JP2615167B2 - Heat resistant anticorrosion coating - Google Patents

Heat resistant anticorrosion coating

Info

Publication number
JP2615167B2
JP2615167B2 JP63306115A JP30611588A JP2615167B2 JP 2615167 B2 JP2615167 B2 JP 2615167B2 JP 63306115 A JP63306115 A JP 63306115A JP 30611588 A JP30611588 A JP 30611588A JP 2615167 B2 JP2615167 B2 JP 2615167B2
Authority
JP
Japan
Prior art keywords
coating
heat
frit
silicate
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63306115A
Other languages
Japanese (ja)
Other versions
JPH02151671A (en
Inventor
康二 岩橋
信明 村上
喜久男 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63306115A priority Critical patent/JP2615167B2/en
Publication of JPH02151671A publication Critical patent/JPH02151671A/en
Application granted granted Critical
Publication of JP2615167B2 publication Critical patent/JP2615167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重油専焼ボイラ、発電用ボイラ、ソーダ回収
ボイラ、ゴミ焼却ボイラ等の伝熱器管表面、特に高温部
伝熱管表面、に付着形成させてなる耐熱型防食被膜に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention adheres to the surface of a heat transfer tube of a heavy oil fired boiler, a boiler for power generation, a soda recovery boiler, a refuse incineration boiler, etc., particularly the surface of a heat transfer tube at a high temperature. The present invention relates to a heat-resistant anticorrosion film formed by the method.

〔従来の技術〕[Conventional technology]

近年重油専焼ボイラ等において、NOx対策のための燃
焼法改善による火炉上部温度の上昇や脱硫装置の普及に
よる高硫黄燃料の採用等の要因により、高温部伝熱器管
表面に付着する燃焼灰によつて高温部伝熱器管の腐食が
起こりつつある。
In recent years, due to factors such as the increase in the temperature of the furnace upper part due to the improvement of the combustion method for NOx countermeasures and the adoption of high-sulfur fuel due to the spread of desulfurization equipment, the combustion ash adhering to the high-temperature part As a result, corrosion of the high-temperature heat exchanger tubes is occurring.

この高温部伝熱器管表面に付着する燃焼灰はV、Na、
S、Oを主成分とする腐食性の強いV2O5−Na2SO4系の物
質であることが知られている。ここで、高温部とは付着
燃焼灰の表面温度が200〜1500℃の温度域である。
The combustion ash adhering to the surface of this high temperature part heat transfer tube is V, Na,
It is known that the substance is a highly corrosive V 2 O 5 —Na 2 SO 4 substance containing S and O as main components. Here, the high temperature portion is a temperature range where the surface temperature of the attached combustion ash is 200 to 1500 ° C.

このような付着燃焼灰による腐食対策としては周知の
ように大別して、 1) 高温部伝熱器管の材質の改良 2) 高温部伝熱器管表面に付着する燃料灰の改質(低
S、V燃料への転換や、燃料への防食剤の添加) 3) 高温部伝熱器管の表面加工処理 等の方法が現在各方面で研究開発されつつあり、特に、
前述の分類に従えば2)の応用により3)の改良に関す
るもので特開昭59−4661号公報に記載されているボイラ
等の高温部伝熱器管表面に、Mg、Ca、Ba、Be等のアルカ
リ土類金属炭酸塩の1種以上を含有した混合物を、珪酸
塩系バインダーにて付着形成させてなる耐熱型防食被膜
がある。
As a well-known measure against corrosion caused by the adhered combustion ash, it is roughly classified into the following: 1) Improvement of the material of the high temperature part heat transfer pipe 2) Reforming of the fuel ash adhering to the surface of the high temperature part heat transfer pipe (low S) , Conversion to V fuel and addition of anticorrosive to fuel) 3) Methods such as surface treatment of high temperature heat exchanger tubes are being researched and developed in various fields.
According to the above-mentioned classification, it relates to improvement of 3) by application of 2), and describes Mg, Ca, Ba, Be on a surface of a high-temperature section heat transfer tube of a boiler or the like described in JP-A-59-4661. There is a heat-resistant anticorrosion coating formed by adhering and forming a mixture containing at least one kind of alkaline earth metal carbonates with a silicate-based binder.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

