catalyst used in the present invention is particularly manganese dioxide, which is advantageous for the complete oxidation reaction of fats and oils.

次に金属酸化物と同様にして用いる複酸化物について述
べる。
Next, a double oxide used in the same manner as the metal oxide will be described.

複酸化物とは、2種以上の酸化物からなる高次化合物の
うち、その構造において酸素酸としての基イオン存在が
認められないような化合物のことである。
A double oxide is a higher-order compound consisting of two or more types of oxides, in which the presence of a group ion as an oxygen acid is not recognized in its structure.

一般式としてはM(■)M(■)204(M(n)は2
価の金属、M(■)は3価の金属を示す)で示され、ス
ピネル型構造を有しているものである。本発明に有効な
ものは、特にM(■)Fe2O4で示されるもので、M
(■)がMn2+,Fe2+,CO2+,Ni2+,C
u2+,Zn2+,Ba2+などからなるものである。
The general formula is M(■)M(■)204(M(n) is 2
It is represented by a valent metal (M (■) indicates a trivalent metal) and has a spinel type structure. Particularly effective for the present invention is the one represented by M(■)Fe2O4,
(■) is Mn2+, Fe2+, CO2+, Ni2+, C
It consists of u2+, Zn2+, Ba2+, etc.

この様な組成からなる複酸化物は、耐熱性が高く、10
00℃まで安定である。本発明に好ましい複酸化物は、
その成分の一つとして、少なくとも酸化亜鉛ZnOを含
んであるものであつて、スピネルとしてZrlFe2O
4を含んでいるものである。
A double oxide with such a composition has high heat resistance and 10
Stable up to 00°C. Preferred double oxides for the present invention are:
It contains at least zinc oxide ZnO as one of its components, and ZrlFe2O as spinel.
It contains 4.

このZnFe2O4は単独で添加する必要はなく、Zn
Fe2O4とMrlF′E2O,との混合物からなるも
のが好ましい。成分の一つとしてZnOを含有したもの
は、特に耐熱性にすぐれ、化学的にも安定である。また
MrlF′E2O,は金属酸化物としてMnO2を選択
した場合に助触媒効果として優れている。その他、Ba
Fe2O,,COFe2O,なども効果的である。次に
上記のリン酸塩および触媒を用いて自己浄化被覆層を製
造する方法について説明する。被覆層を形成する金属基
材として最も望ましいのは、アルミニウムを溶融メッキ
で被覆したアルミナイズド鋼板である。このアルミナイ
ズド鋼板は、耐熱、耐食性に優れているので、自己浄化
被覆層を片面にのみ形成できるという利点を有している
。しかも鋼板の熱特性は、基材の鋼材に依存するため、
薄い鋼板を用いても熱歪みがない。また、基材の脱脂工
程でもホーロー用鋼板などに比べ、簡単な操作で行える
。触媒はリン酸塩化合物と混合する前にアルカリ処理を
する。
This ZnFe2O4 does not need to be added alone;
A mixture of Fe2O4 and MrlF'E2O is preferred. Those containing ZnO as one of the components have particularly excellent heat resistance and are chemically stable. Moreover, MrlF'E2O has an excellent promoter effect when MnO2 is selected as the metal oxide. Others, Ba
Fe2O, COFe2O, etc. are also effective. Next, a method for producing a self-purifying coating layer using the above-mentioned phosphate and catalyst will be explained. The most desirable metal base material for forming the coating layer is an aluminized steel plate coated with aluminum by hot-dip plating. Since this aluminized steel sheet has excellent heat resistance and corrosion resistance, it has the advantage that a self-cleaning coating layer can be formed only on one side. Moreover, the thermal properties of steel sheets depend on the base steel material.
No thermal distortion even when using thin steel plates. Additionally, the process of degreasing the base material can be performed more easily than with enameled steel plates. The catalyst is alkali treated before being mixed with the phosphate compound.

