JPS6052595B2 - solid-state image sensor - Google Patents

solid-state image sensor

Info

Publication number
JPS6052595B2
JPS6052595B2 JP53123347A JP12334778A JPS6052595B2 JP S6052595 B2 JPS6052595 B2 JP S6052595B2 JP 53123347 A JP53123347 A JP 53123347A JP 12334778 A JP12334778 A JP 12334778A JP S6052595 B2 JPS6052595 B2 JP S6052595B2
Authority
JP
Japan
Prior art keywords
light receiving
insulating layer
section
accumulating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53123347A
Other languages
Japanese (ja)
Other versions
JPS5550673A (en
Inventor
哲雄 安藤
靖夫 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP53123347A priority Critical patent/JPS6052595B2/en
Publication of JPS5550673A publication Critical patent/JPS5550673A/en
Publication of JPS6052595B2 publication Critical patent/JPS6052595B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は、固体撮像素子特にCCD撮像素子のブルーミ
ング制御に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to blooming control of a solid-state image sensor, particularly a CCD image sensor.

固体撮像素子においては、受光期間中、その受光量に応
じて生じた電荷キャリアを蓄積する蓄積部が設けられる
が、この蓄積部において局部的に強い入射光を受けて取
扱い得る電荷以上の余剰の電荷が局部的に生じた場合、
これが周囲の他の蓄積部、即ち他の絵素へと流れ込み、
または読み出し機構(例えばCCDシフトレジスタ部)
へ漏洩し、再生画像を著しく損う所謂ブルーミングが生
ずる。
A solid-state image sensor is provided with an accumulation section that accumulates charge carriers generated according to the amount of light received during the light reception period, but when this accumulation section receives locally strong incident light, excess charge that exceeds the amount of charge that can be handled is generated in this accumulation section. If a charge is generated locally,
This flows into other surrounding accumulation areas, that is, other picture elements,
or readout mechanism (e.g. CCD shift register section)
This causes so-called blooming, which significantly impairs the reproduced image.

このようなブルーミングの発生を回避するために、固体
撮像素子においては、上述した余剰の電荷を除去する方
法が採られている。
In order to avoid the occurrence of such blooming, solid-state imaging devices employ the method of removing the above-mentioned surplus charge.

例えばインターライン転送方式による固体撮像素子にお
いては、第1図に示すように、半導体基体例えばP型の
シリコン基体1の表面に絶縁層2が被着され、これの上
に透明電極より成るセンサー電極3が被着されて受光が
なされ、この受光量に応じて生じた電荷を蓄積するセン
サー部、即ち受光蓄積部が設けられるが、このセンサー
部に隣接して、基体1とは異なる導電型の、例えばN型
のオーバフロードレイン領域4が基体1の表面に臨んで
設けられる。5はシフトレジスタ部(図示せず)とセン
サ部との間に設けられた転送ゲート電極、6はチャンネ
ルストッパー領域である。
For example, in a solid-state image sensor using an interline transfer method, as shown in FIG. 3 is deposited on the substrate 1 to receive light, and a sensor section, that is, a light reception accumulation section, is provided which accumulates the charge generated according to the amount of received light. For example, an N-type overflow drain region 4 is provided facing the surface of the base 1 . 5 is a transfer gate electrode provided between a shift register section (not shown) and a sensor section, and 6 is a channel stopper region.

この構成において受光状態では、センサー電極3に、例
えば正の所定電圧を与えるが、この場合、例えは絶縁層
2の厚さを部分的に異ならしめて実線dてその表面ポテ
ンシャルの分布を示すように、部分d、で示すポテンシ
ャルの井戸が形成される部分、即ち少数キャリアの蓄積
部を構成すると共に、この蓄積部”とオーバーフロード
レイン領域4との間に部分(2で示すバリアを形成する
オーバーフローコントロール部分とを設け、このバリア
山で規定された蓄積部における取扱い電荷量以上の余剰
の電荷を矢印eで示すようにオーバーフロードレイン領
域4・に吸い込ませるようにしている。しかしながら、
このようなオーバーフロードレイン領域4を有する固体
撮像素子の場合には、微細加工技術上の制限から単位絵
素寸法を小さくして高密度化を計ることが困難てあり、
また絵素面積の有効利用が出来ない欠点がある。本発明
は、上述したような欠点がなく、しかも余剰電荷の排除
を効果的に行うことができるようにした新規な固体撮像
素子を提供するものである。
In this configuration, in the light-receiving state, for example, a positive predetermined voltage is applied to the sensor electrode 3. In this case, for example, the thickness of the insulating layer 2 is made partially different so that the solid line d shows the distribution of the surface potential. , part d, where a potential well is formed, that is, a minority carrier storage part, and a part (d) between this storage part and overflow drain region 4 (an overflow control forming a barrier shown by 2). A portion is provided so that surplus charge exceeding the amount of charge handled in the storage portion defined by this barrier mountain is sucked into the overflow drain region 4 as shown by arrow e.However,
In the case of a solid-state image sensor having such an overflow drain region 4, it is difficult to increase the density by reducing the unit pixel size due to limitations in microfabrication technology.
Another drawback is that the pixel area cannot be used effectively. The present invention provides a novel solid-state imaging device that does not have the above-mentioned drawbacks and can effectively eliminate excess charge.