この特開昭59−4661号公報に記載されているものは、
ボイラ等の高温伝熱器管表面に、Mg、Ca、Ba、Be等のア
ルカリ土類金属炭酸塩を珪酸塩系バインダーでたんに付
着形成させただけのものであり、急熱、急冷等の繰返し
の熱衝撃でひび割れ、剥離などが生じる欠点があつた。
特に高温伝熱器管が高温にさらされた時、フエライト系
鋼、マルテンサイト系鋼のように熱膨張係数が小さいも
のについては前記防食被膜は比較的に剥離しにくいが、
オーステナイト系鋼のように熱膨張係数が大きいもので
は熱膨張係数の違いにより剥離してしまい、被膜の形成
ができなかつた。
What is described in JP-A-59-4661 is
Alkaline earth metal carbonates such as Mg, Ca, Ba, Be, etc. are simply adhered to the surface of high-temperature heat transfer tubes such as boilers with a silicate-based binder. There was a disadvantage that cracks and peeling were caused by repeated thermal shocks.
In particular, when the high-temperature heat exchanger tube is exposed to high temperatures, the anticorrosion coating is relatively hard to peel off for ferrite-based steel and those having a small coefficient of thermal expansion such as martensite-based steel,
A steel having a large thermal expansion coefficient, such as austenitic steel, was peeled off due to a difference in thermal expansion coefficient, and a film could not be formed.

〔課題を解決するための手段〕[Means for solving the problem]

本発明はこのような従来の方法における欠点を除去す
るためになされたもので、前述の特開昭59−4661号公報
に記載されている耐熱型防食被膜の改良に関するもので
あり、ボイラ等の伝熱器管表面に、炭酸カルシウムとセ
ラミツクコーテイングや陶磁器等に使用するフリツトの
1種以上とを含有する混合物を、珪酸塩系及び/又はア
ルミン酸塩系バインダーによつて付着形成させてなる防
食被膜であって、該防食被膜中での炭酸カルシウムの割
合が26.7〜46.7wt%、フリットの割合が20〜40wt%であ
る耐熱型防食被膜である。
The present invention has been made in order to eliminate such disadvantages in the conventional method, and relates to an improvement of a heat-resistant anticorrosion coating described in the above-mentioned JP-A-59-4661, and relates to a boiler and the like. An anticorrosion method in which a mixture containing calcium carbonate and at least one kind of frit used for ceramic coating, ceramics, etc. is adhered to the surface of a heat transfer tube with a silicate-based and / or aluminate-based binder. A heat-resistant anticorrosion coating in which the proportion of calcium carbonate in the anticorrosion coating is 26.7 to 46.7 wt% and the proportion of frit is 20 to 40 wt%.

〔作 用〕(Operation)

炭酸カルシウムは、珪酸塩系及び/又はアルミン酸塩
系バインダーによく分散し、塗布の際、均一にかつ緻密
に伝熱器管表面に密着し、又、高温部伝熱管材の熱膨張
係数に近いセラミツクコーテイングや陶磁器等に使用す
るフリツトの粉末を分散させることで管材との熱膨張係
数の違いが少なくなり、熱衝撃によるひび割れ、剥離等
が起らない。
Calcium carbonate is well dispersed in silicate-based and / or aluminate-based binders and adheres uniformly and densely to the surface of the heat transfer tube during application. By dispersing the powder of the frit used for near-ceramic coating, porcelain, etc., the difference in the coefficient of thermal expansion from the tube material is reduced, and cracks and peeling due to thermal shock do not occur.