アルカリ処理工程は先にも述べたように、予め準備され
たアルカリ溶液中に触媒を一定時間浸漬することによつ
て行う。浸漬温度は、触媒のアルカリの吸着量にも影響
を及ぼすので、一定温度に保つ方がよい。浸漬後、12
0℃程度の温度で乾燥する。この触媒をリン酸塩溶液と
ボールミルなどで混合後、スプレーガンで基材に塗布す
る。膜厚は、自己浄化被覆層の性能を左右する重要な因
子で、膜厚が厚い程性能が良いが、余り厚すぎると被覆
層に亀裂が入るので、250μmlこすることが望まし
い。乾燥後、300℃程度で30分程度加熱してリン酸
塩を硬化させる。リン酸塩を単独で用いる場合は500
℃以上の加熱が必要であるが、触媒など金属酸化物が存
在する場合は硬化が促進され、300℃程度の加熱でも
充分である。触媒とリン酸塩を含む塗料を加熱すること
によりリン酸塩を硬化させて被覆層を形成するための適
当な加熱温度は200〜500′Cである。あまり高温
度になると触媒能が低下する。触媒の他に、被覆層の多
孔度を増大させる目的で種々の耐火性充填材を添加する
ことも任意である。
As mentioned above, the alkali treatment step is carried out by immersing the catalyst in an alkaline solution prepared in advance for a certain period of time. The immersion temperature also affects the amount of alkali adsorbed by the catalyst, so it is better to keep it at a constant temperature. After soaking, 12
Dry at a temperature of about 0°C. This catalyst is mixed with a phosphate solution using a ball mill or the like, and then applied to the substrate using a spray gun. The film thickness is an important factor that affects the performance of the self-cleaning coating layer, and the thicker the film thickness, the better the performance, but if it is too thick, the coating layer will crack, so it is desirable to rub 250 μml. After drying, the phosphate is cured by heating at about 300° C. for about 30 minutes. 500 when using phosphate alone
Although heating to a temperature of 300° C. or higher is necessary, curing is accelerated if a metal oxide such as a catalyst is present, and heating at about 300° C. is sufficient. A suitable heating temperature for curing the phosphate and forming the coating layer by heating the paint containing the catalyst and phosphate is 200-500'C. If the temperature is too high, the catalytic ability will decrease. In addition to the catalyst, it is also optional to add various refractory fillers for the purpose of increasing the porosity of the coating layer.

耐火性充填材としては、SiO.,Al2O3,MgO
,CaOなどの他、これらを一成分とする鉱物が用いら
れる。その他、Ae,znなどの金属粉末、およびこれ
らの合金類も耐火性充填材として用いることが可能であ
る。さらに、天然ゼオオライト、合成ゼオライト、酸性
白土、活性白土およびその誘導体、シリカアルミナ、シ
リカマグネシア、アルミナポリアなども用いることがで
きる。
As the refractory filler, SiO. , Al2O3, MgO
, CaO, etc., and minerals containing these as one component are used. In addition, metal powders such as Ae and zn, and alloys thereof can also be used as the refractory filler. Furthermore, natural zeolite, synthetic zeolite, acid clay, activated clay and derivatives thereof, silica alumina, silica magnesia, alumina poria, etc. can also be used.

その他に、アルミン酸石灰、ケイ酸カルシウム、ケイ酸
ナトリウム、酸化チタン、酸化ジルコン、コロイダルシ
リカ、コロイダルアルミナあるいはアルカリ土類金属化
合物なども脂肪酸の分解には効果がある。これらの充填
材は、単独もしくは2種以上を併用して用いることがで
きる。また、多孔質形成剤としては、上述した無機質充
填材に限定されるものではなく、焼成時に熱分解を起こ
すような有機質物質も用いられる。
In addition, lime aluminate, calcium silicate, sodium silicate, titanium oxide, zirconium oxide, colloidal silica, colloidal alumina, or alkaline earth metal compounds are also effective in decomposing fatty acids. These fillers can be used alone or in combination of two or more. Further, the porosity forming agent is not limited to the above-mentioned inorganic fillers, but organic substances that cause thermal decomposition during firing may also be used.

例えば、ポリエチレン粉末、ポリスチレン、カルボキシ
メチルセルロース、ポリビニルアルコール、メチルセル
ロースなどである。次に本発明に実施例を説明する。
Examples include polyethylene powder, polystyrene, carboxymethylcellulose, polyvinyl alcohol, methylcellulose, and the like. Next, embodiments of the present invention will be described.

実施例1 リン酸塩化合物として、Ae2O3・3p205・6H
20で示される第一リン酸アルミニウムを用い、4唾量
%水溶液とした。
Example 1 Ae2O3.3p205.6H as a phosphate compound
A 4% aqueous solution was prepared using monoaluminum phosphate shown by No. 20.

