JPS6052505A - Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace - Google Patents

Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace

Info

Publication number
JPS6052505A
JPS6052505A JP15791983A JP15791983A JPS6052505A JP S6052505 A JPS6052505 A JP S6052505A JP 15791983 A JP15791983 A JP 15791983A JP 15791983 A JP15791983 A JP 15791983A JP S6052505 A JPS6052505 A JP S6052505A
Authority
JP
Japan
Prior art keywords
converter
refining
vacuum decarburization
steam
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15791983A
Other languages
Japanese (ja)
Other versions
JPS6237684B2 (en
Inventor
Noriyuki Masumitsu
升光 法行
Ryutatsu Tanaka
田中 龍達
Takashi Inoue
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15791983A priority Critical patent/JPS6052505A/en
Publication of JPS6052505A publication Critical patent/JPS6052505A/en
Publication of JPS6237684B2 publication Critical patent/JPS6237684B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To improve the efficiency of energy utilization by adding a substance contg. carbon to a converter as a heat source for melting a solid substance contg. Cr, burning generated gaseous CO, recovering it as steam, and using the recovered steam as a power source for an ejector in a vacuum decarburization refining equipment. CONSTITUTION:Cr steel is manufactured by refining using a converter and a vacuum decarburization refining equipment. A substance contg. carbon is added to the coverter as a heat source for melting a solid substance contg. Cr. Generated gaseous CO is burned in a flue of the converter, and it is recovered as steam. The recovered steam is used as a power source for an ejector in the vacuum decarburization refining equipment. Thus, the latent heat of the substance contg. carbon is used in the converter and the vacuum decarburization refining equipment.

Description

【発明の詳細な説明】 a)産業上の利用分野 本発明は転炉と真空脱炭精錬設備とを組み合わせて含ク
ロム鋼を製造するプロセスにおいて、転炉に含炭素物質
を添加し、固形含クロム物質の溶解用熱源とするととも
に、該炭素物質の潜熱の一部又は全部を転炉と真空脱炭
精錬による含クロム鋼製造プロセス系内で使用する転炉
と真空脱炭精錬を併用する含クロム鋼製造法に関するも
のである。
Detailed Description of the Invention a) Industrial Field of Application The present invention is a process for manufacturing chromium-containing steel by combining a converter and vacuum decarburization refining equipment. In addition to using a converter as a heat source for melting chromium substances, part or all of the latent heat of the carbon substances is used in a chromium-containing steel manufacturing process system using a converter and vacuum decarburization. It concerns a method of manufacturing chrome steel.

b)従来技術 一般に転炉においては、下記(1)式により 〔C)は
酸素ガスと反応し、その反応熱は溶鋼温度の上昇及びス
クラップ、合金鉄の溶解あるいは鉄鉱石の分解等に使用
されている。しかし〔c〕は(2)式に示すようにC0
2になるまでの二次燃焼(以後(2)式を二次燃焼とい
う)の反応熱が(1)式の一次燃焼(以後(1)式の反
応を一次燃焼と称す)の2倍以上の反応熱を有しておシ
、製鋼プロセス内でCを熱源として利用する際には(2
)式の反応熱を有効に利用する事が重要であシ、従来I
fMhな方法で(2)式の反応熱量の利用が図られてい
た。
b) Prior art In general, in a converter, according to the following formula (1), [C] reacts with oxygen gas, and the reaction heat is used to increase the temperature of molten steel, melt scrap, ferroalloy, decompose iron ore, etc. ing. However, [c] is C0 as shown in equation (2)
The reaction heat of the secondary combustion (hereinafter referred to as "secondary combustion" in formula (2)) up to 2 is more than twice that of the primary combustion in formula (1) (hereinafter referred to as "primary combustion") C has a heat of reaction, and when C is used as a heat source in the steelmaking process (2
) It is important to effectively utilize the reaction heat of the equation, and conventionally I
An attempt was made to utilize the reaction heat of equation (2) in a fMh method.