以下、本発明の一実施態様を第1図に従つて説明す
る。第1図において、1は高温部伝熱器管表面の金属、
2は金属1の表面に珪酸塩系及び/又はアルミン酸塩系
バインダーによつて形成された炭酸カルシウムを含有し
た耐熱型防食被膜、3は耐熱型防食被膜2の内部に分散
した高温部伝熱管材1に近い熱膨張係数を有するセラミ
ツクコーテイングや陶磁器等に使用するフリツトの粉
末、4は耐熱型防食被膜2の内部に存在する空隙、5は
耐熱型防食被膜2の表面に付着する腐食性の強いV2O5
Na2SO4のスケールである。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 1 denotes a metal on a surface of a high-temperature part heat transfer tube,
Reference numeral 2 denotes a heat-resistant anticorrosive coating containing calcium carbonate formed on the surface of a metal 1 by using a silicate-based and / or aluminate-based binder, and 3 denotes a high-temperature portion heat transfer dispersed inside the heat-resistant anticorrosive coating 2. Frit powder used for ceramic coatings, ceramics, etc. having a thermal expansion coefficient close to that of the tube 1, 4 denotes voids existing inside the heat-resistant anticorrosion coating 2, 5 denotes corrosiveness adhering to the surface of the heat-resistant anticorrosion coating 2 Strong V 2 O 5
Na 2 SO 4 scale.

この第1図において、耐熱型防食被膜2がCa化合物を
含有しない耐熱型防食被膜の場合、スケール5は高温に
加熱されると溶融して耐熱型防食被膜2の内部に存在す
る空隙4を浸透し、結局金属1の表面に到達する。ここ
で後記の反応式第1式及び第2式によつて金属表面が局
部的に酸化及び硫化され、これが拡大して金属1と耐熱
型防食被膜2との境界を破壊し腐食が進行する。
In FIG. 1, when the heat-resistant anticorrosive film 2 is a heat-resistant anticorrosive film containing no Ca compound, the scale 5 is melted when heated to a high temperature and penetrates the voids 4 existing inside the heat-resistant anticorrosive film 2. Eventually, it reaches the surface of the metal 1. Here, the metal surface is locally oxidized and sulfided according to the reaction formulas 1 and 2 described later, and the metal surface expands and destroys the boundary between the metal 1 and the heat-resistant anticorrosion coating 2 and corrosion proceeds.

ところが、前述の耐熱型防食被膜2にCa化合物が存在
すると、第1図においてスケール5が高温に加熱されて
溶融し耐熱型防食被膜2の内部に存在する空隙4に浸透
しても、スケール5はこの空隙4を通過する間に空隙4
表面上のCa化合物を取込み反応して、CaO−V2O5−Na2SO
4系のスケールに変化するため、スケール5の融点が上
昇して空隙内で凝固する。
However, if a Ca compound is present in the heat-resistant anticorrosive coating 2 described above, the scale 5 is heated to a high temperature in FIG. Is the gap 4 while passing through the gap 4.
The Ca compound on the surface and uptake reaction, CaO-V 2 O 5 -Na 2 SO
Since the scale changes to a 4- system scale, the melting point of the scale 5 rises and solidifies in the voids.

しかし、耐熱型防食被膜2に高温部伝熱管材1に近い
セラミツクコーテイングや陶磁器等に使用するフリツト
の粉末が存在しない従来の耐熱型防食被膜(特開昭59−
4661)の場合、急熱、急冷等の繰返しの熱衝撃でひび割
れ、剥離等が生じ、そこから腐食性の強いV2O5−Na2SO4
系のスケール5が浸入し、腐食が進行するのである。
However, a conventional heat-resistant anticorrosion coating having no frit powder used for ceramic coating or ceramics close to the heat-transfer tubing 1 in the heat-resistant anticorrosion coating 2 (Japanese Unexamined Patent Publication No.
4661), cracks, peeling, etc. occur due to repeated thermal shocks such as rapid heating, rapid cooling, etc., from which strong corrosive V 2 O 5 −Na 2 SO 4
The scale 5 of the system enters and corrosion proceeds.