触媒には、電解二酸化マンガンとZrlF′E2O,,
MnFe2O4を用い、Na2cO3の1N水溶液中に
4(1)Cで24Tf間浸漬し、12(代)で5時間乾
燥後、第一リン酸アルミニウム水溶液に混合した。
The catalyst contains electrolytic manganese dioxide and ZrlF'E2O,...
Using MnFe2O4, it was immersed in a 1N aqueous solution of Na2cO3 at 4(1)C for 24Tf, dried at 12C for 5 hours, and then mixed in an aqueous solution of monoaluminum phosphate.

さらに充填材としてa−Ae2O3を用いた。これらを
以下の割合で配合し、ボールミルで混合して塗料とした
。この塗料をスプレーンで厚さ0.6醜、大きさ5×1
0C1ftのアルミナイズド鋼板に焼成後の膜厚が20
0μmになるよう、塗布し、次に、室温で乾燥後、35
0℃で2紛間熱処理して試料とした。この試料につき以
下に示し試験項目に従つて性能評価をした。(1)性能
試験 ラード油100m9を被覆層上に100,点程度に散在
させ、200℃,250℃,300℃の各温度で30分
間加熱.し、加熱前後の重量減少から浄化率を算出する
Furthermore, a-Ae2O3 was used as a filler. These were blended in the following proportions and mixed in a ball mill to form a paint. Spray this paint to a thickness of 0.6 ugliness and a size of 5 x 1.
Film thickness after firing on 0C1ft aluminized steel plate is 20
After coating to a thickness of 0 μm, and drying at room temperature,
A sample was prepared by heat treating the two powders at 0°C. The performance of this sample was evaluated according to the test items shown below. (1) Performance test 100 m9 of lard oil was scattered on the coating layer at about 100 points, and heated for 30 minutes at each temperature of 200°C, 250°C, and 300°C. Then, the purification rate is calculated from the weight loss before and after heating.

(2)密着強度試験片を、被覆層を外側にして曲面部の
直径が1iとなるように18σCに折り曲げ、剥離の程
度により、剥離しないもの01部分的に剥離するも−の
Δ、剥離するもの×に分類する。
(2) Bend the adhesion strength test piece to 18σC with the coating layer on the outside so that the diameter of the curved surface part is 1i, and depending on the degree of peeling, 0 is not peeled, 0 is partially peeled, and Δ is peeled. Classify as things ×.

(3)耐食性 塩水噴霧試験法(JISZ−2371)に基づき、10
日間暴露後、腐食が認められない場合は01腐食が認め
られる場合は×で表す。
(3) Based on corrosion resistance salt spray test method (JISZ-2371), 10
After exposure for one day, if no corrosion is observed, it is expressed as 0. If corrosion is observed, it is expressed as x.

(4)耐水性 95℃以上の湯浴中で1m間煮沸後の重量減少量を測定
し、1a11当たりの重量減少量で表す。
(4) Water resistance The amount of weight loss after boiling for 1 m in a water bath at 95° C. or higher is measured and expressed as the amount of weight loss per 1a11.

(5)表面硬度金属銅片で表面をこすり、銅が被覆上に
残存する場合を01被覆層が削り取られる場合を×とす
る。
(5) Surface Hardness When the surface is rubbed with a metal copper piece, the case where copper remains on the coating is rated as 0, and the case where the coating layer is scraped off is graded as x.

以上の試験項目にしたがつて評価した結果、性・能試験
における浄化率は、200℃で32%,25(代)で7
6%,3(1)℃で部%であつた。
As a result of evaluation according to the above test items, the purification rate in the performance test was 32% at 200℃ and 7 at 25
6%, part% at 3(1)°C.

なお、比較例として、アルカリ処理をしない触媒を用い
て同様に構成した被覆層は、200℃で11%,250
℃で45%,300Cで90%であつた。また、密着強
度、耐食性、表面硬度はいずれもOで、耐水性は0.5
mg/Clfであつた。
As a comparative example, a coating layer constructed in the same manner using a catalyst that was not treated with alkali was 11% at 200°C and 250°C at 200°C.
It was 45% at ℃ and 90% at 300C. In addition, the adhesion strength, corrosion resistance, and surface hardness are all O, and the water resistance is 0.5.
mg/Clf.

実施例2実施例1の第一リン酸アルミニウム水溶液の代
わりにリン酸マグネシウムの3鍾量%水溶液を用いて、
実施例1と同様の条件で試料を作成した。
Example 2 Using a 3% by weight aqueous solution of magnesium phosphate in place of the primary aluminum phosphate aqueous solution of Example 1,
A sample was prepared under the same conditions as in Example 1.

