JPS6052313B2 - Ignition timing control device for turbocharged engines - Google Patents

Ignition timing control device for turbocharged engines

Info

Publication number
JPS6052313B2
JPS6052313B2 JP54029581A JP2958179A JPS6052313B2 JP S6052313 B2 JPS6052313 B2 JP S6052313B2 JP 54029581 A JP54029581 A JP 54029581A JP 2958179 A JP2958179 A JP 2958179A JP S6052313 B2 JPS6052313 B2 JP S6052313B2
Authority
JP
Japan
Prior art keywords
engine
ignition timing
pressure
throttle valve
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54029581A
Other languages
Japanese (ja)
Other versions
JPS55123366A (en
Inventor
博 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP54029581A priority Critical patent/JPS6052313B2/en
Publication of JPS55123366A publication Critical patent/JPS55123366A/en
Publication of JPS6052313B2 publication Critical patent/JPS6052313B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1528Digital data processing dependent on pinking for turbocompressed engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 本発明は、排気ガスタービンによつて駆動される過給
機つまり排気ターボ過給機を備えたエンジンにおける点
火時期の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition timing control device for an engine equipped with a supercharger, that is, an exhaust turbo supercharger, driven by an exhaust gas turbine.

一般に火花点火式エンジンにおける燃焼は、第1図に
示すように、点火栓による火花点火点Aから若干の着火
遅れ期間Tを経たB点で混合気に着火し、B−Cの火災
伝播期間に次いでC−Dの直接燃焼期間を経てD点で最
高爆発圧力に達し、D−Eの後燃え期間に至る過程をと
り、前記最高爆発圧力の点Dをクランク角の上死点後(
ATDC)約100位に設定したときエンジンの最大出
力が得られることが知られている。
In general, in combustion in a spark-ignition engine, as shown in Figure 1, the air-fuel mixture is ignited at point B after a slight ignition delay period T from the spark ignition point A caused by the spark plug, and during the fire propagation period B-C. Next, the maximum explosion pressure is reached at point D through the direct combustion period of CD, and the process of reaching the afterburning period of DE takes place, and the point D of the maximum explosion pressure is set after the top dead center of the crank angle (
It is known that the maximum output of the engine can be obtained when the engine is set to about 100 (ATDC).

この場合、前記着火遅れの期間Tは、標準状態 での
行程体積を占める混合気の重量に対する吸入新気混合気
の重量の割合である充填効率に略反比例し、充填効率は
回転数に対しては反比例し、負荷に対しては正比例する
から、前記着火遅れの期間は、回転数に対しては回転数
の増大に比例して長くなり、負荷に対しては負荷の増大
に反比例して短かくなる関係にある。
In this case, the ignition delay period T is approximately inversely proportional to the charging efficiency, which is the ratio of the weight of the intake fresh air mixture to the weight of the mixture occupying the stroke volume under standard conditions, and the charging efficiency is proportional to the rotation speed. is inversely proportional to the load, and directly proportional to the load, so the ignition delay period increases in proportion to the rotational speed and shortens inversely to the load. We have a relationship where this happens.

そこで従来の普通のエンジン(ターボ過給機を有しな
いもの)は、回転数に対してはデイストリビユータに遠
心式の進角機構を設け、吸気管負圧を大気圧にした場合
におけ回転数に対する点火時期の特性を、例えば第2図
に実線で示すように制御する一方、負荷に対しては、デ
イスリビユータに吸気管負圧を入力信号とする真空式の
進角機構を設けて、回転数を一定にした場合における点
火時期の特性を、例えば第3図に実線で示すように制御
している。
Therefore, in conventional ordinary engines (those without a turbocharger), a centrifugal advance mechanism is installed in the distributor to adjust the rotation speed, and when the negative pressure in the intake pipe is set to atmospheric pressure, the rotation speed increases. The characteristics of the ignition timing with respect to the engine speed are controlled, for example, as shown by the solid line in Figure 2. On the other hand, with respect to the load, a vacuum-type advance mechanism that uses the intake pipe negative pressure as an input signal is installed in the distributor to control the rotation. The characteristics of the ignition timing when the number is kept constant are controlled, for example, as shown by the solid line in FIG.