即ち、本発明においては、受光蓄積部の取扱い電荷量以
上の余剰電荷を、受光蓄積部の表面を覆う絶縁層を通じ
てセンサー電極に吸収させるようになす。
That is, in the present invention, excess charge exceeding the amount of charge that the light receiving and accumulating section can handle is absorbed by the sensor electrode through the insulating layer covering the surface of the light receiving and accumulating section.

先づ、本発明固体撮像素子における余剰電荷の吸収、特
に表面チャンネルにおける電荷蓄積の余剰電荷を排除吸
収させる機構について説明するに、本発明においては、
従来の受光蓄積部として用いられたMOS容量を例えば
MNOS(金属一窒化膜一酸化膜一半導体)構造の如き
多層絶縁膜によるMIS(金属一絶縁膜一半導体)構造
に置き換えて、その性質を利用することを基本とする。
シリコン窒化膜(Si3N4)の如ぎ絶縁膜は、ある機
構で説明される電子又は正孔をキャリアとする電界に対
して非線形の電気伝導を有することが知られている。
First, to explain the absorption of surplus charge in the solid-state image sensing device of the present invention, particularly the mechanism for eliminating and absorbing the surplus charge accumulated in the surface channel, in the present invention,
By replacing the MOS capacitor used in the conventional light receiving and accumulating unit with an MIS (metal-insulating-film-semiconductor) structure using a multilayer insulating film, such as the MNOS (metal-mono-nitride-monoxide-semiconductor) structure, the properties of the MOS capacitor can be utilized. The basic principle is to do so.
It is known that an insulating film such as a silicon nitride film (Si3N4) has nonlinear electrical conduction with respect to an electric field using electrons or holes as carriers, which is explained by a certain mechanism.

又、シリコン酸化膜(SiO2)についても、ある電界
のもとでは、シリコン基板から主に電子が伝導すること
が確かめられている。したがつて、シリコン窒化膜一シ
リコン酸化膜による2層膜をゲート膜としてもつ東B構
造のダイオードに電圧を印加すると、ある電流を流すこ
とが可能である。この特性に関する実施例を第2図に示
す。第2図は、第3図で示すMNOS構造、即ち一P型
シリコン基板7上に厚さ50Af)SiO,膜8及び厚
さ400A(7)Si3N濃9を被着し、その上に電極
10を被着して成る素子に対して、光11を照射し、電
極10及び基体7間に電極10側をプラスとなるように
印加した電圧Eを変えたときの電圧!一電流特性である
。この特性曲線aによれば、P型シリコン基板7上の所
謂東B容量周辺に光11を照射することにより電子が発
生し、この電子がシリコン基体表面の反転層よりSiO
2膜8−Si3N4膜9を通じて電極10に流れたもの
と考え・られる。このダイオード特性は、構造上のゲー
ト膜厚から定まる或る閾値電圧を持つた電圧一電流特性
と等価に見なされる。第2図においては、電圧VOがゲ
ート膜厚、特にSiO2膜8の膜厚で決まる閾値電圧で
あつて、これ以下の電流は無視し得る電流である。そこ
で、このような特性を有する受光蓄積部、即ち例えばP
型シリコン基板上に第3図で示すようなSiO.膜及び
Si3N4膜を介してセンサー電極を被着して成る受光
蓄積部を設け、受光期間その膜厚で定まる閾値電圧以上
の電圧をセンサー電極に与えると、この受光蓄積部に蓄
積される電荷キャリアは一定量以上の増加が制限される
It has also been confirmed that in a silicon oxide film (SiO2), electrons mainly conduct from the silicon substrate under a certain electric field. Therefore, when a voltage is applied to a diode having an East B structure having a two-layer film of a silicon nitride film and a silicon oxide film as a gate film, a certain current can flow. An example regarding this characteristic is shown in FIG. FIG. 2 shows the MNOS structure shown in FIG. 3, in which a 50Af) SiO film 8 and a 400A(7) Si3N concentration 9 are deposited on a P-type silicon substrate 7, and an electrode 10 is deposited on top of the MNOS structure shown in FIG. The voltage when the voltage E applied between the electrode 10 and the substrate 7 is changed so that the electrode 10 side is positive when the light 11 is irradiated to the element formed by depositing the electrode 10! One current characteristic. According to this characteristic curve a, electrons are generated by irradiating the vicinity of the so-called East B capacitor on the P-type silicon substrate 7, and these electrons are transferred from the inversion layer on the surface of the silicon substrate to the SiO
It is thought that the liquid flowed to the electrode 10 through the 2-Si3N4 film 8-Si3N4 film 9. This diode characteristic is equivalent to a voltage-current characteristic having a certain threshold voltage determined from the structural gate film thickness. In FIG. 2, the voltage VO is a threshold voltage determined by the gate film thickness, particularly the film thickness of the SiO2 film 8, and any current below this value is a negligible current. Therefore, a light receiving and accumulating section having such characteristics, for example, P
A SiO. A light receiving and accumulating section is provided with a sensor electrode attached through a film and a Si3N4 film, and when a voltage higher than a threshold voltage determined by the film thickness is applied to the sensor electrode during the light receiving period, charge carriers are accumulated in this light receiving and accumulating section. is restricted from increasing beyond a certain amount.