その結果、浄化率は200℃で30%,250Cで74
%,30C)Cで96%でつた。また、密着強度、耐食
性、表面硬度はいずれもOで、耐水性は0.8m9/C
ilであつた。実施例3 実施例1における充填材a−A′20Jに代わりに、A
e,zn粉末をそれぞれ3轍量部添加して作つた試料の
浄化性能は次表の如くであつた。
As a result, the purification rate was 30% at 200℃ and 74% at 250C.
%, 30C) C was 96%. In addition, the adhesion strength, corrosion resistance, and surface hardness are all O, and the water resistance is 0.8m9/C.
It was hot. Example 3 Instead of filler a-A'20J in Example 1, A
The purification performance of samples prepared by adding 3 parts of each of e and zn powders was as shown in the following table.

実施例4第一リン酸アルミニウムの411%の水溶液
2リ11部CUO,
CO3C4およびNiOの等量混合物
5踵量部SiO,粉末
8鍾量部水 3
鍾量部上記の材料を用いて塗料を作成し、実施例1と同
様にして被覆層を作つた。
Example 4 411% aqueous solution of monobasic aluminum phosphate
2ri 11th part CUO,
Equivalent mixture of CO3C4 and NiO
5 Heel weight part SiO, powder
8 Liquor section water 3
Weight: A coating material was prepared using the above-mentioned materials, and a coating layer was formed in the same manner as in Example 1.

なお、触媒のCUO,CO3O4およびNiOの混合物
は予めNaHCO3の1N水溶液でアルカリ処理した。
Note that the catalyst mixture of CUO, CO3O4, and NiO was previously alkali-treated with a 1N aqueous solution of NaHCO3.

得られた被覆層の浄化率は200′Cで31%,250
Cで73%,30CfCで97%であつた。
The purification rate of the obtained coating layer was 31% at 200'C, 250
It was 73% for C and 97% for 30CfC.

実施例5 実施例4において、SiO2粉末の代わりにアルミン酸
石灰(Ae2O3・CaO−RfI2O)を用いた場合
の浄化率は、200℃で35%,250℃で76℃,3
00℃で99%であつた。
Example 5 In Example 4, when lime aluminate (Ae2O3.CaO-RfI2O) was used instead of SiO2 powder, the purification rate was 35% at 200°C, 76°C at 250°C, and 3% at 250°C.
It was 99% at 00°C.

また、密着強度、耐食性およ表面硬度はOで、耐水性は
1.0m9/C7l!であつた。実施例6実施例1の塗
料にさらに多孔質形成剤としてポリエチレン粉末を3重
量部添加した。
In addition, the adhesion strength, corrosion resistance and surface hardness are O, and the water resistance is 1.0m9/C7l! It was hot. Example 6 To the coating material of Example 1, 3 parts by weight of polyethylene powder was added as a porosity forming agent.

得られた被覆層の浄化率は、200℃で36%,250
℃で78%,300℃で99%であつた。実施例7 実施例1において、アルミナイズド鋼板上にホーロー質
の耐食層を設けた基板を用いて、被覆層を形成したもの
は、耐食性がOで、さらに30日間経過後も腐食が生じ
なかつた。
The purification rate of the obtained coating layer was 36% at 200℃, 250℃.
It was 78% at 300°C and 99% at 300°C. Example 7 In Example 1, the coating layer was formed using a substrate with a enamel corrosion-resistant layer on an aluminized steel plate, and the corrosion resistance was O, and no corrosion occurred even after 30 days had passed. .

実施例8 実施例1において、a−Ae2O3の代わりにゼオライ
ト(東洋ソーダ(株)製F−9)を3鍾量部添加した。
Example 8 In Example 1, 3 parts by weight of zeolite (F-9 manufactured by Toyo Soda Co., Ltd.) was added instead of a-Ae2O3.

得られた被覆層の浄化率は200℃で33%,250℃
で77%,300℃で部%であつた。実施例9実施例1
において、触媒のアルカリ処理液をNaHCO3,KH
CO3,NaOH,KOH,K2CO3、また比較例と
してNH4OHの各1N水溶液を用いて、40℃で24
!Iff間浸漬してアルカリ処理した。
The purification rate of the obtained coating layer was 33% at 200℃ and 250℃.
and 77% at 300°C. Example 9 Example 1
, the alkali treatment solution for the catalyst was changed to NaHCO3, KH
Using 1N aqueous solutions of CO3, NaOH, KOH, K2CO3, and NH4OH as a comparative example, the solution was heated at 40°C for 24 hours.
! It was immersed for IF and treated with alkali.