C+ 40.−+ Co 2,200 kcal/kg
C−・−(t)式Co + 委02 →CO25,63
0kaa174c17c =・(2)式例えはPo5t
 Combustion法は一次燃焼により発生したC
OOガス、転炉メインランスのソフトブロー化、つまり
メインランスヲ鋳浴面から可能な限シ離す(L/Loを
小さくするL:溶鋼のへこみ深さ、LO:溶鋼深さ)あ
るいは特殊ランスを用いて炉内でのCOガス二二次炉焼
金高め、C潜熱の転炉自利用比率の増大を図っておシ、
未反応ガスは主としてLDGとして回収している。当該
方法では特殊ランスを使用する必要があシ、また炉内で
の二次燃焼反応を促進する事により転炉内耐火物の溶損
(特に転炉傾斜部)等の問題がある。また、LDG回収
タイプは、−次燃焼したガスをできるだけ二次燃焼反応
を防止し、COOガス未反応のまま回収■ する方法である。従って、真空脱炭精錬の際に必要なエ
ジェクターの動力源となる蒸気は、全く別系統ノエネル
ギーシステムから供給する必要がある。
C+ 40. -+ Co 2,200 kcal/kg
C-・-(t) Formula Co + Committee 02 → CO25,63
0kaa174c17c =・(2) formula is Po5t
Combustion method uses C generated by primary combustion.
OO gas, soft blowing of the converter main lance, that is, keeping the main lance as far away from the casting bath surface as possible (reducing L/Lo L: dent depth of molten steel, LO: molten steel depth) or using a special lance. By using CO gas in the furnace, we aim to increase the rate of secondary furnace sintering and increase the rate of C latent heat utilization in the converter.
Unreacted gas is mainly recovered as LDG. This method requires the use of a special lance, and also has problems such as melting of the refractories in the converter (particularly in the sloped part of the converter) due to the promotion of secondary combustion reactions in the furnace. In addition, the LDG recovery type is a method in which the secondary combustion reaction of the secondary combustion gas is prevented as much as possible, and the COO gas is recovered without reacting. Therefore, the steam required to power the ejector during vacuum decarburization and refining must be supplied from a completely separate energy system.

本発明を含むボイラー型方式の転炉では一次炉焼したc
o、ガスを炉口や煙道から酸素源を供給し積極的に二次
燃焼反応を発生させ、その熱量を煙道に設置された配管
内の水と熱交換し水蒸気とじて回収する方法である。
In the boiler-type converter including the present invention, the c
o. A method in which the gas is supplied with an oxygen source from the furnace mouth or flue to actively generate a secondary combustion reaction, and the resulting heat is exchanged with water in the pipes installed in the flue and recovered as water vapor. be.

C)発明の目的 本発明は、転炉と真空脱炭精錬設備(例えばRH。C) Purpose of the invention The present invention provides a converter and vacuum decarburization refining equipment (for example, RH).

VOD等)の組み合わせにより含クロム鋼を溶製する際
に、固形含クロム物質を溶解する熱源として含炭素物質
を転炉内に添加し、Cの一次燃焼反応熱を、上記固形含
クロム物質を溶解する熱源として利用するとともに上記
含炭素物質の転炉内への添加によりC0発生1の増大を
図り、且つ転炉炉口及び又は煙道から発生codに見合
った酸素源を供給しCOを燃焼しその反応エネルギーを
煙道内で蒸気として回収し、含クロム精錬プロセスにお
いて仕上げ脱炭精錬炉である真空精錬設備におけるエジ
ェクターの動力源とするエネルギー効率の高い含クロム
溶鋼の精錬方法である。っまシ含クロム鋼を転炉と真空
脱炭精錬設備を組み合わせて製造するプロセス内で転炉
に積極的にCO発生源として含炭物質を添加し、−次反
応熱量は転炉内でCr源を溶解する熱源として使用し、
さらに二次反応熱量は蒸気として真空NfR炉の動力源
として使用することによりeの潜熱(C−+002反応
までの反応熱)を当該ステンレス製造のプロセス系内で
有効に活用する事を目的としている。
When melting chromium-containing steel using a combination of VOD, etc., a carbon-containing material is added to the converter as a heat source to melt the solid chromium-containing material, and the primary combustion reaction heat of C is used to melt the solid chromium-containing material. In addition to using it as a heat source for melting, the carbon-containing substance is added to the converter to increase CO generation, and an oxygen source commensurate with the COD generated from the converter mouth and/or flue is supplied to combust CO. This is a highly energy-efficient method for refining chromium-containing molten steel in which the reaction energy of perilla is recovered as steam in the flue and used as the power source for the ejector in vacuum refining equipment, which is the final decarburization furnace in the chromium-containing refining process. In the process of manufacturing chromium-containing steel by combining a converter and vacuum decarburization refining equipment, a carbon-containing substance is actively added to the converter as a CO generation source, and the heat of the next reaction is reduced by Cr in the converter. used as a heat source to melt the source,
Furthermore, the secondary reaction heat is used as steam as a power source for the vacuum NfR furnace, with the aim of effectively utilizing the latent heat of e (reaction heat up to the C-+002 reaction) within the stainless steel manufacturing process system. .

d)発明の構成と作用 本発明はがイラータイプの転炉(蒸気回収壓)において
Cr源としてステンレス鋼スクラップ及び又はフェロク
ロム合金を使用し、その溶解用熱源量の一部又は全部を
補う目的で含炭素物質(粉又は塊状ノコークス、石炭、
黒鉛あるいは重油、プロパン等の炭化水素系物質)を転
炉内の鋼浴面上から炉上ホッパー、パック、ランス、ノ
ズル等を通して添加するか、あるいは鋼浴面下に設置さ
れたノズルから添加すると共に、上部メインランス及び
又は下部ノズルから吹酸しCOOガス発生させる。発生
したCOOガス炉内に於ける二次燃焼を積極的に防止す
るためにメインランスは極力鋼浴面に近づけるハードプ
ロー精錬を指向し、望ましくはメインランスの酸素ノズ
ルな鋼浴面上の800〜1.50 Oram又はVLO
≧0.6の範囲で吹錬する事がM要である。800 n
17m以下へ、メインランスを鋼浴面に近づけた場合ラ
ンス先端ノズルが揺(5) 動する溶鉄によシ破損される可能性が高く、極めて危険
である。まfc 1.500 s/m以上にすると、二
次燃焼率が高くなると同時に吹止時のスラグ中Cr2O
3%が高くなりあるいはCr合金鉄の未溶解が発生し転
炉におけるCr歩留が低下する。
d) Structure and operation of the invention The present invention uses stainless steel scrap and/or ferrochrome alloy as a Cr source in a roller type converter (steam recovery unit) for the purpose of supplementing part or all of the amount of heat source for melting. Carbon-containing substances (powder or lump coke, coal,
Hydrocarbon substances such as graphite, heavy oil, propane, etc.) are added from above the steel bath surface in the converter through an above-furnace hopper, pack, lance, nozzle, etc., or added from a nozzle installed below the steel bath surface. At the same time, acid is blown from the upper main lance and/or the lower nozzle to generate COO gas. In order to proactively prevent the secondary combustion that occurs in the COO gas furnace, we aim for hard plow refining in which the main lance is placed as close to the steel bath surface as possible. ~1.50 Oram or VLO
It is necessary to perform blowing within the range of ≧0.6. 800n
If the main lance is brought closer to the steel bath surface below 17 m, there is a high possibility that the lance tip nozzle will be damaged by the shaking molten iron, which is extremely dangerous. When fc is set to 1.500 s/m or more, the secondary combustion rate increases and at the same time Cr2O in the slag at the time of blow-off increases.
3% or unmelted Cr alloy iron occurs, reducing the Cr yield in the converter.

I、/Loについてはランスの鋼浴面間距離と相関があ
るのは周知の事夾である。じo (0,6では二次燃焼
率が増加する傾向にありさらに湯面間距離の変化と同様
に吹止時のスラグ中(%cr2o、)が高くなシCr歩
留が低下する傾向を示す。また底吹ガス量については少
なくとも0.05〜0.3ONm5/l−8−m1nの
範囲では二次燃焼率の変化は認められないので、実質上
吹の場合と同じランスの条件で吹錬して良い、底吹ガス
が0.30 Nmシt−8−m1n JJ上の場合は鋼
浴中攪拌力の増加にょシニ次燃焼率は下がる傾向を示し
、本発明の観点から有利であるが、冶金精錬上及びダス
ト量等を総合的に考察し決定する事がよい〇 また本発明では発生したCOOガス蒸気として回収する
為に炉口及び又は煙道から酸素源(主としく6) て空気、純酸素でも可)を供給し煙道内でCOガスを完
全燃焼させ、該反応熱量と廃ガスの持つ顕熱により煙道
内壁に設置されている配管内を流れる水を蒸気に変化さ
せ蒸気をアキュムレーターに一旦蓄積する。
It is well known that I and /Lo are correlated with the distance between the steel bath surfaces of the lance. (at 0.6, the secondary combustion rate tends to increase, and in addition, as with the change in the distance between the hot water levels, the slag content (%cr2o,) at the time of blow-off tends to be high, and the Cr yield tends to decrease. Regarding the amount of bottom-blown gas, no change in the secondary combustion rate was observed in the range of at least 0.05 to 0.3 ONm5/l-8-m1n, so blowing was performed under virtually the same lance conditions as in the case of blowing. When the bottom blowing gas is above 0.30 Nm, the secondary combustion rate tends to decrease as the stirring force increases in the steel bath, which is advantageous from the perspective of the present invention. However, it is better to decide based on a comprehensive consideration of metallurgical refining and dust amount, etc. In addition, in the present invention, in order to recover the generated COO gas vapor, an oxygen source (mainly 6) is used from the furnace mouth and/or flue. The CO gas is completely combusted in the flue, and the reaction heat and the sensible heat of the waste gas are used to convert the water flowing through the pipes installed on the inner wall of the flue into steam. Steam is temporarily stored in an accumulator.

転炉で固形含クロム物質の溶解と籾脱炭が終了し引続い
て真空脱炭精錬設備、例えばRHにおいて最終脱炭精錬
をする際にRH槽内真空度を例えばlO〜150 To
rr内に保持しなから脱炭精iN −tするために蒸気
を動力源とするエジェクターにょシ上記真空度を維持す
る。この際、転炉側で製造し、アキュムレーターに蓄積
しである蒸気を例えば10〜15 kg7cm2に減圧
しRHのエジェクター駆動蒸気として使用する事によシ
、転炉で添加した含炭素物質のC潜熱(CO2発生まで
の反応熱)の一部又は全部をステンレス精錬プロセス内
で使用出来るので本発明はエネルギー効率の篩い含炭素
物質を転炉に添加する含クロム鋼の製造法である。
After the melting of solid chromium-containing substances and decarburization of rice are completed in the converter, the final decarburization and refining is performed in a vacuum decarburization refining equipment, for example, RH, and the degree of vacuum in the RH tank is set to, for example, 1O to 150 To.
In order to perform decarburization while maintaining the vacuum within the vacuum, an ejector powered by steam is used to maintain the above degree of vacuum. At this time, the steam produced on the converter side and accumulated in the accumulator is depressurized to, for example, 10 to 15 kg7cm2 and used as ejector driving steam for RH, thereby reducing the carbon content of the carbon-containing material added in the converter. The present invention is an energy efficient method of producing chromium-containing steel in which carbonaceous material is added to the converter in an energy efficient manner since some or all of the latent heat (heat of reaction leading to CO2 evolution) can be used within the stainless steel refining process.

e)実施例 予め溶銑予備11&j、 st 、脱P1脱S処理され
たC−3,84%、81 = tr 、 Mn=0.3
0 %、P=0.028チ、S=0.006%、Tem
p= 1328℃の溶銑71.3t’i底吹きノズルが
2本設置された転炉に装入し、上部メインランスから0
2ガス16,00.ONm5/hr 、下部ノズルから
Ar O,15Nm3/l−8−m1n ”fz吹き込
みながら約10分間脱炭精錬を実施した結果、C= 1
.12 % 、Mn = 0.29%、P=0.028
チ、S=0.005%、Temp= 1580℃の溶鋼
となった。ここでCr=16.0〜16.5チのSUS
 430系スクラツプ10t ’i添加し、同時に炉上
ホッノ4−よシ、C=88%、S=0.41%の小塊コ
ークス(10〜20+m)3.0 te装入し上部メイ
ンランスから02を18.00 n Nm3/hr 、
 ランス先端と鋼浴面間1300.、T、/Lo = 
0.8の条件で吹込み、さらに下部ノズルからAr =
 0.25 Nm /l−8−m1nを吹き込みながら
約11分間スクラップ溶解精錬を実施した結果、C=0
.89%、 Mn = 0.31%、P=0.028%
、S=0.018%、Cr = 2.06%、温度15
92℃の溶鋼を得た。その後約55 (1℃に予熱され
た高炭素フェロクロムを35.2t、溶解用熱源として
コークス1.5を及びCaO2,1t、軽焼ドロマイ)
4.5t’fi=各々2分割にして装入し、上部メイン
ランスから02 =1 g、 00 ONm /h r
 fランス先端と鋼浴面間1,050〜1,250咽、
し/L。
e) Example Preliminary hot metal 11&j, st, de-P1 de-S treated C-3, 84%, 81 = tr, Mn = 0.3
0%, P=0.028chi, S=0.006%, Tem
71.3 t'i of hot metal at p = 1328°C was charged into a converter equipped with two bottom-blowing nozzles, and the molten pig iron was blown from the upper main lance.
2 gas 16,00. As a result of decarburizing and refining for about 10 minutes while blowing Ar O, 15Nm3/l-8-m1n''fz from the lower nozzle at ONm5/hr, C=1.
.. 12%, Mn = 0.29%, P = 0.028
molten steel with S=0.005% and Temp=1580°C. Here, Cr=16.0~16.5cm SUS
Add 10t'i of 430 series scrap, and at the same time charge 3.0t of small coke (10~20+m) of C = 88%, S = 0.41% in the furnace from the upper main lance. 18.00 nNm3/hr,
Between the lance tip and the steel bath surface 1300. ,T,/Lo=
Blow under the condition of 0.8, and then blow Ar = from the lower nozzle.
As a result of carrying out scrap melting and refining for about 11 minutes while blowing 0.25 Nm/l-8-m1n, C=0
.. 89%, Mn = 0.31%, P = 0.028%
, S = 0.018%, Cr = 2.06%, temperature 15
Molten steel at 92°C was obtained. After that, approximately 55 (35.2 tons of high carbon ferrochrome preheated to 1℃, 1.5 tons of coke as a heat source for melting, 1 ton of CaO2, lightly calcined dolomite)
4.5t'fi = charged in two parts, 02 = 1 g, 00 ONm / h r from the upper main lance
1,050 to 1,250 mm between the lance tip and the steel bath surface,
Shi/L.

=0.85〜0.95の条件で吹込みまた下部ノズルか
らAr 0.25 Nm /l−8−m1n f吹込み
ながら約15分間溶解脱炭精錬を実施後、上部ランスか
らの02供給を終了し同時に転炉上部から還元用Fee
l 150ゆを添加し、また下部ノズルからAr = 
0.35Nm3/l−8−m1n f吹込み還元精錬を
3分実施し、C=0.6 2%、81 =0.0 6 
%、Mn =0.2 4 %、P=0.030 %、S
=0.0 2 3 俤、Cr= 1 6.5 8係、T
emp = 1740℃の含クロム粗溶鋼108.2t
を得た。ステンレススクラップ溶解期と高炭素フエロク
ロム溶解期中に炉口からの自然空り吸引及び煙道からの
空気の強制供給によυCOCOガス焼した結果、38t
の蒸気(351klil/1−8)を回収した。コーク
スを使用しない場合と比較すると(9) 約9 t (83kg/1−8)回収蒸気量が増加した
。つまりコークス添加によシCO発生量が増加し、その
結果蒸気回収1が増加し、コークス添加の効果が顕著で
ある。
After melting and decarburizing refining for about 15 minutes while blowing Ar 0.25 Nm/l-8-m1nf from the lower nozzle under the conditions of = 0.85 to 0.95, the 02 supply from the upper lance was carried out. At the same time as the converter is finished, the reduction fee is removed from the top of the converter.
Add 150 yu of l, and also add Ar = from the lower nozzle.
0.35Nm3/l-8-m1nf Blow reduction refining was carried out for 3 minutes, C=0.6 2%, 81 =0.0 6
%, Mn = 0.24%, P = 0.030%, S
=0.0 2 3 俤, Cr= 1 6.5 8th section, T
emp = 108.2 tons of chromium-containing crude molten steel at 1740℃
I got it. During the stainless steel scrap melting period and high carbon ferrochrome melting period, υCOCO gas was fired by natural air suction from the furnace mouth and forced air supply from the flue, resulting in 38 tons.
of vapor (351 klil/1-8) was collected. Compared to the case where no coke was used, the amount of recovered steam increased by about 9 t (83 kg/1-8) (9). In other words, the amount of CO generated increases due to the addition of coke, and as a result, the steam recovery 1 increases, and the effect of the addition of coke is significant.

その後RHによシ真空度10〜100 Torrの範囲
で気体酸素を吹き込みながら脱炭精錬を約40分実施し
C= 0.05 %、51=0.04%、Cr =16
.38係、P=0.030係、S=0.020チ、Ta
mp= 1.630℃となった。その後、Feel 、
 Atによシ脱酸し、さらにCaO系フラックスによシ
脱S精錬及び成分調整を行ない計83分のRH精練を実
施した。
After that, decarburization was carried out for about 40 minutes while blowing gaseous oxygen at a vacuum level of 10 to 100 Torr using RH, and C = 0.05%, 51 = 0.04%, Cr = 16
.. 38 units, P = 0.030 units, S = 0.020 units, Ta
mp=1.630°C. After that, Feel,
Deoxidation was carried out using At, and further RH scouring was performed for a total of 83 minutes, including deoxidation and S refining using CaO-based flux and component adjustment.

その結果C= 0.05%、5i=0.41%、Mn=
0.42%、P=0.030%、S=0.011%、C
r=16.38%、Temp = 1585℃のステン
レス溶鋼を得た。83分のRH精錬での使用蒸気量は3
4.5 t (32okg/1−s)でおり、転炉で回
収した蒸気とほぼ同量であシ、結果としてCの潜熱を転
炉とRHでの精錬によシすべて利用できた。
As a result, C=0.05%, 5i=0.41%, Mn=
0.42%, P=0.030%, S=0.011%, C
Molten stainless steel with r=16.38% and Temp=1585°C was obtained. The amount of steam used in 83 minutes of RH refining is 3
The amount was 4.5 t (32 ok/1-s), which was almost the same amount as the steam recovered in the converter, and as a result, all the latent heat of C could be used for refining in the converter and RH.

本発明によれば含炭素物質を炉内に添加し固形(10) 含クロム物質の溶解用熱源とするとともに発生したCO
ガスを転炉上部煙道において燃焼させ蒸気としてC顕熱
を回収し、その回収蒸気を真空脱炭精錬設備におけるエ
ジェクターの動力源として利用することにより、含炭素
物質の潜熱の一部又は全部を転炉と真空脱炭精錬プロセ
ス内で使用することのできるエネルギー利用効率の高い
含クロム鋼の製造が可能となる。
According to the present invention, a carbon-containing substance is added to the furnace to serve as a heat source for melting the solid (10) chromium-containing substance, and the CO generated
Gas is combusted in the flue at the top of the converter, C sensible heat is recovered as steam, and the recovered steam is used as a power source for the ejector in the vacuum decarburization refining equipment, thereby removing some or all of the latent heat of the carbon-containing material. It becomes possible to produce chromium-containing steel with high energy efficiency that can be used in converters and vacuum decarburization refining processes.

f)発明の効果 本発明によシ、含炭素物質を固形含クロム物質の溶解用
熱源として転炉に装入し、真空脱炭精錬設備との組み合
わせで含クロム鋼を溶製する方法において、C潜熱(C
−+CO2までの反応熱)を利用する際に、Po5t 
Combustlon法のように転炉耐火物の溶損もな
く、またLDG回収タイプのように別系統からの真空脱
炭精錬容器への蒸気供給設備の必要もなく、含クロム溶
鋼精錬プロセス系内において、容易にCのCO2生成反
応までのすべてのエネルギーを利用し得る事が可能とな
った。
f) Effects of the Invention According to the present invention, in a method for melting chromium-containing steel by charging a carbon-containing material into a converter as a heat source for melting a solid chromium-containing material and combining it with vacuum decarburization refining equipment, C latent heat (C
-+CO2 heat of reaction), Po5t
Unlike the Combustron method, there is no melting of converter refractories, and unlike the LDG recovery type, there is no need for steam supply equipment from a separate system to the vacuum decarburization refining vessel, and within the chromium-containing molten steel refining process system. It has become possible to easily utilize all the energy required for the reaction of C to produce CO2.

(11) 22−(11) 22-

Claims (1)

【特許請求の範囲】[Claims] 転炉と真空脱炭精錬設備を用いて含クロム鋼を製造する
方法において、転炉精錬に際し、含炭素物質を炉内に添
加して固形含クロム物質の溶解用熱源とするとともに炉
内反応で発生したCOガスを燃焼させ蒸気として回収し
、該回収蒸気を真空脱炭精錬設備におけるエジェクター
の動力源とすることによシ、含炭素物質の潜熱を転炉と
真空脱炭精錬プロセス内で使用することを特徴とする転
炉と真空脱炭精錬炉を使用する含クロム鋼の溶製法。
In a method of manufacturing chromium-containing steel using a converter and vacuum decarburization refining equipment, carbon-containing substances are added to the furnace during converter refining to serve as a heat source for melting solid chromium-containing substances, and are used for reactions in the furnace. By burning the generated CO gas and recovering it as steam, and using the recovered steam as a power source for the ejector in the vacuum decarburization and refining equipment, the latent heat of the carbon-containing material is used in the converter and the vacuum decarburization and refining process. A method for producing chromium-containing steel using a converter and a vacuum decarburization refining furnace.
JP15791983A 1983-08-31 1983-08-31 Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace Granted JPS6052505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15791983A JPS6052505A (en) 1983-08-31 1983-08-31 Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15791983A JPS6052505A (en) 1983-08-31 1983-08-31 Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace

Publications (2)

Publication Number Publication Date
JPS6052505A true JPS6052505A (en) 1985-03-25
JPS6237684B2 JPS6237684B2 (en) 1987-08-13

Family

ID=15660322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15791983A Granted JPS6052505A (en) 1983-08-31 1983-08-31 Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace

Country Status (1)

Country Link
JP (1) JPS6052505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760515A (en) * 1980-09-26 1982-04-12 Hitachi Ltd Synchronizing signal protection circuit
JP2008519906A (en) * 2004-11-12 2008-06-12 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Manufacturing method of AISI standard 4xx ferritic steel class in AOD converter
JP2008274315A (en) * 2007-04-25 2008-11-13 Nippon Steel Corp Decarbonization refine method for chromium-based stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760515A (en) * 1980-09-26 1982-04-12 Hitachi Ltd Synchronizing signal protection circuit
JP2008519906A (en) * 2004-11-12 2008-06-12 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Manufacturing method of AISI standard 4xx ferritic steel class in AOD converter
JP2008274315A (en) * 2007-04-25 2008-11-13 Nippon Steel Corp Decarbonization refine method for chromium-based stainless steel

Also Published As

Publication number Publication date
JPS6237684B2 (en) 1987-08-13

Similar Documents

Publication Publication Date Title
RU2105069C1 (en) Method for reduction smelting of metallurgical raw materials
JP4838118B2 (en) Method for producing molten alloy metal and related production plant
AU661925B2 (en) A method for protecting the refractory lining in the gas space of a metallurgical reaction vessel
JPS6052505A (en) Manufacture of chromium steel by refining using converter and vacuum decarburization refining furnace
JP5439978B2 (en) Melting reduction method
JPH0368082B2 (en)
JP5446505B2 (en) Melting reduction method
JP4479541B2 (en) Method for producing high chromium molten steel
JP4120161B2 (en) Operation method of iron bath smelting reduction furnace
JPS5959818A (en) Steel making method
JPH0967608A (en) Production of stainless steel
Graef et al. Rotor steelmaking process
JPH09263811A (en) Method for melting tinned steel plate scrap
JPS5873742A (en) Manufacture of ferroalloy
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH08260022A (en) Method for melting scrap iron
JP2725466B2 (en) Smelting reduction steelmaking method
JP2713795B2 (en) Stainless steel smelting method
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JP4123034B2 (en) Solid metal source melting method and smelting reduction method using converter
JPH07100810B2 (en) Method for producing molten alloy containing Ni and Cr
JP2560668B2 (en) Smelting and refining method
JP2606234B2 (en) Hot metal production method
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH01195211A (en) Method for melting and reducing iron oxide