一方、排気ガスターボ過給機は、エンジンからの排気
ガスが持つエネルギをエンジンの出力向上”に利用でき
る特長を有するが、排気ガスタービンを駆動することは
可成りの排気ガスエネルギを必要とするため、排気ター
ボ式のエンジンにおいては、エンジンからの排気ガス量
が少ない低回転、低負荷域ではターボ過給は行なわれな
いいわゆる、ノンターボの状態になり、一定以上の回転
、負荷域でターボ過給(オンターボ)が行なわれること
になり、ターボ過給の状態においては充填効率が急増大
し、充填効率の急増大によつて前記着火遅れの期間Tは
ノンターボ状態での負荷増大時より更に急速に短かくな
るから、ターボ過給式エンジンに前記従来の遠心及び真
空式進角機構をそのま)適用することは、ターボ過給状
態における最高爆発圧力の点Dが、過給による着火遅れ
期間の短縮によつて、上死点又は上死点近くに或いは場
合によつては上死点よりも前(Bm)C)に移行するこ
とになる。
On the other hand, exhaust gas turbo superchargers have the advantage of being able to use the energy contained in the exhaust gas from the engine to improve the engine's output, but driving the exhaust gas turbine requires a considerable amount of exhaust gas energy. In an exhaust turbo type engine, turbocharging is not performed at low speeds and low load ranges where the amount of exhaust gas from the engine is small, so it is in a so-called non-turbo state, and turbocharging is performed above a certain speed and load range. (on-turbo), the charging efficiency increases rapidly in the turbocharged state, and due to the rapid increase in the charging efficiency, the ignition delay period T becomes even more rapid than when the load increases in the non-turbo state. Therefore, if the conventional centrifugal and vacuum advance mechanism is directly applied to a turbocharged engine, the point D of the maximum explosion pressure in the turbocharged state will be the same as the ignition delay period due to supercharging. The shortening results in a shift to top dead center, near top dead center, or in some cases before top dead center (Bm)C).

この最高爆発圧力点の上死点方向への移行により、ピス
トンの上昇行程による圧縮中に爆発が生じて、エンジン
出力が急激に低下するばかりか、ノッキングによつて騒
音が増大し、また場合によつてはエンジンの破損を招来
することになり、この破損に耐え得るエンジンは著しく
重いものとなる。そこでターボ過給時における最高爆発
圧力点Dの上死点方向への移行を防止するには、前記第
2図に示す回転数に対する点火時期の制御特性を、ター
ボ過給に際して着火遅れ期間Tが短かくなる分だけ遅角
方向に平行移動して2点鎖線に示すようにすれば良いと
考えられるが、斯くすると、ノンターボ時すなわちター
ボ過給機が作動しないか、十分に作動するような状態に
至つていない低回転,低負荷域において、最適な点火時
期に制御できず、出力の低下及び燃費増大等の悪結果を
もたらすことになる。
This shift of the highest explosion pressure point toward top dead center causes an explosion during compression during the upward stroke of the piston, which not only causes a sudden drop in engine output, but also increases noise due to knocking, and in some cases. This will eventually lead to damage to the engine, and an engine that can withstand this damage will be extremely heavy. Therefore, in order to prevent the maximum explosion pressure point D from shifting toward top dead center during turbocharging, the control characteristics of the ignition timing with respect to the rotation speed shown in FIG. It may be possible to move parallel to the retard direction by the amount of time it becomes shorter, as shown by the two-dot chain line, but in this case, the turbo supercharger will not operate or will operate sufficiently. In the low-speed, low-load range where engine speed has not yet been reached, optimal ignition timing cannot be controlled, resulting in negative results such as a decrease in output and an increase in fuel consumption.

