JPS6052701A - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPS6052701A
JPS6052701A JP16095583A JP16095583A JPS6052701A JP S6052701 A JPS6052701 A JP S6052701A JP 16095583 A JP16095583 A JP 16095583A JP 16095583 A JP16095583 A JP 16095583A JP S6052701 A JPS6052701 A JP S6052701A
Authority
JP
Japan
Prior art keywords
sensor
measured
displacement
output
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16095583A
Other languages
Japanese (ja)
Inventor
Hirokazu Mori
博和 森
Naohito Taniwaki
谷脇 尚人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP16095583A priority Critical patent/JPS6052701A/en
Publication of JPS6052701A publication Critical patent/JPS6052701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To use effectively an eddy current-type sensor even in a region where its precision is low by operating an NC table on a basis of the output of the eddy-current-type sensor so that the length between an object to be measured and the eddy current-type sensor before displacement of the object to be measured is equal to that after displacement of the object to be measured. CONSTITUTION:A sensor 1 detects the extent of gap between the sensor 1 and the object to be measured in a case 9 and sends an electric output corresponding to this extent to an amplifier 7. This amplified output is stored in a holding circuit 10 as an initial gap extent by an initial data taking-in timing signal. In this state, the object to be measured is displaced by a length DELTAl. A comparator 11 discriminates whether this DELTAl is in the positive direction or the negative direction. A displacement measuring part 12 determines the moving direction of a sensor head on a basis of this output and transmits it to a driving control part 5 of the sensor head. A driving means of an NC table 2 moves a table 3 in the positive or negative direction on a basis of the command of the control part 5. When the length between the object 8 to be measured and the sensor 1 is equal to that before displacement, the NC table is stopped.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、例えば、アクリル樹脂等の絶縁相料からな
る保膜ケースに収納されているリレー接点ばねの移動量
をケースの外から測定するなどの目的で使用される、非
接触型の変位測定装置に関する。
[Detailed Description of the Invention] [Technical Field] The purpose of the present invention is to measure, for example, the amount of movement of a relay contact spring housed in a membrane-retaining case made of an insulating material such as acrylic resin from outside the case. This invention relates to a non-contact displacement measuring device used in

〔背景技術〕[Background technology]

リレー接点ばね等、ケースに収納された物体の変位量を
測定するには、物体に触れることなく変位を測定するこ
とができる非接触型の測定装置を用いる必要がある。し
かし、光学式のものはケースが不透明であるととが多い
ので、一般には使えないし、高価にもつく。超音波式の
ものも、高価につくし、微量測定に不向きである。
To measure the amount of displacement of an object housed in a case, such as a relay contact spring, it is necessary to use a non-contact measuring device that can measure displacement without touching the object. However, many optical types have opaque cases, so they cannot be used generally and are expensive. Ultrasonic types are also expensive and unsuitable for measuring minute quantities.

渦電流式センサを使用すれば、上記のような問題は生じ
ない。渦電流式センサとは、例えば、高周波発振回路、
検波回路、波形幣1ヒ回路および出力回路からなる検出
回路を備え、発振回路の発振コイルを検出ヘッドとして
用いる高目波型センサである。このものは、例えば次の
ように作用する。
If an eddy current sensor is used, the above problems do not occur. Eddy current sensors include, for example, high frequency oscillation circuits,
This is a high-wavelength sensor that includes a detection circuit consisting of a detection circuit, a waveform detection circuit, and an output circuit, and uses the oscillation coil of the oscillation circuit as a detection head. This works, for example, as follows.

ヘッドの近くに金属体等導電体がないときは一定の発振
状態にあるが、ヘッドが導電体に接近すると発振コイル
の磁力線を受けて誘導により4電体内部に渦電流が発生
するため、発振コイルの抵抗分が大きくなって出力が変
化する。この出力変化を利用すれば、リレー接点ばね等
導電体の変位量を非接触型で測定することができる。し
か1渦電流式センサには次のような問題がある。
When there is no conductor such as a metal body near the head, there is a constant oscillation state, but when the head approaches a conductor, eddy currents are generated inside the four electric bodies by induction due to the magnetic field lines of the oscillation coil, resulting in oscillation. The resistance of the coil increases and the output changes. By utilizing this output change, the amount of displacement of a conductor such as a relay contact spring can be measured in a non-contact manner. However, the single eddy current sensor has the following problems.