ところが高温部伝熱器管表面の金属1に、炭酸カルシ
ウムと高温部伝熱管材1に近い熱膨張係数を有するセラ
ミツクコーテイングや陶磁器等に使用するフリツトの粉
末の1種以上とを含有した混合物を、珪酸塩系及び/又
はアルミン酸塩系バインダーにて付着形成させた本発明
の耐熱型防食被膜の場合、たとえ高温部伝熱管材1が熱
膨張係数が大きいオーステナイト系鋼でも、高温部伝熱
管材1に近い熱膨張係数を有するセラミツクコーテイン
グや陶磁器等に使用するフリツトの粉末が耐熱型防食被
膜2の内部に分散しているために高温部伝熱器管表面の
金属1と耐熱型防食被膜2の熱膨張係数の違いが少なく
なり、急熱、急冷等の繰返しの熱衝撃に対してもひび割
れを生じることがなく、剥離も起らないのである。
However, a mixture containing calcium carbonate and at least one kind of frit powder used for ceramic coating, ceramics, etc. having a thermal expansion coefficient close to that of the high temperature part heat transfer tube 1 is added to the metal 1 on the surface of the high temperature part heat transfer tube. In the case of the heat-resistant anti-corrosion coating of the present invention formed by bonding with a silicate-based and / or aluminate-based binder, even if the high-temperature part heat transfer tube 1 has an austenitic steel having a large coefficient of thermal expansion, the high-temperature part heat transfer Frit powder used for ceramic coating or ceramics having a thermal expansion coefficient close to that of the pipe material 1 is dispersed in the heat-resistant anticorrosion coating 2, so that the metal 1 on the surface of the heat transfer tube and the heat-resistant anticorrosion coating are used. The difference in the coefficient of thermal expansion of No. 2 is reduced, and cracking does not occur even after repeated thermal shocks such as rapid heating and rapid cooling, and peeling does not occur.

次に、Al、Si、Zn等の無機質を金属表面に付着形成さ
せるバインダーとして、リン酸塩系及び珪酸塩系のもの
が知られている。本発明者等は珪酸塩系及び/又はアル
ミン酸塩系バインダーについて、前述のCa化合物をボイ
ラ等高温伝熱器管表面に付着形成させる方法を種々検討
した。その結果、炭酸カルシウムが珪酸塩系及び/又は
アルミン酸塩系バインダー例えば珪酸ナトリウムやアル
ミン酸ナトリウム水溶液によく分散し、塗布形成後の被
膜の密着性、均一性、緻密性が良好であることを見出し
たのである。これに対し、アルカリ土類金属の他の化合
物、例えば水酸化カルシウム、硫酸カルシウムなどは珪
酸ナトリウムやアルミン酸ナトリウム水溶液と混合する
と固化し、金属表面に塗布成形することができない。
Next, phosphate-based and silicate-based binders are known as binders for adhering and forming inorganic substances such as Al, Si, and Zn on metal surfaces. The present inventors have studied various methods for depositing and forming the above-mentioned Ca compound on the surface of a high-temperature heat transfer tube such as a boiler for a silicate-based and / or aluminate-based binder. As a result, calcium carbonate is well dispersed in a silicate-based and / or aluminate-based binder such as an aqueous solution of sodium silicate or sodium aluminate, and the adhesion, uniformity and denseness of the coating film after coating are good. I found it. On the other hand, other compounds of the alkaline earth metal, such as calcium hydroxide and calcium sulfate, solidify when mixed with sodium silicate or sodium aluminate aqueous solution, and cannot be applied and formed on the metal surface.