また、ターボ過給式エンジンの点火時期の制御を前記の
従来方式とする場合において、エンジンにおける圧縮比
を低く設定することによつて、ターボ過給時におけるノ
ッキングを防止することも考えられるが、圧縮比を下げ
ることはエンジンの出力が全運転域にわたつて低下する
ことになるの.で得策ではない。
Furthermore, when controlling the ignition timing of a turbocharged engine using the conventional method described above, it may be possible to prevent knocking during turbocharging by setting the compression ratio in the engine low. Lowering the compression ratio will reduce engine output over the entire operating range. It's not a good idea.

本発明は、ターボ過給機のブロワー圧縮機より上流側に
吸入空気制御用スロットル弁を備えたターボ過給式エン
ジンにおいて、スロットル弁箇所のスロットルボートの
圧力は、スロットル弁の開ζ障が小さい領域のノンター
ボ域では、大気圧より真空側で負荷に比例して次第に大
気圧に近づくように変化し、また、ブロワー圧縮機から
エンジンに至る吸気通路の圧力は、スロットル弁を大き
く開いてのターボ過給域では、ターボ過給の増加にi伴
つて大気圧より高い側に変化することに鑑み、エンジン
の回転数に比例して進角方向に制御した点火時期を、前
記スロットルボート及び吸気通路の両方の圧力によつて
、進角あるいは遅角方向に制御することにより、ノンタ
ーボ時における点火時期を最適な状態に保つ一方、オン
ターボ時における点火時期を、前記ターボ過給に際して
の着火遅れ期間の短縮に見合う分だけ遅角方向に制御す
るようにしたものである。
The present invention provides a turbocharged engine equipped with a throttle valve for controlling intake air on the upstream side of the blower compressor of a turbocharger, and the pressure of the throttle boat at the throttle valve location is such that the throttle valve opening ζ is small. In the non-turbo region, the pressure gradually approaches atmospheric pressure in proportion to the load on the vacuum side compared to atmospheric pressure, and the pressure in the intake passage from the blower compressor to the engine changes even when the throttle valve is wide open. In the supercharging region, in view of the fact that as turbocharging increases, the pressure changes to a higher side than atmospheric pressure, the ignition timing is controlled in an advance direction in proportion to the engine speed, and the throttle boat and the intake passage By controlling the ignition timing in the advance or retard direction using both pressures, the ignition timing in non-turbo mode is maintained at an optimal state, while the ignition timing in on-turbo mode is adjusted to match the ignition delay period during turbocharging. The control is performed in the retard direction by an amount commensurate with the shortening.

次に本発明の一例を図面について説明するに、図におい
て1は吸気マニホールド2及び排気マニホールド3を有
するエンジン、43は燃料噴射ノズル、4は排気タービ
ン5とブロワー圧縮機6とjを直結した排気ターボ過給
機、7は排気ガスを大気に放出するマフラー又は触媒コ
ンバータを各々示し、吸気マニホールド2の集合部8は
吸気通路9を介して前記ブロワー圧縮機6の吐出側に接
続され、ブロワー圧縮機6の吸入側には吸入空気量p制
御用スロットル弁11とエアフローメーター10及びエ
アクリーナ12が接続されており、また排気タービン5
の排気側は排気管13を介してマフラー7に、排気ター
ビン5の入口側は排気通路14を介して排気マニホール
ド3に各々接続されている。
Next, an example of the present invention will be explained with reference to the drawings. In the drawing, 1 is an engine having an intake manifold 2 and an exhaust manifold 3, 43 is a fuel injection nozzle, and 4 is an exhaust gas in which an exhaust turbine 5 and a blower compressor 6 and j are directly connected. A turbo supercharger, 7 indicates a muffler or a catalytic converter that discharges exhaust gas into the atmosphere, and a gathering part 8 of the intake manifold 2 is connected to the discharge side of the blower compressor 6 via an intake passage 9, and the blower compressor A throttle valve 11 for controlling the intake air amount p, an air flow meter 10, and an air cleaner 12 are connected to the suction side of the engine 6, and an exhaust turbine 5 is connected to the suction side of the engine 6.
The exhaust side of the exhaust turbine 5 is connected to the muffler 7 via an exhaust pipe 13, and the inlet side of the exhaust turbine 5 is connected to the exhaust manifold 3 via an exhaust passage 14.

15は前記エンジン1のクランク軸に回転伝動するカム
軸16にエンジンの回転数に対して例えば第2図に実線
て示すような進角特性を有する遠心式進角機構17を備
えたデイストリビユータで、その内部にはカム軸16の
回転てON,OFFする接点19″を備えたブレーカー
アーム19を有するブレーカープレート20が設けられ
、該ブレーカープレート20が矢印21方向に回転すれ
ば点火時期は進角方向に、矢印22方向に回転すれば遅
角方向に移行するようになつている。
Reference numeral 15 denotes a distributor which is equipped with a centrifugal advance angle mechanism 17 having an advance angle characteristic, for example, as shown by the solid line in FIG. A breaker plate 20 having a breaker arm 19 with a contact 19'' that is turned on and off by rotation of the camshaft 16 is provided inside the breaker plate 20, and when the breaker plate 20 rotates in the direction of arrow 21, the ignition timing advances. If the angle direction is rotated in the direction of arrow 22, the angle shifts to the retard direction.

デイストリビユータ15の側面には、第1のダイヤフラ
ム式作動機構2fと第2のダイヤフラム式作動機構24
とが取付き、両作動機構23,24は、いずれもダイヤ
フラムケース26,26、ダイヤフラム27,28及び
ダイヤフラム室29,30とからなり、両ダイヤフラム
27,28に連結た連杆31,32の先端をレバー33
の両端部に回動自在にピン34,35により枢着し、レ
バー33の中央部あるいは進角特性に応じたリンク移動
量を決める位置をロッド36を介して前記ブレーカープ
レート20に連結し、第1作動機構23にはそのダイヤ
フラム21が図示の位置から進角方向に動くことに対し
て抵抗するばね37を設ける一方、第2作動機構24に
はそのダイヤフラム28が図示の位置から遅角方向に動
くことに対して抵抗するばね38を設け、第1作動機構
23におけるダイヤフラム室29に、前記スロットル弁
11の閉位置より稍上流部に設けたスロットルボート3
9を通路40を介して接続し、第2作動機構24におけ
るダイヤフラム室30に前記吸気通路9に設けたボート
41を通路42を介して接続して成るものである。この
構成において、エンジンの点火時期は、エンジンの回転
数に対しては、デイストリビユータ15における遠心式
進角機構17によつて第2図に実線で示す特性に沿い回
転数の増大に伴つて進み方向に制御される。
A first diaphragm type actuation mechanism 2f and a second diaphragm type actuation mechanism 24 are provided on the side surface of the distributor 15.
Both operating mechanisms 23 and 24 each consist of diaphragm cases 26 and 26, diaphragms 27 and 28, and diaphragm chambers 29 and 30, and the ends of connecting rods 31 and 32 connected to both diaphragms 27 and 28. lever 33
The central part of the lever 33 or the position that determines the amount of link movement according to the advance angle characteristic is connected to the breaker plate 20 via a rod 36. The first actuating mechanism 23 is provided with a spring 37 that resists movement of its diaphragm 21 from the illustrated position in the advanced angle direction, while the second actuating mechanism 24 is provided with a spring 37 that resists movement of its diaphragm 28 from the illustrated position in the retarded angle direction. A throttle boat 3 is provided with a spring 38 that resists movement and is provided in the diaphragm chamber 29 of the first actuating mechanism 23 slightly upstream from the closed position of the throttle valve 11.
9 is connected through a passage 40, and a boat 41 provided in the intake passage 9 is connected to the diaphragm chamber 30 of the second actuating mechanism 24 through a passage 42. In this configuration, the ignition timing of the engine is controlled by the centrifugal advance mechanism 17 in the distributor 15 as the engine speed increases according to the characteristics shown by the solid line in FIG. Controlled in the direction of travel.

一方、スロットル弁11の開度が小さい領域では吸入空
気量が少なく、従つて排気ガス量が少なくてターボ過給
機4の回転が遅いから、ターボ過給機による過給は行な
われず、吸気通路9の圧力は大気圧以下で第2作動機構
24は作動せず、またスロットル弁11が閉時のアイド
リング時にはスロットルボート39の圧力は大気圧であ
るため、第1作動機構23も作動しないが、スロットル
弁11を少し開くとスロットルボート39は高い負圧と
なり、この負圧が通路40を介して第1作動機構23の
ダイヤフラム室29に作用し、そのダイヤフラム27は
ばね37に抗してダイヤフラム室29内に引張られるか
ら、これに連杆31を介して連結したレバー33は第2
作動機構24に対する連結ピン35を中心に右回転して
、該レバー33に連結したブレーカープレート20が矢
印21方向の進角方向に回転されることにより、点火時
期は進角される。
On the other hand, in the region where the opening degree of the throttle valve 11 is small, the amount of intake air is small, and therefore the amount of exhaust gas is small and the rotation of the turbo supercharger 4 is slow, so supercharging by the turbo supercharger is not performed and the intake passage 9 is below atmospheric pressure, the second actuating mechanism 24 does not operate, and when idling with the throttle valve 11 closed, the pressure of the throttle boat 39 is atmospheric pressure, so the first actuating mechanism 23 also does not operate. When the throttle valve 11 is slightly opened, the throttle boat 39 becomes high negative pressure, and this negative pressure acts on the diaphragm chamber 29 of the first actuating mechanism 23 through the passage 40, and the diaphragm 27 resists the spring 37 and moves into the diaphragm chamber. 29, the lever 33 connected to this via the connecting rod 31 is pulled into the second position.
The ignition timing is advanced by rotating the breaker plate 20 connected to the lever 33 clockwise around the connecting pin 35 to the operating mechanism 24 in the advancing direction of the arrow 21.

次にスロットル弁11の開に伴つてスロットルボート3
9の真空側の圧力は次第に大気圧に近づくように変化す
るから、第1作動機構23のダイヤフラム27は次第に
左方向に移動し、これによつてブレーカープレート20
はスロットル弁11の開に伴つてレバー33を介して遅
方向に順次回転される。
Next, as the throttle valve 11 opens, the throttle boat 3
Since the pressure on the vacuum side of the breaker plate 9 gradually changes to approach atmospheric pressure, the diaphragm 27 of the first actuating mechanism 23 gradually moves to the left, thereby causing the breaker plate 20
are sequentially rotated in the slow direction via the lever 33 as the throttle valve 11 opens.

従つてブレーカープレート20による点火時期はばね3
7の自由長及びばね定数の設定によつて第3図に実線で
示すような特性に制御できるから、エンジンにおける実
際の点火時期は、エンジンの回転数の増大による進み制
御量から、負荷の増大に伴う遅れ制御量を差引いた値に
自動制御できるのである。すなわち、ノンターボの領域
では、ターボ過給機を有しない普通のエンジンと同じよ
うに点火時期が制御されるである。そして、スロットル
弁11を更に開くと、排気ガス量が多くなりターボ過給
機4は十分に回転駆動されて過給状態に移行する。スロ
ットル弁11の大きい開度によりスロットルボート39
の圧力は大気圧となり、第1作動機構23は図示の位置
で作動停止する一方、吸気通路9の圧力は、ターボ過給
の増加に伴つて大気圧から次第に高くなるから、第2作
動機構24におけるダイヤフラム28はばね38に抗し
て左方向に押圧され、これに連杆32を介して連結した
レバー33は第1作動機構23に対する連結ピン34を
中心に左回転して、これに連動するブレーカープレート
20が矢印22の遅角方向に回転されることになり、従
つて、ターボ過給域における点火時期は、ターボ過給の
増大に伴つて、前記第1作動機構23の遅れ制御に加算
して更に遅れ方向に制御でき、ばね38の自由長及びば
ね定数の設定によつて第3図に2点鋭線で示すような特
性に制御できるから、エンジンにおける実際の点火時期
は、前記ノンターボ時よりも過給の増加に伴つて更に制
御され、この制御によつてターボ過給に際しての着火遅
れ期間の短縮に対して最高爆発圧力の点Dを、エンジン
の最高圧力が得られる上死点後約10、の附近に保持で
きるのである。以上の通り本発明によれば、ターボ過給
式エンジンにおける点火時期を、ノンターボ時からオン
ターボ時の全運転域について的確に自動制御てきノるか
ら、エンジンの圧縮比を低く設定することなくターボ過
給時におけるノッキング及びエンジンの破損を確実に防
止できると共に、全運転域について最高出力と燃費向上
が得られるのであり、しかも、本発明は2つの作動機構
を用いるから、ノJャ塔^ーボ時の特性及びオンターボ時
の特性をエンジンに合せて任意に設定できる効果を有す
る。
Therefore, the ignition timing by the breaker plate 20 is determined by the spring 3.
By setting the free length and spring constant of 7, it is possible to control the characteristics as shown by the solid line in Figure 3, so the actual ignition timing in the engine changes from the advance control amount due to an increase in engine speed to the increase in load. Automatic control can be performed to a value obtained by subtracting the delay control amount associated with this. That is, in the non-turbo region, ignition timing is controlled in the same way as a normal engine without a turbocharger. Then, when the throttle valve 11 is further opened, the amount of exhaust gas increases and the turbo supercharger 4 is sufficiently rotationally driven to enter a supercharging state. Throttle boat 39 due to large opening of throttle valve 11
The pressure in the intake passage 9 becomes atmospheric pressure, and the first actuating mechanism 23 stops operating at the illustrated position, while the pressure in the intake passage 9 gradually increases from atmospheric pressure as turbocharging increases, so the second actuating mechanism 24 The diaphragm 28 in is pressed to the left against the spring 38, and the lever 33 connected to it via the connecting rod 32 rotates to the left around the connecting pin 34 for the first actuating mechanism 23, and is interlocked with this. The breaker plate 20 is rotated in the retard direction of the arrow 22, and therefore, the ignition timing in the turbocharging region is added to the delay control of the first actuating mechanism 23 as the turbocharging increases. By setting the free length and spring constant of the spring 38, the actual ignition timing in the engine can be controlled to the characteristic shown by the two-point acute line in FIG. This control reduces the ignition delay period during turbocharging by setting the point D of maximum explosion pressure, and the top dead center at which the maximum pressure of the engine is obtained. It can be maintained at around 10. As described above, according to the present invention, the ignition timing in a turbocharged engine can be accurately and automatically controlled over the entire operating range from non-turbo to on-turbo, so turbocharging can be achieved without setting the compression ratio of the engine low. It is possible to reliably prevent knocking and engine damage during power-up, as well as obtain maximum output and improved fuel efficiency over the entire operating range.Furthermore, since the present invention uses two actuation mechanisms, the engine This has the effect that the characteristics during engine operation and on-turbo characteristics can be arbitrarily set to suit the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混合気の着火燃焼の過程を示す圧力線図、第2
図はエンジンの回転数に対する進角特性フを示す図、第
3図は負荷に対する進角特性を示す図、第4図は本発明
実施例装置の図、第5図は第4図のV−V視拡大断面図
である。 1・・・・・・エンジン、4・・・・・・ターボ過給機
、5・・・・排気タービン、6・・・・・・ブロワー圧
縮機、9・・・・・・吸気通路、10・・・・・・エア
フローメーター、11・・・スロットル弁、15・・・
・・・デイストリビユータ、16・・・・・・カム軸、
17・・・・・・遠心進角機構、19・・・ブレーカー
アーム、19″・・・・・・接点、20・・・・・・ブ
レーカープレート、23・・・・・・第1作動機構、2
4・・・・第2作動機構、27,28・・・・・・ダイ
ヤフラム、37,38・・・・・・ばね、31,32・
・・・・連杆、33・・・・・レバー、36・・・・・
・ロッド、39・・・・・スカツトルポート。
Figure 1 is a pressure diagram showing the process of ignition and combustion of air-fuel mixture;
3 is a diagram showing advance angle characteristics with respect to engine speed, FIG. 3 is a diagram showing advance angle characteristics with respect to load, FIG. 4 is a diagram of an apparatus according to an embodiment of the present invention, and FIG. FIG. 1...Engine, 4...Turbocharger, 5...Exhaust turbine, 6...Blower compressor, 9...Intake passage, 10... Air flow meter, 11... Throttle valve, 15...
...Distributor, 16...Camshaft,
17...Centrifugal advance mechanism, 19...Breaker arm, 19''...Contact, 20...Breaker plate, 23...First operating mechanism ,2
4... Second operating mechanism, 27, 28... Diaphragm, 37, 38... Spring, 31, 32...
...Running rod, 33...Lever, 36...
・Rod, 39... Scuttle port.