得られた被覆層??化率を〒2表に示した。表から明ら
かなように、本発明のアルカリ処理液を用いると浄化性
能が優れていることがわかる。アルカリ処理液の中でも
特に、炭酸塩が好ましい。実施例10 実施例1において、さらに硬化促進剤として、ケイ酸ナ
トリウム水溶液を固形分として3重量部添加した。
The resulting coating layer? ? The conversion rate is shown in Table 2. As is clear from the table, it can be seen that the use of the alkaline treatment liquid of the present invention provides excellent purification performance. Among the alkaline treatment liquids, carbonates are particularly preferred. Example 10 In Example 1, 3 parts by weight of a solid sodium silicate aqueous solution was further added as a hardening accelerator.

得られた被覆層の浄化率は20CfCで(%,250℃
で74℃,300Cで部%あつた。また、密着強度、耐
食性、表面硬度は01耐水性は0.2m9/Cllであ
り、特に他に比べて耐水性に優れていた。以上の実施例
からも明らかな様に、本発明の自己浄化被覆層は、触媒
をアルカリ処理することによつて、従来のリン酸塩を含
む耐熱塗料では得られない高性能な被覆層を提供するも
のである。
The purification rate of the obtained coating layer was 20CfC (%, 250℃
It was heated at 74°C and % at 300C. Furthermore, the adhesion strength, corrosion resistance, and surface hardness were 01, and the water resistance was 0.2 m9/Cll, and the water resistance was particularly excellent compared to others. As is clear from the above examples, the self-purifying coating layer of the present invention provides a high-performance coating layer that cannot be obtained with conventional heat-resistant paints containing phosphates by treating the catalyst with alkali. It is something to do.

この自己浄化被覆層は、単に調理器の庫内壁に用いるの
みならず、排ガス浄化用触媒として、金属表面に被覆し
ガス通過路中に設置することも可能である。さらに各種
燃焼機器の油の気化部のタール分解用触媒として用いる
ことも可能である。このように、本発明の自己浄化被覆
層は、油脂類の分解のみならず、一酸化炭素、炭化水素
の酸化反応など、触媒酸化反応が要求される箇所に被覆
することによつて、簡便かつ低価格の触媒層として設置
可能である。
This self-purifying coating layer can be used not only on the inner wall of a cooking appliance, but also as a catalyst for purifying exhaust gas by coating a metal surface and installing it in a gas passage. Furthermore, it can also be used as a tar decomposition catalyst in the oil vaporization section of various combustion equipment. As described above, the self-purifying coating layer of the present invention can be applied not only to the decomposition of oils and fats, but also to areas where catalytic oxidation reactions are required, such as the oxidation reactions of carbon monoxide and hydrocarbons. It can be installed as a low-cost catalyst layer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は触媒に用いた二酸化マンガンについて、アルカリ
処理したものと処理しないものの熱処理温度による比表
面積の変化を比較した図である。
The drawing compares the change in specific surface area of manganese dioxide used as a catalyst, with and without alkali treatment, depending on the heat treatment temperature.

Claims (1)