■ 渦電流式センサによって測定することのできる距離
は、センサ径にほぼ一致する程度であり、しかも、測定
物が小さいほどまだ距離が離れるほど感度が低下してS
/N比が悪くなり、測定精度も悪くなる。
■ The distance that can be measured by an eddy current sensor is approximately the same as the sensor diameter, and the smaller the object to be measured, the greater the distance, the lower the sensitivity becomes.
/N ratio deteriorates, and measurement accuracy also deteriorates.

■ このようなことから、高精度の測定結果が得られる
のは、高々1〜2πmであり、それ以上になると精度が
悪くなる。リレー接点ばねの変位量測定のごとく、保獲
ケーヌの外から測定する場合、渦電流式センサでIJ 
ニヤ性が得られる距離の数倍(約1〜5倍)離した状態
で高精度測定しなければならないので、渦電流式センサ
のみによ量測定では精度が悪く、実用的でない。
(2) For this reason, highly accurate measurement results can be obtained at most 1 to 2 πm, and the accuracy deteriorates when the distance is greater than that. When measuring from outside the retainer, such as measuring the displacement of a relay contact spring, an eddy current sensor is used to measure the IJ.
Since high-precision measurement must be performed at a distance several times (approximately 1 to 5 times) the distance at which a good linearity can be obtained, measuring the amount using only an eddy current sensor has poor accuracy and is not practical.

■ 渦′it流式センサのみによる測定では、被測定物
の材質、形状、センサとの位置関係によって出力値が変
化するため、校正や位置精度(位置合せ)が必要となり
、不便である。
(2) Measurement using only a vortex flow sensor is inconvenient because the output value changes depending on the material, shape, and positional relationship of the object to be measured, and requires calibration and positional accuracy (alignment).

〔発明の目的] この発明は、渦電流式センサを利用し、しかも上記のよ
うな問題を生じない変位測定装置を提供することを目的
とする。
[Object of the Invention] An object of the present invention is to provide a displacement measuring device that uses an eddy current sensor and does not cause the above-mentioned problems.

〔発明の開示〕[Disclosure of the invention]

上記目的を達成するため、この発明は、渦電流式センサ
と、この渦電流式センサを一方向に移動させるNCテー
ブルと、このNCデープルの移動量を測定する手段とを
それぞれ備え、前記NCテーブルは、前記渦電流式セン
サの出力に基き、被測定物の変位の前後において被測定
物と渦電流式 。
In order to achieve the above object, the present invention includes an eddy current sensor, an NC table for moving the eddy current sensor in one direction, and means for measuring the amount of movement of the NC table. Based on the output of the eddy current type sensor, the measured object and the eddy current type are measured before and after the displacement of the measured object.

センサの距離が同じとなるように動作する変位測定装置
をその要旨とする。以下にその一実施例をあられす図面
に基いてこれを詳しく説明する。
The gist is a displacement measuring device that operates so that the distances between the sensors are the same. One embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図にみるように、この発すJにかかる変位側ン 定装置は、渦電流式センサーとNCデープル2を備えて
いる。NCテーブル2は、テーブル3と、このテーブル
を矢印で示す一定方向に移動させる風動都4と、この駆
動部を制御する制御部5をそれぞれ備え、テーブル3上
に立つ支持ブロック6によってセンサ1を支持している
。図中、7はセンサlの出力を増幅するアンプである。
As shown in FIG. 1, the displacement side measuring device for the emitted J is equipped with an eddy current sensor and an NC doublet 2. The NC table 2 includes a table 3, a wind movement 4 that moves the table in a certain direction indicated by an arrow, and a control section 5 that controls this drive section. is supported. In the figure, 7 is an amplifier that amplifies the output of the sensor l.

図示はしていないが、駆動部4には、テーブル3の矢印
方向VCおける直線的移動量(従って、センサ1の移動
量)勿611j定する移動量測定手段が内蔵されている
。この移% 量測定手段としては、リニアスケール、パ
ルスモータ、 差B3b トランスナトテーブル3の直
線的移動に応じて正負の電気的出力が得られるものを用
いることが好ましい。電気的出力であれば、距離rあら
2′)1舷値として直ちに表示することが可能となるか
らである。しかし、このような電気的出力を発する手段
に限られることはない。
Although not shown, the drive unit 4 has a built-in movement measuring means for determining the linear movement amount of the table 3 in the arrow direction VC (therefore, the movement amount of the sensor 1). As the transfer amount measuring means, it is preferable to use a linear scale, a pulse motor, or one that can provide positive and negative electrical outputs in accordance with the linear movement of the transnat table 3. This is because if it is an electrical output, it becomes possible to immediately display the distance r~2') as the shipboard value. However, the present invention is not limited to means for emitting such electrical output.