即ち、電)子電荷量の増加と共に基板表面の反転層の電
位は、基板電位に近づき、SiO2膜及びSi3N4膜
にかかる電界が増加する。そして、その電界がそのSi
O2膜厚で定まる閾値電界を越えるまでは電子電荷は蓄
積されるも、閾値電界を越えるとその越・えた分に対応
する電子電荷は、第4図のMNOS構造のエネルギーバ
ンドモデルで示す如くSiO,膜をトンネル効果により
突き抜け、Si3N4膜を伝導して所謂電極電流となつ
てセンサー電極に吸収される。即ち余剰電荷はセンサー
電極に排除吸収される。以上は、本発明の原理的機構を
示したが、次に本発明の実施例について詳細に説明する
That is, as the amount of electron charge increases, the potential of the inversion layer on the substrate surface approaches the substrate potential, and the electric field applied to the SiO2 film and the Si3N4 film increases. And that electric field is
Electron charges are accumulated until the threshold electric field determined by the O2 film thickness is exceeded, but once the threshold electric field is exceeded, the electron charges corresponding to the excess exceed the SiO2 layer as shown in the energy band model of the MNOS structure in Fig. , penetrates through the film due to the tunnel effect, conducts through the Si3N4 film, becomes a so-called electrode current, and is absorbed by the sensor electrode. That is, excess charge is removed and absorbed by the sensor electrode. Although the principle mechanism of the present invention has been shown above, examples of the present invention will now be described in detail.

本例はインターライン転送方式による2次元撮像素子に
適用した場合である。先づ、第5図を参照してインター
ライン転送方式による固体撮像素子の概略的構成につい
て説明する。この固体撮像素子は、光の入射輻射によつ
て生成される信号電荷を蓄積するいわば絵素となる複数
の受光蓄積部21が行及び列方向即ち水平及び垂直方向
に配列され、夫、共通の垂直ライン上の受光蓄積部21
に対応して共通に設けられた電荷転送素子よりなる垂直
シフトレジスタ部22と、各垂直シフトレジスタ部22
に対して共通に設けられた同様に電荷転送素子よりなる
水平シフトレジスタ部23が設けられている。24は出
力回路である。
This example is a case where the method is applied to a two-dimensional image sensor using an interline transfer method. First, with reference to FIG. 5, a schematic configuration of a solid-state image sensor using an interline transfer method will be described. In this solid-state image sensor, a plurality of light receiving and accumulating sections 21, which are so-called picture elements that accumulate signal charges generated by incident radiation of light, are arranged in row and column directions, that is, horizontally and vertically. Light receiving and accumulating section 21 on the vertical line
a vertical shift register section 22 consisting of a charge transfer element commonly provided corresponding to the vertical shift register section 22;
A horizontal shift register section 23 made of a charge transfer element is provided in common to both. 24 is an output circuit.