以上の如く、本発明は腐食性のスケール5と炭酸カル
シウムとが反応して耐熱型防食被膜2中の空隙4をふさ
ぎ、腐食性のスケール5と金属との接触を断つことによ
つて腐食を抑制することと、炭酸カルシウムを金属表面
に塗布成形させる方法として珪酸塩系及び/又はアルミ
ン酸塩系バインダーを用いること、高温部伝熱管材1に
近い熱膨張係数を有するセラミツクコーテイングや陶磁
器等に使用するフリツトの粉末を分散させることによつ
て急熱、急冷等の繰返しの熱衝撃性を向上させることを
特徴としている。
As described above, according to the present invention, the corrosive scale 5 reacts with the calcium carbonate to close the voids 4 in the heat-resistant anticorrosion coating 2 and cut off the contact between the corrosive scale 5 and the metal to prevent corrosion. Using a silicate-based and / or aluminate-based binder as a method of applying and molding calcium carbonate on a metal surface; and for a ceramic coating, a ceramic, or the like having a thermal expansion coefficient close to that of the heat transfer tube 1 at a high temperature. It is characterized in that the thermal shock resistance of rapid heating, rapid cooling and the like is improved by dispersing the frit powder used.

また、本発明においては炭酸カルシウムにAl、Si、Z
n、Zr等の金属及びその酸化物を添加してもその効果が
保持される。本発明において使用される炭酸カルシウム
としては、それらの化合物を含む石灰石(CaCO3)、白
亜(CaCO3)、方解石(CaCO3)、あられ石(CaCO3)、
大理石(CaCO3)、白雲石(CaCO3・MgCO3)等の如き鉱
石でも良い。
Further, in the present invention, Al, Si, Z
Even if a metal such as n or Zr or an oxide thereof is added, the effect is maintained. The calcium carbonate used in the present invention, limestone containing these compounds (CaCO 3), chalk (CaCO 3), calcite (CaCO 3), aragonite (CaCO 3),
Ore such as marble (CaCO 3 ) and dolomite (CaCO 3 · MgCO 3 ) may be used.

さらに、珪酸塩系及びアルミン酸塩系バインダーとし
ては珪酸ナトリウムやアルミン酸ナトリウムをはじめ、
Ca、Al、Zn、CO、Fe、Ba、Be、Mg、Mn、Liなどの珪酸塩
やアルミン酸塩及びその2種類以上を組合せたものでも
よいことは云うまでもない。
In addition, silicate and aluminate binders include sodium silicate and sodium aluminate,
It goes without saying that silicates and aluminates such as Ca, Al, Zn, CO, Fe, Ba, Be, Mg, Mn, and Li and combinations of two or more thereof may be used.

反応式 Na2SO4+3R+M→Na2O+3RO+MS ……第2式 但し、R:不特定の還元剤 M:金属 〔実施例〕 次に、実施例によつて本発明を具体的に示す。Reaction formula Na 2 SO 4 + 3R + M → Na 2 O + 3RO + MS (Formula 2) where R: Unspecified reducing agent M: Metal [Example] Next, the present invention will be specifically described by way of examples.

腐食事故を起した重油専焼ボイラの高温部伝熱器管に
付着していたスケールを採取し粉砕後、この腐食性のス
ケールを充填した磁性ルツボに第1表のNo.1〜No.10の
試験片を浸漬して電気炉にて腐食試験を行つた。
The scale attached to the heat transfer tube of the heavy oil boiler, which caused the corrosion accident, was collected and crushed, and the magnetic crucible filled with this corrosive scale was filled with No. 1 to No. 10 in Table 1. The test piece was immersed and subjected to a corrosion test in an electric furnace.

なお、試験条件は酸素濃度:5vol%、炭酸ガス濃度:15
vol%、亜硫酸ガス濃度:0.5vol%、残り窒素ガスの雰囲
気とし、試験温度:650℃、試験時間合計:200時間で、そ
の間24時間毎に試験片を浸漬した磁性ルツボを電気炉か
ら室内に取出し、急熱、急冷の熱衝撃を繰返し与えた。
The test conditions were: oxygen concentration: 5 vol%, carbon dioxide concentration: 15
vol%, sulfur dioxide gas concentration: 0.5vol%, remaining nitrogen gas atmosphere, test temperature: 650 ° C, total test time: 200 hours, during which a magnetic crucible in which test pieces were immersed every 24 hours was put into the room from an electric furnace. The thermal shock of removal, rapid heating and rapid cooling was repeatedly applied.