【特許請求の範囲】 1 アルカリ処理した触媒とリン酸塩を含む塗料を被覆
面に塗布した後、加熱により前記リン酸塩を硬化さるこ
とを特徴とする自己浄化被覆層の製造法。 2 リン酸塩が、式MO・xP_2O_5・yH_2O
(ただし、x、yは実数、MはAl、Mg、Ca、Fe
、Cu、Ba、Ti、MnおよびZnよりなる群から選
択される金属である)で示される化合物である特許請求
の範囲第1項記載の自己浄化被覆層の製造法。 3 触媒が金属酸化物および複酸化物よりなる群から選
択される特許請求の範囲第1項記載の自己浄化被覆層の
製造法。 4 触媒がマンガン酸化物を含む特許請求の範囲第3項
記載の自己浄化被覆層の製造法。 5 触媒のアルカリ処理が、Na_2CO_3、NaH
CO_3、K_2CO_3、KHCO_3、NaOHお
よびKOHよりなる群から選択されるアルカリの水溶液
で行われる特許請求の範囲第1項記載の自己浄化被覆層
の製造法。 6 加熱温度が200〜500℃である特許請求の範囲
第1項記載の自己浄化被覆層の製造法。
[Scope of Claims] 1. A method for producing a self-purifying coating layer, which comprises applying a paint containing an alkali-treated catalyst and a phosphate to a coated surface, and then curing the phosphate by heating. 2 Phosphate has the formula MO・xP_2O_5・yH_2O
(However, x, y are real numbers, M is Al, Mg, Ca, Fe
, Cu, Ba, Ti, Mn, and Zn). 3. The method for producing a self-purifying coating layer according to claim 1, wherein the catalyst is selected from the group consisting of metal oxides and double oxides. 4. The method for producing a self-purifying coating layer according to claim 3, wherein the catalyst contains a manganese oxide. 5 Alkali treatment of the catalyst causes Na_2CO_3, NaH
A method for producing a self-purifying coating layer according to claim 1, which is carried out in an aqueous solution of an alkali selected from the group consisting of CO_3, K_2CO_3, KHCO_3, NaOH and KOH. 6. The method for producing a self-purifying coating layer according to claim 1, wherein the heating temperature is 200 to 500°C.
JP55032973A 1980-03-14 1980-03-14 Method of manufacturing self-purifying coating layer Expired JPS6052871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55032973A JPS6052871B2 (en) 1980-03-14 1980-03-14 Method of manufacturing self-purifying coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55032973A JPS6052871B2 (en) 1980-03-14 1980-03-14 Method of manufacturing self-purifying coating layer

Publications (2)

Publication Number Publication Date
JPS56129058A JPS56129058A (en) 1981-10-08
JPS6052871B2 true JPS6052871B2 (en) 1985-11-21

Family

ID=12373831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55032973A Expired JPS6052871B2 (en) 1980-03-14 1980-03-14 Method of manufacturing self-purifying coating layer

Country Status (1)

Country Link
JP (1) JPS6052871B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848290B1 (en) * 2002-12-05 2005-01-07 Seb Dev HEATING APPARATUS COVERED WITH SELF-CLEANING COATING
JP6341793B2 (en) * 2014-08-04 2018-06-13 神鋼アクテック株式会社 Metal oxide catalyst and deodorizing material

Also Published As

Publication number Publication date
JPS56129058A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
AU2009334578A1 (en) Fire-resistant mineral wool insulating product, production method thereof and suitable binding composition
US4118450A (en) Method for producing inorganic porous shaped material
US3793055A (en) Forming protective inorganic coating on substrate
KR20090023213A (en) Method for surface modifying hot dip coated steel materials and surface modified hot dip coated steel materials
WO2012132469A1 (en) Cured molded article
RU96101994A (en) METHOD FOR PROTECTING A POROUS CARBON-CONTAINING MATERIAL FROM OXIDATION AND MATERIAL OBTAINED BY THIS METHOD
CA2249285C (en) Coating agent for carbonization chamber of coke ovens and application method thereof
JPH0615679B2 (en) Anticorrosion paint composition
JPS6052871B2 (en) Method of manufacturing self-purifying coating layer
CA1138188A (en) Composition and process for coating iron and steel
US4740251A (en) Method for improving magnesium oxide steel coatings
JP6652229B1 (en) Treatment agent for forming chromium-free insulating film, grain-oriented electrical steel sheet with insulating film, and method of manufacturing the same
JPS5927218B2 (en) self-cleaning coating layer
JPS6130165B2 (en)
JP2021130104A (en) Deodorization catalyst, deodorization catalyst structure, and deodorization unit
JPS63252550A (en) Catalyst for purging exhaust gas
JPS62202005A (en) Porous metallic sheet
JP3814653B2 (en) Aqueous coating solution for forming photocatalyst layer, method for producing metal plate having photocatalyst layer, and metal plate having photocatalyst layer
US3941622A (en) Coatings for ferrous substrates
JPS6157872B2 (en)
JP2615167B2 (en) Heat resistant anticorrosion coating
JPS5853573B2 (en) Articles with self-cleaning coating layer
JP3230063B2 (en) Refractories for firing furnaces in alkaline gas atmosphere
JP2008307877A (en) Manufacturing method of functional building material having photocatalytic function
KR890002248B1 (en) Slaking-resistant refractory aggregates and process for producing the same