この構成において、例えば奇数番目のフィールドで1つ
置きの水平ライン上の受光蓄積部21に受光量に応じて
得た信号電荷を垂直シフトレジスタ22に転送し、これ
により各水平ライン毎の信号電荷を水平シフトレジスタ
23へと転送し、この水平シフトレジスタ23によつて
順次信号電荷を出力回路24へと送り、これにより信号
を順次とり出し、偶数番目のフィールドで他の1つ置き
の水平ライン上の各受光蓄積部21の信号電荷を垂直シ
フトレジスタ22に転送し、同時に水平シフトレジスタ
23に転送し、出力回路24に送り、これよりこの信号
を順次とり出すようになされる。
In this configuration, for example, in an odd-numbered field, the signal charges obtained in the received light storage section 21 on every other horizontal line according to the amount of light received are transferred to the vertical shift register 22, thereby causing the signal charge for each horizontal line to be transferred to the vertical shift register 22. is transferred to the horizontal shift register 23, and the horizontal shift register 23 sequentially sends the signal charges to the output circuit 24, which sequentially extracts the signals and transfers them to every other horizontal line in the even-numbered field. The signal charges in each of the above light receiving and accumulating sections 21 are transferred to the vertical shift register 22, simultaneously transferred to the horizontal shift register 23, and sent to the output circuit 24, from which the signals are sequentially extracted.

第6図乃至第8図は、このインターライン転送方式によ
る固体撮像素子に本発明を適用した場合の一例の要部を
示す。
FIGS. 6 to 8 show essential parts of an example in which the present invention is applied to a solid-state imaging device using this interline transfer method.

この例は受光蓄積部21を表面チャンネル型構造とし、
垂直シフトレジスタ部22を埋込みチャンネル型構造と
した場合である。第6図は受光蓄積部21と、これに対
応する垂直シフトレジスタ部22の一部を示す路線的上
面図で、第7図及び第8図は夫々第6図のA−A線上及
びB−B線上の各断面図である。この例においては、1
の導電型を有する半導体、例えばP型のシリコン基体2
5の表面、即ち一主面に臨んで、これと同導電型のP型
の高不純物濃度のチャンネルストッパー領域26が設け
られる。
In this example, the light receiving and accumulating section 21 has a surface channel type structure,
This is a case where the vertical shift register section 22 has a buried channel type structure. FIG. 6 is a schematic top view showing a portion of the light receiving and accumulating section 21 and the corresponding vertical shift register section 22, and FIGS. 7 and 8 are respectively on line AA and line B-- in FIG. It is each sectional view on the B line. In this example, 1
A semiconductor having a conductivity type, for example, a P-type silicon substrate 2
A channel stopper region 26 of the same conductivity type, P type, and having a high impurity concentration is provided facing the surface of 5, that is, one principal surface.

・垂直シフトレジスタを構成する部分には基体25と異
なる導電型のN型の埋込みチャンネルを形成する領域2
7が設けられる。また、垂直シフトレジスタ部22は2
相クロック型構成とした場合で、各シフトレジスタ部2
2に対し共通の水平ライン上の第1及び第2の各電極2
8a及び28bが共通に水平方向に延長して設けられ、
各シフトレジスタ部22において、第1の電極28a下
における第1の絶縁層29aが存し、第2の電極28b
下に第1の絶縁層29aより薄い第2の絶縁層29bが
存するようになされて、各電極28a及び28b下のポ
テンシャルの深さが相違する.ようになし、埋込みチャ
ンネルのポテンシャル、即ちミニマムポテンシヤルにお
いて、第1の電極28a下に少数キャリア(信号電荷)
に対しポテンシャルの井戸が生ずるいわゆるストレージ
部Stを形成し、第2の電極28b下にこれに対しポテ
ーンシヤルのバリアを形成するトランスファ部Trを形
成する。各ストレージ部Stと、これに対応する受光蓄
積部21との間上には、例えばストレージ部Stの絶縁
層29a及び第1の電極28aが一体に延長されて転送
ゲート部TGが設けられる。この場合、各トランスファ
部Trと、これに対応する受光蓄積部21との間はチャ
ンネルストッパー領域26が一体に延長される。シフト
レジスタ部22の各受光蓄積部21に対応して設けられ
る第1及び第2の電極28a及び28bは相互に接続さ
れ、2組の電極281及び282が構成される。また、
受光蓄積部に設けられるセンサー電極31は例えば透明
電極より成り、各受光蓄積部21に対して共通に、全面
的に絶縁層32を介して被着し得る。本発明は、この素
子において、受光蓄積部21を覆う絶縁層32を、基体
25の表面に接する二酸化シリコン(SiO2)からな
る第1の絶縁層33”と、この層33上に設けた例えば
窒化シリコン(Si3N4)の如き第2の絶縁層34と
の2層構造をもつて構成する。
- In the part constituting the vertical shift register, there is a region 2 for forming an N-type buried channel of a conductivity type different from that of the base body 25.
7 is provided. Further, the vertical shift register section 22 has two
In the case of a phase clock type configuration, each shift register section 2
2 on a common horizontal line for each of the first and second electrodes 2
8a and 28b are commonly provided extending horizontally,
In each shift register section 22, there is a first insulating layer 29a under the first electrode 28a, and a first insulating layer 29a exists under the first electrode 28b.
A second insulating layer 29b, which is thinner than the first insulating layer 29a, exists underneath, so that the potential depths under each electrode 28a and 28b are different. Thus, at the potential of the buried channel, that is, the minimum potential, minority carriers (signal charges) are present under the first electrode 28a.
A so-called storage part St is formed in which a potential well is generated, and a transfer part Tr is formed under the second electrode 28b to form a potential barrier. A transfer gate section TG is provided between each storage section St and the corresponding light receiving and accumulating section 21, for example, by integrally extending the insulating layer 29a and the first electrode 28a of the storage section St. In this case, the channel stopper region 26 is integrally extended between each transfer section Tr and the corresponding light receiving and accumulating section 21. First and second electrodes 28a and 28b provided corresponding to each light receiving and accumulating section 21 of the shift register section 22 are connected to each other to form two sets of electrodes 281 and 282. Also,
The sensor electrode 31 provided in the light receiving and accumulating section is made of, for example, a transparent electrode, and can be commonly applied to each of the light receiving and accumulating sections 21 over the entire surface with an insulating layer 32 interposed therebetween. In this device, the present invention provides an insulating layer 32 covering the light receiving and accumulating portion 21, a first insulating layer 33'' made of silicon dioxide (SiO2) in contact with the surface of the base 25, and a nitride layer provided on this layer 33, for example. It has a two-layer structure with a second insulating layer 34 such as silicon (Si3N4).