Claims (1)

【特許請求の範囲】[Claims] 1 排気ターボ過給機におけるブロワー圧縮機の吸入側
上流に吸入空気量制御用スロットル弁を設けて成るター
ボ過給式エンジンにおいて、該スロットル弁の閉位置よ
り稍上流部にスロットルポートを設ける一方、前記エン
ジンにおける遠心進角機構付きデイストリビユータには
、前記スロットルポートの圧力上昇によつてプレーカー
プレートを遅角方向に作動させる第1の作動機構と、前
記ブロワー圧縮機からエンジンに至る吸気通路の圧力上
昇によつて、前記第1作動機構による制御量に加算して
ブレーカープレートを遅角方向に作動させる第2の作動
機構を設けたことを特徴とするターボ過給式エンジンの
点火時期制御装置。
1. In a turbocharged engine in which a throttle valve for controlling the amount of intake air is provided upstream on the suction side of a blower compressor in an exhaust turbocharger, a throttle port is provided slightly upstream from the closed position of the throttle valve; The distributor with a centrifugal advance mechanism in the engine includes a first actuation mechanism that operates the breaker plate in a retard direction by increasing the pressure of the throttle port, and an intake passage leading from the blower compressor to the engine. Ignition timing control for a turbocharged engine, characterized in that a second actuation mechanism is provided to actuate a breaker plate in a retarded direction by adding to the amount controlled by the first actuation mechanism due to the pressure increase. Device.
JP54029581A 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines Expired JPS6052313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54029581A JPS6052313B2 (en) 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54029581A JPS6052313B2 (en) 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines

Publications (2)

Publication Number Publication Date
JPS55123366A JPS55123366A (en) 1980-09-22
JPS6052313B2 true JPS6052313B2 (en) 1985-11-18

Family

ID=12280055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54029581A Expired JPS6052313B2 (en) 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines

Country Status (1)

Country Link
JP (1) JPS6052313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165867A (en) * 1983-03-10 1984-09-19 Fuji Heavy Ind Ltd Ignition timing control device of supercharged engine

Also Published As

Publication number Publication date
JPS55123366A (en) 1980-09-22

Similar Documents

Publication Publication Date Title
JPH0642357A (en) Combustion control device for engine
US4727719A (en) Apparatus for controlling inlet air flow in a turbocharged internal combustion engine
US11236684B1 (en) Two-stroke engine with supercharger
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP3261328B2 (en) Variable cycle internal combustion engine
JP2566232B2 (en) Valve timing controller for engine with supercharger
JPS6052313B2 (en) Ignition timing control device for turbocharged engines
JP2799388B2 (en) Engine with turbocharger
JPS6052314B2 (en) Ignition timing control method for turbocharged engine
JPS6052315B2 (en) Ignition timing control device for turbocharged engines
JPS6052312B2 (en) Ignition timing control device for turbocharged engines
JP2673427B2 (en) Engine with turbocharger
JP2569076B2 (en) Ignition timing control device for supercharged engine
JPS6235898Y2 (en)
JPH07102982A (en) Engine having supercharger
JPS6131145Y2 (en)
JP2568250B2 (en) Engine valve timing controller
JP3337799B2 (en) Control device for supercharged engine
JPS63297729A (en) Valve timing control device for engine with supercharger
EP0278032A1 (en) High performance exhaust system for internal combustion engine
JPS6160981B2 (en)
JPS60147534A (en) Suction device for internal-combustion engine
JPH0619807Y2 (en) Engine scavenger
JP2022136514A (en) engine
JP2803871B2 (en) Engine exhaust timing control device