上記装置のシステム構V、をあられずブロック線図(第
2図)と、経時的動作をあられすタイムチャート(第3
図)に基いて、この変位が11定装置のrb作(iT説
明すれば、次のとおりである。第1図にみるように、渦
電流式センサ1と被測定物8を対面させる。すなわち、
被測定物をセットする。この例では、被測定物は、絶縁
保穫ケー79内に収納されたリレー接点ばねである。リ
レー接点ばね8がセンサlの感知能力の及ぶ範囲内に置
かh −(いることは言うまでもないっセンサ1は、ケ
ーヌ内にある被測定物との間のギヤングはを検出してそ
れに対応する電気的出力をアンプ7 VC送る。アンプ
回路で信号増巾されたこの出力は、初期ギャップ量とし
て初期データ取込みタイミング信号によりホールド回路
10にメモリされる。この状態において被測定物が距離
Δeだり変位する。この変位に伴い、第3図にみるよう
にセンサ1の出力が変化する。この変位には、センサ1
がら遠のく正方向変位とセンサlに近づく負方向変位と
がある。第3図では負方向変位となっている。l−たが
って、コンパレータ11が、このΔlが正方向か負方向
かを、ホールド回路10のメモリ量とセンサアンプ7の
出力量とを比較することにより判定する。第3図では負
と判定している。コンパレータ11の出力け、変位測定
部12に取り込まれるので、変位測定部12は、この出
力に基きセンサヘッドの移動方向を決定し、この決定を
ヌタート指令としてセンサヘッドのぶ動制御部すなわち
NCデープル2の制御部5に伝える。制御部50指令に
基きNCテーブルの駆動s4がテーブル3を正方向また
は負方向に移動させる。@3図では正方向に移動させて
いる。その結果、センサlの出力絶対値が第3図にみる
ように徐々に派少する。そして、初期の値に達し、ホー
ルド回路lOの出力と一致したところで、コンパレータ
11の出力が零となり、アウト信号により、変位測定部
12が制御部5をストップ制御させるようにする。すな
わち、NCテーブルの移動により、被測定物8とセンサ
lの距離が変位前の距離と同じ値となったところで、N
Cテーブルが停止するようになる。
A block diagram (Figure 2) showing the system configuration of the above device and a time chart (Figure 3) showing the operation over time.
Based on this displacement, the RB operation (iT) of the 11 constant device is as follows. As shown in FIG. 1, the eddy current sensor 1 and the object to be measured 8 are made to face each other. ,
Set the object to be measured. In this example, the object to be measured is a relay contact spring housed in an insulating protection case 79. It goes without saying that the relay contact spring 8 is placed within the range of the sensing capability of the sensor l. The output is sent to the amplifier 7 VC.This output, signal amplified by the amplifier circuit, is stored as an initial gap amount in the hold circuit 10 by the initial data acquisition timing signal.In this state, the object to be measured is displaced by a distance Δe. Along with this displacement, the output of sensor 1 changes as shown in Figure 3.
There is a positive displacement that moves away from the sensor l, and a negative displacement that approaches the sensor l. In FIG. 3, the displacement is in the negative direction. l- Therefore, the comparator 11 determines whether this Δl is in the positive direction or in the negative direction by comparing the memory amount of the hold circuit 10 and the output amount of the sensor amplifier 7. In FIG. 3, it is determined to be negative. Since the output of the comparator 11 is taken into the displacement measuring section 12, the displacement measuring section 12 determines the moving direction of the sensor head based on this output, and uses this determination as a Nuttat command to the oscillation control section of the sensor head, that is, the NC table 2. The information is transmitted to the control unit 5. The drive s4 of the NC table moves the table 3 in the positive direction or the negative direction based on a command from the control unit 50. In Figure @3, it is moved in the positive direction. As a result, the absolute value of the output of sensor l gradually decreases as shown in FIG. Then, when the initial value is reached and matches the output of the hold circuit IO, the output of the comparator 11 becomes zero, and the output signal causes the displacement measuring section 12 to control the control section 5 to stop. That is, when the distance between the object to be measured 8 and the sensor l becomes the same value as the distance before displacement due to the movement of the NC table, N
C table will stop.