又、試験片としては20mm×50mm×5mmのSTBA24とSUS30
4に50wt%の珪酸ナトリウム又はアルミン酸ナトリウム
水溶液を50wt%、炭酸カルシウム粉末を50wt%とした溶
液を塗布し、付着成形させたものと、50wt%の珪酸ナト
リウム又はアルミン酸ナトリウム水溶液を50wt%、炭酸
カルシウム粉末25wt%とセラミツクコーテイングや陶磁
器等に使用するフリツトの粉末25wt%とを混合した溶液
を塗布し、付着成形させたものとを用いた。
Also, as test specimens, STBA24 and SUS30 of 20 mm × 50 mm × 5 mm
4, a 50 wt% aqueous solution of sodium silicate or sodium aluminate was applied to 50 wt%, and a solution of 50 wt% of calcium carbonate powder was applied and molded, and a 50 wt% aqueous solution of sodium silicate or sodium aluminate of 50 wt% was applied. A solution prepared by applying a solution obtained by mixing 25 wt% of calcium carbonate powder and 25 wt% of frit powder used for ceramic coating, porcelain, and the like, and applying and forming the mixture was used.

そして第2表〜第4表にはこの実施例で使用したフリ
ツトの組成及び性状を示した。
Tables 2 to 4 show the composition and properties of the frit used in this example.

〔発明の効果〕 この結果、第5表のように、本発明による炭酸カルシ
ウムとセラミツクコーテイングや陶磁器等に使用するフ
リツトの粉末とは珪酸塩系及び/又はアルミン酸塩系バ
インダーによつて付着成形させた耐熱型防食被膜(試験
片No.6〜No.10)は従来のCa等アルカリ土類金属炭酸塩
を珪酸塩系バインダーによつて付着成形させた無機質塗
料の被膜(試験片No.3〜No.5)に比して1/10前後の腐食
減量であり、耐食性が著しく向上することが判る。
[Effects of the Invention] As a result, as shown in Table 5, the calcium carbonate according to the present invention and the powder of the frit used for ceramic coating, porcelain, etc. are adhered and formed using a silicate-based and / or aluminate-based binder. The heat-resistant type anticorrosion coating (specimen No. 6 to No. 10) is a coating of inorganic paint obtained by adhering and forming a conventional alkaline earth metal carbonate such as Ca with a silicate binder (specimen No. 3). ~ No. 5), the corrosion loss is about 1/10, and it can be seen that the corrosion resistance is remarkably improved.

又、腐食試験後の試験片を調べた結果No.3〜No.5の試
験片には試験片表面にVa、V等の腐食性物質が認めら
れ、No.6〜No.10の試験片ではそれが認められなかつ
た。このことからも本発明の無機質被膜は熱衝撃にも強
く耐食性被膜として有効であることがわかる。
In addition, as a result of examining the test pieces after the corrosion test, corrosive substances such as Va and V were found on the test piece surfaces of the test pieces of No. 3 to No. 5, and the test pieces of No. 6 to No. 10 Then it was not recognized. This also indicates that the inorganic coating of the present invention is resistant to thermal shock and is effective as a corrosion-resistant coating.

次に、本発明の耐熱型防食被膜の組成範囲について説
明する。
Next, the composition range of the heat-resistant anticorrosive film of the present invention will be described.