2層構造の絶縁層32は受光蓄積部21の蓄積量との関
係において受光蓄積部21に対応する全領域、あるいは
その一部分の領域に形成するを可とする。
The insulating layer 32 having a two-layer structure can be formed in the entire region corresponding to the light receiving and accumulating section 21 or a part thereof in relation to the amount of accumulation in the light receiving and accumulating section 21 .

第1の絶縁層33の厚さはトンネル効果により受光蓄積
部21の余剰電荷を流すに十分な厚さであればよく、3
0A〜50Aの範囲が好ましい。層33の厚さが50A
を越えるとトンネル効果をもたせるための閾値電圧が高
くなり、又30Aより薄いとメモリ効果が生じ好ましく
ない。第2の絶縁層34は絶縁層の耐圧を得るために必
要であり、層34の厚さとしては、例えば窒化シリコン
(Si3N,)の場合、400A以上が好ましく、40
0Aより薄いと耐圧が下る。第2の絶縁層34としては
窒化シリコン(Si3N,)の他に、例えばアルミナ(
Al。O3)等も可能である。なお、原理的にはトンネ
ル効果を有する厚みのSiO2層を基体25上に被着し
その上に直接センサー電極31を設けることも可能であ
るが、この場合には耐圧が得られずSiO2層が破壊さ
れる惺れがある。かかる構成の固体撮像素子においては
、通常のように受光蓄積期間ではセンサー電極31に共
通の所定の正の電圧φ3=“1゛が与えられ、受光蓄積
部21下に形成されたポテンシャルの井戸に受光量に応
じた信号電荷が蓄積される。
The thickness of the first insulating layer 33 may be sufficient as long as the excess charge in the light receiving and accumulating section 21 flows through the tunnel effect.
A range of 0A to 50A is preferred. The thickness of layer 33 is 50A
If it exceeds 30 A, the threshold voltage for producing a tunnel effect becomes high, and if it is thinner than 30 A, a memory effect occurs, which is undesirable. The second insulating layer 34 is necessary to obtain the withstand voltage of the insulating layer, and the thickness of the layer 34 is preferably 400A or more in the case of silicon nitride (Si3N,), for example, and 400A or more.
If it is thinner than 0A, the withstand voltage will decrease. As the second insulating layer 34, in addition to silicon nitride (Si3N,), for example, alumina (
Al. O3) etc. are also possible. In principle, it is also possible to deposit a thick SiO2 layer that has a tunnel effect on the base 25 and provide the sensor electrode 31 directly thereon, but in this case, the withstand voltage cannot be obtained and the SiO2 layer is There is a risk of being destroyed. In a solid-state image sensor having such a configuration, a common predetermined positive voltage φ3 = "1" is applied to the sensor electrode 31 during the light reception and accumulation period as usual, and the potential well formed under the light reception and accumulation section 21 is Signal charges corresponding to the amount of light received are accumulated.