NCテーブルの前記駆動に伴い、リニアスケール$NC
テーブル2の移動量測定手段が出力し始め、第3図にみ
るように次第にその出力値が増す。そして、前記のごと
くアウト信号が発せられ、NCテーブルの移動が停止し
たときに、移動量測定手段が発する出力値が変位測定部
12に取り込まれ、被測定物の変位量Δlとしてfi1
1定表示されるようになるのである。
Along with the driving of the NC table, the linear scale $NC
The movement amount measuring means of the table 2 begins to output, and the output value gradually increases as shown in FIG. Then, when the out signal is issued as described above and the movement of the NC table is stopped, the output value issued by the movement amount measuring means is taken into the displacement measuring section 12, and fi1 is set as the displacement amount Δl of the object to be measured.
It will be displayed for a fixed period of time.

ここに、被測定物とセンサの距離が同じ値になるとは、
センサの出力値を走U倍したときに一致する場合を含む
Here, when the distance between the measured object and the sensor becomes the same value,
This includes the case where the output value of the sensor matches when multiplied by U.

各種信号の処理方法、NCテーブルの機構や電気回路の
構成は、前記実施例のものに限られない。
The method of processing various signals, the mechanism of the NC table, and the configuration of the electric circuit are not limited to those of the embodiments described above.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる変位測定装置は、渦電流式センサと、
この渦電流式センサを一方向ll′c8動させるNCテ
ーブルと、このNCテーブルの移動量を測定する手段と
をそれぞれ備え、前記NCテーブルは、前記渦電流式セ
ンサの出力に基き、被1fll+定物の変位の前後にお
いて被測定物と渦1u流式センサの距離が同じとなるよ
うに動作することをl特徴とし、渦電流式センサは単に
被1り定物との距離が一定となるようにNCテーブルを
制御するだめのセンサとして使用するに止めているので
、渦電流式センサの精度が粗稍匿となる領域においても
有効に活用することができる。すなわち、渦電流式セン
サオ、センサヘッドと彼沖J定物の’IQ 離f −定
にするように動作するフィードバックコントロール系の
検出器として使用しているだめ、下記のごとき作用効果
がイ(1られるう ■ 渦電?IE式センサの通常検出可能距離の截倍を越
える11を囲においても、リレ−4妾点ばね′!f微小
物の変位411]定を容易とする。
A displacement measuring device according to the present invention includes an eddy current sensor;
An NC table for moving this eddy current sensor in one direction and a means for measuring the amount of movement of this NC table are provided, and the NC table is configured to move the eddy current sensor in one direction. The eddy current sensor operates so that the distance between the object to be measured and the eddy current sensor is the same before and after the object is displaced. Since it is only used as a sensor for controlling the NC table, it can be effectively used even in areas where the accuracy of eddy current sensors is poor. In other words, since the eddy current sensor is used as a detector in a feedback control system that operates to keep the sensor head and the constant 'IQ distance f - constant, the following effects will occur. Even if the distance exceeds twice the normal detectable distance of the eddy-electric IE sensor, it is easy to determine the displacement of a minute object.

(リ 光学n1已1jや超音波計測にくらべ、同−In
度において安価である。
(Compared to optical n1x1j and ultrasonic measurement, the same
It is relatively inexpensive.

■ 毎回原点合せを行なうようにしているだめ、被測定
物とセンサの位I!l決め珀度が要求されない。
■ If you try to align the origin every time, the position of the object to be measured and the sensor is incorrect! No determining consistency is required.

(AI 検出特性カーブに依存しない方式であるため、
彼δIll定物の利質、形状などによる校正が不要とな
る。
(Since it is a method that does not depend on the AI detection characteristic curve,
Calibration based on the interest rate, shape, etc. of the constant object becomes unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