1) バインダーの量について: 20〜60wt%の珪酸ナトリウム又はアルミン酸ナトリウ
ム水溶液を50wt%、炭酸カルシウム粉末25wt%とセラミ
ツクコーテイングや陶磁器等に使用するフリツトとして
陶磁器用フリツト、品番PN−5400Nの粉末(第4表参
照)25wt%とを混合した溶液をSUS304の試験片に塗布し
て付着成形させ、実施例に説明したと同様な腐食試験を
行つた結果第5表の如くであつた。
1) Regarding the amount of the binder: 50% by weight of an aqueous solution of 20-60% by weight of sodium silicate or sodium aluminate, 25% by weight of calcium carbonate powder, and a frit for ceramics as a frit used for ceramic coating, ceramics, etc., powder of product number PN-5400N ( (See Table 4) A solution mixed with 25 wt% was applied to a SUS304 test piece and formed by adhesion molding, and a corrosion test similar to that described in the example was conducted. The result was as shown in Table 5.

以上の結果から珪酸ナトリウム又はアルミン酸ナトリ
ウム水溶液の濃度は35〜60wt%がよく、従つて水分が蒸
発した後の防食被膜中では26wt%から37.5wt%の珪酸ナ
トリウム又はアルミン酸ナトリウムの含有量が有効であ
る。
From the above results, the concentration of the aqueous solution of sodium silicate or sodium aluminate is preferably 35 to 60% by weight. Therefore, the content of sodium silicate or sodium aluminate of 26% to 37.5% by weight in the anticorrosion film after the evaporation of water is good. It is valid.

2) CaCO3とセラミツクコーテイングや陶磁器等に使
用するフリツトとの量比について: 50wt%の珪酸ナトリウム又はアルミン酸ナトリウム水
溶液を50wt%、炭酸カルシウム粉末10〜40wt%とセラミ
ツクコーテイングや陶磁器等に使用するフリツトとして
陶磁器用フリツト、品番PN−5400Nの粉末10〜40wt%と
を混合した溶液をSUS304の試験片に塗布して付着成形さ
せ、前述と同様な腐食試験を行つた結果第6表の如くで
あつた。
2) About the quantity ratio of CaCO 3 to the frit used for ceramic coating, ceramics, etc .: 50wt% sodium silicate or sodium aluminate aqueous solution, 50wt%, calcium carbonate powder 10-40wt%, used for ceramic coating, ceramics, etc. As a frit, a mixture of a ceramic frit and a powder of PN-5400N of 10 to 40% by weight was applied to a test piece of SUS304 and adhered and molded. As a result of the same corrosion test as described above, the results were as shown in Table 6. Atsuta.

以上の結果からCaCO3とフリットの割合はCaCO3が20〜
35wt%、フリットが15〜30wt%の範囲が有効であり、水
分が蒸発した後の防食被膜中ではCaCO3が26.7〜46.7wt
%、フリツト成分が20〜40wt%の含有量の範囲が有効で
あつた。
From the above results, the ratio of CaCO 3 and frit is 20 ~ for CaCO 3
Effective in the range of 35 wt% and frit in the range of 15 to 30 wt%, CaCO 3 is 26.7 to 46.7 wt% in the anticorrosion coating after moisture evaporates.
% And a frit component in the range of 20-40% by weight were effective.