次いで例えば奇数フィールドの読み出しに当つては、そ
の受光蓄積部21からシフトレジスタ部22への転送期
間においてセンサー電極31に電圧φ,=“0゛が与え
られ、且つ一方の組の電極281にクロックパルスφ1
=゜“1゛が与えられることによりシフトレジスタ部2
2の埋込みチャンネルにおいて、この組の電極281の
第1の電極28a下のストレージ部Stにポテンシャル
の井戸が形成され、これに対応する受光蓄積部21との
間の転送ゲート部刊下のポテンシャルのバリアが低めら
れ、この受光蓄積部21、即ち1つ置きの水平ライン上
の受光蓄積部21の信号電荷が転送ゲート部TGを径て
ストレージ部Stに送り込まれる。このとき他方の組の
電極282に与えるクロックパルスφ2は例えば0V(
φ2=6℃゛)となりこの組に対応する受光蓄積部の信
号電荷はシフトレジスタ22に送り込まれない。そして
次の期間において両組の電極281及び28.に2組の
クカツクパルスφ1及びφ2が与えられて、垂直方向に
電荷転送が行なわれる。次の偶数フィールドの読み出し
に当つては、センサー電極31に電圧φ5=“゜0゛が
与えられると共に、上記と逆に、他方の組の電極282
にクロックパルスφ2=゜゜1゛が与えられることによ
り、第2の電極282下のストレージ部Stに、これら
に対応する1つ置きの受光蓄積部21の信号電荷が送り
込まれる。そして、上述した受光蓄積期間において、特
に本発明においては、センサー電極31に与える電圧φ
3として、2層構造の絶縁層32、特に第1の絶縁層3
3の膜厚にて定まる閾値電圧以上の電圧を印加する。
Next, for example, when reading an odd field, a voltage φ, = "0" is applied to the sensor electrode 31 during the transfer period from the light receiving and accumulating section 21 to the shift register section 22, and a clock signal is applied to one set of electrodes 281. Pulse φ1
=゜“1゛ is given, shift register section 2
In the buried channel No. 2, a potential well is formed in the storage section St under the first electrode 28a of this set of electrodes 281, and a potential well under the transfer gate section between the corresponding light receiving and accumulating section 21 is formed. The barrier is lowered, and the signal charges of the light receiving and accumulating sections 21, that is, the light receiving and accumulating sections 21 on every other horizontal line are sent to the storage section St via the transfer gate section TG. At this time, the clock pulse φ2 applied to the other set of electrodes 282 is, for example, 0V (
φ2=6° C.), and the signal charges in the light receiving and accumulating section corresponding to this group are not sent to the shift register 22. Then, in the next period, both sets of electrodes 281 and 28. Two sets of pulses φ1 and φ2 are applied to perform charge transfer in the vertical direction. When reading the next even field, the voltage φ5 = "゜0゛ is applied to the sensor electrode 31, and conversely to the above, the electrode 282 of the other set
By applying the clock pulse φ2=゜゜1゛ to the storage section St under the second electrode 282, the signal charges of every other corresponding light receiving and accumulating section 21 are sent. In the above-mentioned light reception accumulation period, especially in the present invention, the voltage φ applied to the sensor electrode 31 is
3, an insulating layer 32 having a two-layer structure, particularly a first insulating layer 3
A voltage equal to or higher than the threshold voltage determined by the film thickness of No. 3 is applied.

かくすれば、受光蓄積期間において、受光蓄積部21に
おける取扱い電荷量、すなわち飽和電荷量は上記の絶縁
層の膜厚にて定まる閾値電圧で決まり、それ以上の余剰
電荷は第1及び第2の絶縁層33及び34を通じてセン
サー電極に吸収される。すなわち、光によつて過剰に電
荷が発生しても、ある一定量、即ち取扱い電荷量一以上
は電極電流となつてセンサー電極31に吸収され、蓄積
能力を越えることがない。また、第1及び第2の絶縁層
33及び34による2層構造の絶縁層の面積上の制限に
よつて取扱い電荷量も規定される。したがつて、所謂オ
ーバーフロードレ.イン領域を設けたことと同じ効果を
奏する。発生する余剰電荷と乏を吸収する能力とはバラ
ンスがとれていなければならない。余剰電荷を吸収する
能力は第1及び第2の絶縁層33及び34による2層構
造の面積に比例し、またセンサー電極31に与える電圧
φ3に比例する。このため、受光蓄積部21における取
扱い電荷量との関係で例えば発生する余剰電荷が多い場
合には、その2層構造の絶縁層の面積を大きくするか、
又はセンサー電圧φ,を大きくする必要がある。尚、上
例においては、従来の基体と異なる導電型のオーバーフ
ロードレイン領域を全く省略した場合であるが、本発明
とこのようなオーバーフロードレイン領域を併用しても
良く、この場合にはオーバーフロードレイン領域は従来
に比して小さい面積で済む。
In this way, during the light reception and accumulation period, the amount of charge handled in the light reception and accumulation section 21, that is, the amount of saturated charge, is determined by the threshold voltage determined by the thickness of the insulating layer, and any surplus charge beyond that is determined by the first and second charges. It is absorbed into the sensor electrode through the insulating layers 33 and 34. That is, even if an excessive amount of charge is generated by light, a certain amount, ie, more than one amount of charge to be handled, becomes an electrode current and is absorbed by the sensor electrode 31, and the storage capacity is not exceeded. Further, the amount of charge to be handled is also defined by the area limitation of the two-layer structure of the first and second insulating layers 33 and 34. Therefore, so-called overflow drain. This has the same effect as providing an in area. There must be a balance between the surplus charge generated and the ability to absorb the deficit. The ability to absorb excess charge is proportional to the area of the two-layer structure formed by the first and second insulating layers 33 and 34, and is also proportional to the voltage φ3 applied to the sensor electrode 31. For this reason, if, for example, there is a large amount of surplus charge generated in relation to the amount of charge handled in the light receiving and accumulating section 21, the area of the insulating layer of the two-layer structure should be increased or
Alternatively, it is necessary to increase the sensor voltage φ. Note that in the above example, the overflow drain region of a conductivity type different from that of the conventional substrate is completely omitted, but the present invention and such an overflow drain region may be used together, and in this case, the overflow drain region requires a smaller area than conventional methods.

上述せるように本発明固体撮像素子によれば、余剰電荷
の排除を受光蓄積部における絶縁層32Bを介してセン
サー電極31に吸収して行なうことができるので、これ
が他部の信号電荷に混入してブルーミングを生ずるよう
なおそれを回避できる。
As described above, according to the solid-state image sensing device of the present invention, excess charges can be removed by being absorbed into the sensor electrode 31 via the insulating layer 32B in the light receiving and accumulating section, so that they do not mix with signal charges in other parts. It is possible to avoid the possibility that blooming may occur.

そして、従来のオーバーフロードレイン領域のように受
光蓄積部に隣接して基体と異なる導電型の領域を設ける
必要もなく、又はかかる領域を設ける場合でも比較的小
面積で足りるので、絵素面積の有効利用を可能とし、集
積度の向上をはかることができる。因みに、従来のオー
バーフロードレイン領域を有する構成では、受光蓄積部
として占める面積のうち約113〜112の面積をオー
バーフロードレイン領域に当てなければならなかつたが
、本発明ではこれが省略、もしくは縮少される。また従
来のオーバーフロードレイン領域では平面上で微細且つ
寸法精度の高い加工が要求されたが、本発明では平面上
での加工寸法の精度が特性に影響されないため製造が容
易となる利点もある。尚、上例ではインターライン転送
方式による固体撮像素子に適用した場合であるが、その
他、フレーム転送方式による固体撮像素子、すなわちそ
のCCD構造のイメージ部にも本発明を適用し得る。
Unlike conventional overflow drain regions, there is no need to provide a region of a conductivity type different from that of the substrate adjacent to the light receiving and accumulating region, or even if such a region is provided, a relatively small area is sufficient, so the pixel area can be effectively utilized. This makes it possible to improve the degree of integration. Incidentally, in the conventional configuration having an overflow drain region, approximately 113 to 112 of the area occupied by the light receiving and accumulating section had to be allocated to the overflow drain region, but in the present invention, this is omitted or reduced. . Further, conventional overflow drain regions require fine processing on a flat surface with high dimensional accuracy, but the present invention has the advantage that manufacturing is easy because the accuracy of dimensional processing on a flat surface is not affected by characteristics. In the above example, the present invention is applied to a solid-state image sensor using an interline transfer method, but the present invention can also be applied to a solid-state image sensor using a frame transfer method, that is, an image portion of the CCD structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のインターライン転送方式による固体撮像
素子の要部の説明図、第2図は本発明の説明に供する東
℃構造素子における電極及び基体間の電圧一電流特性図
、第3図はそのMNOS構造素子の断面図、第4図は本
発明によるMNOS構造のエネルギーバンドモデル図、
第5図は本発明固体撮像素子の一例の概略的構成図、第
6図はその要部の路線的上面図、第7図及び第8図は夫
々第6図のA−A線上及びB−B線上の断面図である。
Fig. 1 is an explanatory diagram of the main parts of a solid-state image sensor using a conventional interline transfer method, Fig. 2 is a voltage-current characteristic diagram between an electrode and a substrate in a TOC structure element used to explain the present invention, and Fig. 3 is a cross-sectional view of the MNOS structure element, FIG. 4 is an energy band model diagram of the MNOS structure according to the present invention,
FIG. 5 is a schematic configuration diagram of an example of the solid-state image sensor of the present invention, FIG. 6 is a schematic top view of the main parts thereof, and FIGS. 7 and 8 are respectively on line A-A and line B-- It is a sectional view on the B line.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体、該基体に設けられた入射幅射によつて
生成される信号電荷を蓄積する受光蓄積部分、半導体基
体表面を覆う絶縁層、該絶縁層上に設けられた電極手段
および上記受光蓄積部分に蓄積された電荷を読み出す手
段を有し、上記受光蓄積部分の少なくとも一部分を覆う
絶縁層は上記半導体基体表面に接する二酸化シリコンよ
り成る第1の絶縁層および第1の絶縁層上に設けられた
第2の絶縁層より成り、上記第1の絶縁層の厚さおよび
上記電極手段に印加される電圧は上記受光蓄積部分の余
剰電荷を上記基体から上記電極手段に流すに充分な値に
選定されて成る固体撮像素子。
1. A semiconductor substrate, a light receiving and accumulating portion provided on the substrate and accumulating signal charges generated by incident beam radiation, an insulating layer covering the surface of the semiconductor substrate, an electrode means provided on the insulating layer, and the above light receiving and accumulating portion. An insulating layer that covers at least a portion of the light receiving and accumulating portion is provided on a first insulating layer made of silicon dioxide and on the first insulating layer that is in contact with the surface of the semiconductor substrate. The thickness of the first insulating layer and the voltage applied to the electrode means are selected to be a value sufficient to cause excess charge in the light receiving and accumulating portion to flow from the base to the electrode means. A solid-state image sensor made of
JP53123347A 1978-10-06 1978-10-06 solid-state image sensor Expired JPS6052595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53123347A JPS6052595B2 (en) 1978-10-06 1978-10-06 solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53123347A JPS6052595B2 (en) 1978-10-06 1978-10-06 solid-state image sensor

Publications (2)

Publication Number Publication Date
JPS5550673A JPS5550673A (en) 1980-04-12
JPS6052595B2 true JPS6052595B2 (en) 1985-11-20

Family

ID=14858308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53123347A Expired JPS6052595B2 (en) 1978-10-06 1978-10-06 solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS6052595B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163872A (en) * 1989-11-22 1991-07-15 Hamamatsu Photonics Kk Image sensing device

Also Published As

Publication number Publication date
JPS5550673A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
US4485315A (en) Blooming suppression in a CCD imaging device
JPS5819080A (en) Solid-state image sensor
JPH08250697A (en) Amplifying type photoelectric converter and amplifying type solid-state image sensor using the same
JPS6216599B2 (en)
JPH0831988B2 (en) Solid-state imaging device
JP2964571B2 (en) Solid-state imaging device
US4658281A (en) Radiation-sensitive semiconductor device
JPH0666344B2 (en) Charge coupled device
JPS6052595B2 (en) solid-state image sensor
JP2002151673A (en) Solid-state image pickup element
JP4824241B2 (en) Semiconductor energy detector
JPH0421351B2 (en)
JPS5846905B2 (en) Kotai Satsuzou Sochi
JPS6148307B2 (en)
JP2975648B2 (en) Charge coupled device
JPH0778957A (en) Solid state image sensor
JPH0415666B2 (en)
JPH0322755B2 (en)
JP2560984B2 (en) Imaging unit of charge transfer type solid-state imaging device and driving method thereof
JPS5851673A (en) Solid-state image pickup device
JP2517258B2 (en) Frame transfer type solid-state image sensor
JPS62296552A (en) Manufacture of solid-state image sensing device
JPH0480541B2 (en)
JPH0522395B2 (en)
JPH0682823B2 (en) Solid-state imaging device