濱1図はこの発明にかかる変位測定装置の一実施例をあ
られす斜視図、イS2図は同上装置のフロック線図、第
3図は同タイミングチャートである。 1・・・hrb it流式センサ 2・・・NCテーブ
ル8・・・被測定物 代理人 弁理士 医 本 武 彦 平糸ダ辞i1’ijJ三凹:(自発)7゜1.事1′1
の表示 昭[1158年特許願第160955号2、発明の名称 変位測定装置 3 ンdialをJる一U 串111との関(系 特許用1頭人 (J 所 大IHf丁門真市大字門真1048番地名 
称(583)松下電工株式会社 代表者 代表叫帝没 小林 郁 4、代理人 氏 名 (7346)弁理士 松 本 武 彦5、補正
により増加する発明の数 補正の内容 (1,1明細岩第7夏第11行およO・第19行に「ウ
ド」とあるを「出力Jと8j正する。
Figure 1 is a perspective view of one embodiment of the displacement measuring device according to the present invention, Figure 2 is a block diagram of the same device, and Figure 3 is a timing chart of the same. 1...HRB IT flow type sensor 2...NC table 8...Measurement object representative Patent attorney Medical doctor Takehiko Hiraitodaji i1'ijJ three concave: (spontaneous) 7°1. thing 1'1
Indication of Showa [1158 Patent Application No. 160955 2, name of the invention Displacement measuring device 3 The connection between the dial and the skewer 111 (Series Patent use 1 head person (J place Dai IHf 1048 Kadoma, Kadoma City) street name
Name (583) Representative of Matsushita Electric Works Co., Ltd. Representative Iku Kobayashi 4, Agent name (7346) Patent attorney Takehiko Matsumoto 5, Number of inventions increased by amendment Contents of amendment (1, 1 Seiwa Iwa No. 7 Summer lines 11, O, and 19 read "udo" and correct it to "output J and 8j.

Claims (3)

【特許請求の範囲】[Claims] (1) 渦電流式センサと、この渦電流式センサを一方
向に移動させるNCテーブルと、このNCテーブルの移
動量を測定する手段とをそれぞれ備え、前記NCテーブ
ルは、前記渦電流式センサの出力に基き、被測定物の変
位の前後において被測定物と渦電流式センサの距離が同
じとなるように動作する変位測定装置。
(1) Each includes an eddy current sensor, an NC table for moving the eddy current sensor in one direction, and means for measuring the amount of movement of the NC table, and the NC table is configured to move the eddy current sensor in one direction. A displacement measuring device that operates based on the output so that the distance between the measured object and the eddy current sensor is the same before and after the measured object is displaced.
(2)NCテーブルの移動量を測定する手段がリニアヌ
ケールである特許請求の範囲第1項記載の変位測定装置
(2) The displacement measuring device according to claim 1, wherein the means for measuring the amount of movement of the NC table is a linear scale.
(3)NCテーブルの移動量を測定する手段がノ(ルス
モータである特許請求の範囲第1項記載の変位が11定
装置。
(3) The displacement device according to claim 1, wherein the means for measuring the amount of movement of the NC table is a torque motor.
JP16095583A 1983-08-31 1983-08-31 Displacement measuring device Pending JPS6052701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16095583A JPS6052701A (en) 1983-08-31 1983-08-31 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16095583A JPS6052701A (en) 1983-08-31 1983-08-31 Displacement measuring device

Publications (1)

Publication Number Publication Date
JPS6052701A true JPS6052701A (en) 1985-03-26

Family

ID=15725802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16095583A Pending JPS6052701A (en) 1983-08-31 1983-08-31 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPS6052701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168809U (en) * 1988-05-17 1989-11-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168809U (en) * 1988-05-17 1989-11-28

Similar Documents

Publication Publication Date Title
DE50015183D1 (en) EM POSITIONER
WO2001075874A3 (en) Measurement of tape position error
SE9904039D0 (en) Connecting device for a passenger bridge
SE9903905D0 (en) Device and method for determining coordinates and orientation
JPS6052701A (en) Displacement measuring device
US4689890A (en) Digital display measuring apparatus
JP2001041703A (en) Range finder and thickness meter
JP3946827B2 (en) Proximity detector
JPH0237524B2 (en)
JPS5644977A (en) Pattern information input system
JPS5946504A (en) Measuring device for size of workpiece
JPH026124B2 (en)
CN107024190A (en) A kind of non-contact displacement transducer calibration facility being used under hot environment
JPH0473089B2 (en)
JP3009345B2 (en) Measuring instrument whose detection range is set from outside and automatic processing system using it
SU1437699A1 (en) Pressure-measuring device
JPS633201A (en) Magnetic position detecting device
JPS5899611U (en) Measuring device
JPS6165103A (en) Measuring instrument
DE3887848T2 (en) Motion sensor used as a pressure or liquid level measuring device.
SU1324642A1 (en) Tremometer
JPS63302316A (en) Noncontact position measuring apparatus
EP1647465A3 (en) Driverless vehicle guidance system
WO1992008946A3 (en) Device for measuring linear dimensions on a structured surface of an object
JPS6175420A (en) Position detecting device