以上の如く本発明の有効範囲は、水分が蒸発した防食
被膜の状態でバインダーとしての珪酸ナトリウム、又は
アルミン酸ナトリウムの含有量は26〜37.5wt%であり、
CaCO3が26.7〜46.7wt%、フリツト成分が20〜40wt%の
範囲が有効であつた。
As described above, the effective range of the present invention is that the content of sodium silicate or sodium aluminate as a binder in a state of an anticorrosion film in which water is evaporated is 26 to 37.5 wt%,
The effective range was 26.7 to 46.7% by weight of CaCO 3 and 20 to 40% by weight of the frit component.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例としての概念図である。 1……金属、2……耐熱型防食被膜、3……フリツトの
粉末、4……空隙、5……スケール。
FIG. 1 is a conceptual diagram as one embodiment of the present invention. 1 ... metal, 2 ... heat-resistant anticorrosion coating, 3 ... powder of frit, 4 ... voids, 5 ... scale.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−118763(JP,A) 特開 昭50−126035(JP,A) 特開 昭59−4661(JP,A) 特開 平1−167382(JP,A) 特開 平1−108274(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-11863 (JP, A) JP-A-50-126035 (JP, A) JP-A-59-4661 (JP, A) JP-A-1- 167382 (JP, A) JP-A-1-108274 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ボイラ等の伝熱器管表面に、炭酸カルシウ
ム及びフリットを含有する混合物を、珪酸塩系及び/又
はアルミン酸塩系バインダーによって付着形成させてな
る防食被膜であって、該防食被膜中での炭酸カルシウム
の割合が26.7〜46.7wt%、フリットの割合が20〜40wt%
であることを特徴とする耐熱型防食被膜。
An anticorrosion coating comprising a mixture containing calcium carbonate and a frit adhered to a surface of a heat transfer tube such as a boiler with a silicate and / or aluminate binder. The proportion of calcium carbonate in the coating is 26.7-46.7wt%, and the proportion of frit is 20-40wt%
A heat-resistant anticorrosive coating characterized by the following.
JP63306115A 1988-12-05 1988-12-05 Heat resistant anticorrosion coating Expired - Fee Related JP2615167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306115A JP2615167B2 (en) 1988-12-05 1988-12-05 Heat resistant anticorrosion coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306115A JP2615167B2 (en) 1988-12-05 1988-12-05 Heat resistant anticorrosion coating

Publications (2)

Publication Number Publication Date
JPH02151671A JPH02151671A (en) 1990-06-11
JP2615167B2 true JP2615167B2 (en) 1997-05-28

Family

ID=17953228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306115A Expired - Fee Related JP2615167B2 (en) 1988-12-05 1988-12-05 Heat resistant anticorrosion coating

Country Status (1)

Country Link
JP (1) JP2615167B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115429099B (en) * 2022-09-28 2024-04-26 武汉苏泊尔炊具有限公司 Corrosion-resistant cooker and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118763A (en) * 1983-11-30 1985-06-26 Chiyouri Kk Corrosion-and fire-resistant coating composition

Also Published As

Publication number Publication date
JPH02151671A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
AU702805B2 (en) Process for the preparation of calcium aluminates from aluminum dross residues
US20090324919A1 (en) Layers or coatings which are stable at high temperatures and composition for producing them
US5034114A (en) Acid neutralizing combustion additive with detergent builder
EP0908428B1 (en) Coating material for carbonization chamber in coke furnace and method of applying the same
JP2615167B2 (en) Heat resistant anticorrosion coating
JPH08259282A (en) Stabilization treatment of steel making slag
US4844943A (en) Process for protecting metallic surfaces against vanadosodic corrosion
US4355060A (en) High temperature cementitious coatings with improved corrosion resistance and methods of application
US6289827B1 (en) Process for the control of ash accumulation and corrosivity associated with selective catalytic reduction technology
JP3202484B2 (en) Heat and water resistant anticorrosion coating
GB2160896A (en) Agents for the removal of impurities from a molten metal and a process for producing same
CN114605884A (en) Preparation and sealing method of anti-corrosion sealing coating for garbage or biofuel boiler
JPS594661A (en) Heat-resistant type anti-corrosive film
JPS6139991B2 (en)
CA2170533C (en) Process for the preparation of calcium aluminates from aluminium dross residues
JPS62131074A (en) Heat-presistant corrosionproof coating
JPH01167382A (en) Heat-resistant type anticorrosive film
JPH0648846A (en) Hot repairing spraying material for converter under less slag operation
JPS63314284A (en) Heat-resistant anticorrosive coating film
JPH0882499A (en) Heat resistant corrosion-resistant film
JP2004051421A (en) Cement admixture and cement composition
KR930000095B1 (en) Process for manufacturing an inhibitors with a phosphorus-containing compounds
Zaremba et al. Application of thermal analysis in a phase composition study on by-product from semi-dry flue gas desulfurization system
PL91764B1 (en)
JPS63289076A (en) Heat-resistant corrosion-inhibiting film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees