JPS6052312B2 - Ignition timing control device for turbocharged engines - Google Patents

Ignition timing control device for turbocharged engines

Info

Publication number
JPS6052312B2
JPS6052312B2 JP54029580A JP2958079A JPS6052312B2 JP S6052312 B2 JPS6052312 B2 JP S6052312B2 JP 54029580 A JP54029580 A JP 54029580A JP 2958079 A JP2958079 A JP 2958079A JP S6052312 B2 JPS6052312 B2 JP S6052312B2
Authority
JP
Japan
Prior art keywords
engine
diaphragm
pressure
ignition timing
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54029580A
Other languages
Japanese (ja)
Other versions
JPS55123365A (en
Inventor
博 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP54029580A priority Critical patent/JPS6052312B2/en
Publication of JPS55123365A publication Critical patent/JPS55123365A/en
Publication of JPS6052312B2 publication Critical patent/JPS6052312B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1528Digital data processing dependent on pinking for turbocompressed engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 本発明は、排気ガスタービンによつて駆動される過給
機つまり排気ターボ過給機を備えたエンジンにおける点
火時期の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition timing control device for an engine equipped with a supercharger, that is, an exhaust turbo supercharger, driven by an exhaust gas turbine.

、一般に火花点汰式エンジンにおける燃焼は、第1図に
示すように、点火栓による火花点火点Aから若干の着火
遅れ期間Tを経たB点で混合気に着火し、B−Cの火炎
伝播期間に次いでC−Dの直接燃焼期間を経てD点で最
高爆発圧力に達し、D−Eの後燃え期間に至る過程をと
り、前記最高爆発圧力の点Dをクランク角の上死点後(
ATDC)約100位に設定したときエンジンの最大出
力が得られることが知られている。
In general, combustion in a spark ignition type engine is as shown in Fig. 1, where the air-fuel mixture is ignited at point B after a slight ignition delay period T from the spark ignition point A caused by the spark plug, and flame propagation from B to C occurs. After the period, the maximum explosion pressure is reached at point D through the direct combustion period of CD, and the process of reaching the afterburning period of DE takes place, and the point D of the maximum explosion pressure is set after the top dead center of the crank angle (
It is known that the maximum output of the engine can be obtained when the engine is set to about 100 (ATDC).

この場合、前記着火遅れの期間Tは、標準状態での行
程体積を占める混合気の重量に対する吸入新気混合気の
重量の割合である充填効率に略反比例し、充填効率は回
転数に対しては反比例し、負荷に対しては正比例するか
ら、前記着火遅れの期間は、回転数に対しては回転数の
増大に比例して長くなり、負荷に対しては負荷の増大に
反比例し て短かくなる関係にある。
In this case, the ignition delay period T is approximately inversely proportional to the charging efficiency, which is the ratio of the weight of the intake fresh air mixture to the weight of the mixture occupying the stroke volume under standard conditions, and the charging efficiency is proportional to the rotation speed. is inversely proportional to the load, and directly proportional to the load, so the ignition delay period increases in proportion to the rotational speed and shortens in inverse proportion to the load. We have a relationship where this happens.

そこで従来の普通のエンジン(ターボ過給機を有しな
いもの)は、回転数に対してはデイストリビユータに遠
心式の進角機構を設け、吸気管負圧を大気圧にした場合
における回転数に対する点火時期の特性を、例えば第2
図に実線で示すように制御する一方、負荷に対しては、
デイスリビユータに吸気管負圧を入力信号とする真空式
の進角機構を設けて、回転数を一定にした場合における
点火時期の特性を、例えば第3図に実線て示すように制
御している。
Therefore, in conventional ordinary engines (those without a turbocharger), a centrifugal advance mechanism is installed in the distributor to determine the rotation speed when the negative pressure in the intake pipe is set to atmospheric pressure. For example, the characteristics of the ignition timing for
While controlling the load as shown by the solid line in the figure,
The distributor is provided with a vacuum advance mechanism that uses the intake pipe negative pressure as an input signal to control the characteristics of the ignition timing when the rotational speed is kept constant, as shown by the solid line in FIG. 3, for example.

一方、排気ガスターボ過給機は、エンジンから”の排
気ガスが持つエネルギをエンジンの出力向上に利用でき
る特長を有するが、排気ガスタービンを駆動することは
可成りの排気ガスエネルギを必要とするため、排気ター
ボ式のエンジンにおいては、エンジンからの排気ガス量
が少ない低回転・、低負荷域ではターボ過給は行なわれ
ないいわゆるノンターボの状態になり、一定以上の回転
・負荷域でターボ過給(オンターボ)が行なわれること
になり、ターボ過給の状態においては充填効率が急増大
し、充填効率の急増大によつて前記着火遅れの期間Tは
ノンターボ状態での負荷増大時より更に急速に短かくな
るから、ターボ過給式エンジンに前記従来の遠心及び真
空式進角機構をそのま)適用することは、ターボ過給状
態における最高爆発圧力の点Dが、過給による着火遅れ
期間の短縮によつて、上死点又は上死点近くに或い一は
場合によつては上死点よりも前(BTDC)に移行する
ことになる。
On the other hand, exhaust gas turbo superchargers have the advantage of being able to use the energy in the exhaust gas from the engine to improve engine output, but driving the exhaust gas turbine requires a considerable amount of exhaust gas energy. In an exhaust turbo type engine, turbocharging is not performed at low speeds and low load ranges where the amount of exhaust gas from the engine is small, so-called non-turbo state, and turbocharging is not performed at engine speeds and load ranges above a certain level. (on-turbo), the charging efficiency increases rapidly in the turbocharged state, and due to the rapid increase in the charging efficiency, the ignition delay period T becomes even more rapid than when the load increases in the non-turbo state. Therefore, if the conventional centrifugal and vacuum advance mechanism is directly applied to a turbocharged engine, the point D of the maximum explosion pressure in the turbocharged state will be the same as the ignition delay period due to supercharging. The shortening results in a transition to or near top dead center or even before top dead center (BTDC) as the case may be.

この最高爆発圧力点の上死点方向への移行により、ピス
トンの上昇行程による圧縮中に爆発が生じて、エンジン
出力が急激に低下するばかりか、ノッキングによつて騒
音が増大し、また場合によつてはエンジンの破損を招来
することになり、この破損に耐え得るエンジンは著しく
重いものとなる。そこでターボ過給時における最高爆発
圧力点Dの上死点方向への移行を防止するには、前記第
2図に示す回転数に対する点火時期の制御特性を、ター
ボ過給に際して着火遅れ期間Tが短かくなる分だけ遅角
方向に平行移動して2点鎖線に示すようにすれば良いと
考えられるが、斯くすると、ノンターボ時すなわちター
ボ過給機が作動しないか、十分に作動するような状態に
至つていない低回転・低負荷域において、最適な点火時
期に制御てきす、出力の低下及び燃費増大等の悪結果を
もたらすことになる。
This shift of the highest explosion pressure point toward top dead center causes an explosion during compression during the upward stroke of the piston, which not only causes a sudden drop in engine output, but also increases noise due to knocking, and in some cases. This will eventually lead to damage to the engine, and an engine that can withstand this damage will be extremely heavy. Therefore, in order to prevent the maximum explosion pressure point D from shifting toward top dead center during turbocharging, the control characteristics of the ignition timing with respect to the rotation speed shown in FIG. It may be possible to move parallel to the retard direction by the amount of time it becomes shorter, as shown by the two-dot chain line, but in this case, the turbo supercharger will not operate or will operate sufficiently. In the low rotation/low load range where the engine speed is not reached, the optimal ignition timing cannot be controlled, resulting in negative results such as a decrease in output and an increase in fuel consumption.

また、ターボ過給式エンジンの点火時期の制御を前記の
従来方式とする場合において、エンジンにおける圧縮比
を低く設定することによつて、ターボ過給時におけるノ
ッキングを防止することも考えられるが、圧縮比を下げ
ることはエンジンの.出力が全運転域にわたつて低下す
ることになるので得策ではない。
Furthermore, when controlling the ignition timing of a turbocharged engine using the conventional method described above, it may be possible to prevent knocking during turbocharging by setting the compression ratio in the engine low. Lowering the compression ratio of the engine. This is not a good idea because the output will decrease over the entire operating range.

本発明は、ターボ過給機のブロワー圧縮機より上流側に
吸入空気量制御用ス咄ントル弁を備えたターボ過給式エ
ンジンにおいて、スロットル弁箇.所のスロットルボー
トの圧力は、スロットル弁の開度が小さい領域のノンタ
ーボ域では、大気圧より真空側で負荷に比例して次第に
大気圧に近づくように変化し、また、ブロワー圧縮機か
らエンジンに至る吸気通路の圧力は、スロットル弁を大
き−く開いてのターボ過給域では、ターボ過給の増加に
伴つて大気圧より高い側に変化することに鑑み、エンジ
ンの回転数に比例して進角方向に制御した点火時期を、
前記スロットルボート及び吸気通路の両方の圧力によつ
て、進角あるいは遅角方向に制御することにより、ノン
ターボ時における点火時期を最適な状態に保つ一方、オ
ンターボ時における点火時期を、前記ターボ過給に際し
ての着火遅れ期間の短縮に見合う分だけ遅角方向に制御
するようにしたものである。
The present invention provides a turbocharged engine equipped with a throttle valve for controlling intake air amount upstream of a blower compressor of a turbocharger. In the non-turbo region where the opening of the throttle valve is small, the pressure of the throttle boat gradually approaches atmospheric pressure in proportion to the load on the vacuum side compared to atmospheric pressure, and the pressure from the blower compressor to the engine gradually approaches atmospheric pressure. Considering that in the turbocharging region when the throttle valve is wide open, the pressure in the intake passage changes to higher than atmospheric pressure as the turbocharging increases, the pressure in the intake passage is proportional to the engine speed. The ignition timing is controlled in the advance direction,
By controlling the ignition timing in the advance or retard direction depending on the pressure of both the throttle boat and the intake passage, the ignition timing during non-turbo is maintained at an optimal state, while the ignition timing during on-turbo is controlled by the turbo supercharging. The ignition timing is controlled in the retard direction by an amount commensurate with the shortening of the ignition delay period.

次に本発明の一例を図面について説明するに、図におい
て1は吸気マニホールド2及び排気マニホールド3を有
するエンジン、36は燃料噴射ノlズル、4は排気ター
ビン5とブロワー圧縮機6とを直結した排気ターボ過給
機、7は排気ガスを大気に放出するマフラー又は触媒コ
ンバータを各々示し、吸気マニホールド2の集合部8は
吸気通路9を介して前記ブロワー圧縮機6の吐出側に接
続され、ブロワー圧縮機6の吸入側には吸入空気量制御
用スロットル弁11とエアーフローメーター10並びに
エアクリーナ12が接続されており、また排気タービン
5の排気側は排気管13を介してマフラー7に、排気タ
ービン5の入口側は排気通路14を介して排気マニホー
ルド3に各々接続されている。
Next, an example of the present invention will be explained with reference to the drawings. In the drawing, 1 is an engine having an intake manifold 2 and an exhaust manifold 3, 36 is a fuel injection nozzle, and 4 is an engine having an exhaust turbine 5 and a blower compressor 6 directly connected. An exhaust turbo supercharger, 7 indicates a muffler or a catalytic converter that discharges exhaust gas into the atmosphere, and a collection part 8 of the intake manifold 2 is connected to the discharge side of the blower compressor 6 via an intake passage 9, and the blower A throttle valve 11 for controlling the amount of intake air, an air flow meter 10, and an air cleaner 12 are connected to the suction side of the compressor 6, and the exhaust side of the exhaust turbine 5 is connected to the muffler 7 via an exhaust pipe 13. 5 are connected to the exhaust manifold 3 via exhaust passages 14, respectively.

15は前記エンジン1のクランク軸に回転伝動するカム
軸16にエンジンの回転数に対して例えば第2図に実線
で示すような進角特性を有する遠心式進角機構17を備
えたデイストリビユータで、その内部にはカム軸16の
回転でON.OFFする接点1『を備えたブレーカーア
ーム18を有するブレーカープレート19が設けられ、
該ブレーカープレート19が矢印20方向に回転すれば
点火時期は進角方向に、矢印21方向に回転すれば遅角
方向に移行するようになつている。
Reference numeral 15 denotes a distributor which is equipped with a centrifugal advance angle mechanism 17 having an advance angle characteristic, for example, as shown by the solid line in FIG. And, inside it, the ON. A breaker plate 19 having a breaker arm 18 with a contact point 1' that turns OFF is provided,
When the breaker plate 19 rotates in the direction of arrow 20, the ignition timing advances, and when it rotates in the direction of arrow 21, the ignition timing advances to retard.

22はデイストリビユータ15の側面に取付くブレーカ
ープレート回転用ダイヤフラム式作動機構で、該作動機
構22は、ダイヤフラムケース23と、ブレーカープレ
ート19に速杆24を介して連結したダイヤフラム25
及びその両側に形成したダイヤフラム室26,27から
なり、一方のダイヤフラム室26内には、ダイヤフラム
25が図示の位置から進角方向に動くことに対して抵抗
するばね28を、他方のダイヤフラム室27にはダイヤ
フラム25が図示の位置から遅角方向に動くことに対し
て抵抗するばね29を各々ダイヤフラム25に接当して
設ける。
Reference numeral 22 denotes a diaphragm type actuation mechanism for rotating the breaker plate attached to the side surface of the distributor 15. The actuation mechanism 22 includes a diaphragm case 23 and a diaphragm 25 connected to the breaker plate 19 via a quick rod 24.
and diaphragm chambers 26 and 27 formed on both sides thereof, one diaphragm chamber 26 includes a spring 28 that resists movement of the diaphragm 25 from the illustrated position in the advance angle direction, and the other diaphragm chamber 27 A spring 29 is provided in contact with each diaphragm 25 to resist movement of the diaphragm 25 in the retard direction from the illustrated position.

この場合他の実施例においては第6図に示すように遅角
方向への抵抗とならるばね2『を、一方のダイヤフラム
室26内にケース23とダイヤフラム25とに両端を係
着して設けても良く、また、第7図に示すように一方の
ダイヤフラム室26内にばね2『を、その一端をケース
23に他端ダイヤフラム25に各々係着して設け、ダイ
ヤフラム25の進角方向への動きに対しては該ばね2『
の圧縮力が抵抗となり、ダイヤフラム25の遅角方向へ
の動きに対しては該ばね2『の引張力が抵抗となるよう
に、換言すれば、一つのぱね2『を進角及び遅角の両方
に兼用することもできる。そして、スロットル弁11の
閉位置より稍上流側にスロットルボート30を、吸気通
路9には吸気管ボート31を各々設け、該両ボート30
,31からの圧力取出通路32,33を、前記作動機構
22におけるダイヤフラム室26内への通路34に接続
する箇所には、吸気通路9内の圧力が大気圧より低いと
きはスロットルボート30からの通路32を通路34に
連通し、吸気通路9内の圧力が大気圧以上のときは吸気
管ボート31からの通路33を通路34に連通させるよ
うにしたパイロット切換弁35を設けて成るものである
In this case, in another embodiment, as shown in FIG. 6, a spring 2' acting as a resistance in the retarding direction is provided in one diaphragm chamber 26 with both ends engaged with the case 23 and the diaphragm 25. Alternatively, as shown in FIG. 7, a spring 2' is provided in one diaphragm chamber 26, one end of which is engaged with the case 23, and the other end of which is engaged with the diaphragm 25, so that the spring 2' is moved in the advancing direction of the diaphragm 25. For the movement of the spring 2'
In other words, the compressive force of the spring 2' acts as a resistance to the movement of the diaphragm 25 in the retard direction. It can also be used for both. A throttle boat 30 is provided slightly upstream from the closed position of the throttle valve 11, and an intake pipe boat 31 is provided in the intake passage 9.
, 31 are connected to the passage 34 into the diaphragm chamber 26 in the actuating mechanism 22, when the pressure in the intake passage 9 is lower than atmospheric pressure, the pressure outlet passages 32, 33 from the throttle boat 30 are connected. A pilot switching valve 35 is provided to communicate the passage 32 with the passage 34 and to communicate the passage 33 from the intake pipe boat 31 with the passage 34 when the pressure in the intake passage 9 is higher than atmospheric pressure. .

なお、吸気通路9内の圧力変化により、ターボ過給状態
を検知し、圧力通路の切換えをさせる機構としては、上
記以外にどのようなものを用いても良い。この構成にお
いて、エンジンの点火時期は、エンジンの回転数に対し
ては、デイストリビユータ15における遠心式進角機構
17によつて第2図に実線で示す特性に沿い回転数の増
大に伴つて進み方向に制御される。
Note that any mechanism other than the above may be used as a mechanism for detecting the turbocharging state based on a pressure change in the intake passage 9 and switching the pressure passage. In this configuration, the ignition timing of the engine is controlled by the centrifugal advance mechanism 17 in the distributor 15 as the engine speed increases according to the characteristics shown by the solid line in FIG. Controlled in the direction of travel.

一方、スロットル弁11の開度が小さい領域では吸入空
気量が少なく、従つて排気ガス量が少なくてターボ過給
機4の回転が遅いから、ターボ過給機による過給は行な
われず、吸気管ボート31の圧力は大気圧以下で切換弁
35は通路32,34を連通しており、スロットルボー
ト30の圧力は、スロットル弁11閉時のアイドリング
時には大気圧であるが、スロットル弁11を少し開くこ
とにより高い負圧となり、この負圧が通路32,34を
介して作動機構22のダイヤフラム室28に作用し、そ
のダイヤフラム25はばね28又はばね2『に抗して一
方のダイヤフラム室26内に引張られ、ブレーカープレ
ート19が矢印20の進角方向に回転されることにより
、点火時期は進角されることになるが、スロットルボー
ト30の真空側の圧力は以後スロットル弁11の開に伴
つて次第に大気圧に近づくように変化するから、ブレー
カープレート19はスロットル弁11の開に伴つてばね
28又は28″によつて遅角方向に順次回転される。従
つてブレーカープレート19による点火時期はばね28
又は2『の自由長及びばね定数の設定によつて第3図に
実線で示すような特性に制御できるから、エンジンにお
ける実際の点火時期は、エンジンの回転数の増大による
進み制御量から、負荷の増大に伴う遅れ制御量を差引い
た値に自動制御できるものである。すなわち、ノンター
ボの領域では、ターボ過給機を有しない普通のエンジン
と同じように点火時期が制御されるのである。そして、
スロットル弁11を更に開くと、排気ガス量が多くなり
ターボ過給機4は十分に回転駆動されて過給状態に移行
し、吸気通路9の圧力はターボ過給の増加に伴つて大気
圧から次第に高くなるから、切換弁35はこの圧力上昇
が所定値になつた時に、ターボ過給状態を検知し通路3
2,34を連通するように切換わる。
On the other hand, in the region where the opening degree of the throttle valve 11 is small, the amount of intake air is small, and therefore the amount of exhaust gas is small and the rotation of the turbo supercharger 4 is slow, so supercharging by the turbo supercharger is not performed and the intake pipe The pressure of the boat 31 is below atmospheric pressure, and the switching valve 35 communicates the passages 32 and 34. The pressure of the throttle boat 30 is atmospheric pressure during idling when the throttle valve 11 is closed, but when the throttle valve 11 is slightly opened. This results in a high negative pressure, which acts via the passages 32, 34 on the diaphragm chamber 28 of the actuating mechanism 22, the diaphragm 25 of which is forced into one diaphragm chamber 26 against the spring 28 or the spring 2'. By pulling the breaker plate 19 and rotating it in the advance direction of the arrow 20, the ignition timing is advanced, but the pressure on the vacuum side of the throttle boat 30 increases as the throttle valve 11 opens. Since the pressure gradually changes to approach atmospheric pressure, the breaker plate 19 is sequentially rotated in the retard direction by the spring 28 or 28'' as the throttle valve 11 opens.Therefore, the ignition timing by the breaker plate 19 is controlled by the spring. 28
Or 2: By setting the free length and spring constant, it is possible to control the characteristics as shown by the solid line in Figure 3, so the actual ignition timing in the engine is determined by the advance control amount due to the increase in engine speed, It is possible to automatically control to a value obtained by subtracting the delay control amount due to an increase in . In other words, in the non-turbo region, ignition timing is controlled in the same way as a normal engine without a turbocharger. and,
When the throttle valve 11 is further opened, the amount of exhaust gas increases and the turbo supercharger 4 is driven to rotate sufficiently and shifts to the supercharging state, and the pressure in the intake passage 9 decreases from atmospheric pressure as the turbo supercharging increases. Since the pressure gradually increases, when this pressure rise reaches a predetermined value, the switching valve 35 detects the turbocharging state and switches the passage 3
2 and 34 are switched to communicate with each other.

すると吸気管ボート31の過給圧は作動機構22におけ
るダイヤフラム室26に作用し、そのダイヤフラム25
はばね29,29″又は2『力に抗して、他方のダイヤ
フラム室27の方向に押圧され、ブレーカープレート1
9が矢印21の遅角方向に回転されることになり、従つ
て、ターボ過給域においてもターボ過給の増大に伴つて
点火時期をより遅れ方向・に制御でき、ばね29、29
″又は2『の自由長及びばね定数の設定によつて第3図
に2点鎖線で示すような特性に制御できるから、エンジ
ンにおける実際の点火時期は、前記ノンターボ時より過
給の増加に伴つて更に遅れ制御され、この制御に・よつ
てターボ過給に際しての着火遅れ期間の短縮・に対して
最高爆発圧力の点Dを、エンジンの最高出力が得られる
上死点後約10をの附近に保持できるのである。以上の
通り本発明によれば、ターボ過給式エンjジンにおけけ
る点火時期を、ノンターボ時からオンターボ時の全運転
域について的確に自動制御できるから、エンジンの圧縮
比を低く設定することなくターボ過給時におけるノッキ
ング及びエンジンの破損を確実に防止できると共に、全
運転域について最高出力と燃費向上が得られるのであ、
しかも、本発明における作動機構のダイヤフラムにはそ
の進角及び遅角方向に作動するばねを設けるだけで良い
から、構造が著しく簡単であるばかりか、故障が少なく
確実に作動できると共に、安価に提供でき、且つばねに
よつて制御特性をエンジンに合せて任意に設定できる効
果を有する。
Then, the supercharging pressure of the intake pipe boat 31 acts on the diaphragm chamber 26 in the actuating mechanism 22, and the diaphragm 25
The spring 29, 29'' or 2'' is pressed in the direction of the other diaphragm chamber 27 against the force of the breaker plate 1.
9 is rotated in the retarded direction of the arrow 21. Therefore, even in the turbocharging region, the ignition timing can be controlled in the retarded direction as the turbocharging increases, and the springs 29, 29
By setting the free length and spring constant of `` or 2'', it is possible to control the characteristics as shown by the two-dot chain line in Figure 3, so the actual ignition timing in the engine will change as the supercharging increases compared to the non-turbo mode. This control reduces the ignition delay period during turbocharging by setting the point D of maximum explosion pressure to about 10 minutes after top dead center, where the maximum output of the engine is obtained. As described above, according to the present invention, the ignition timing in a turbocharged engine can be accurately and automatically controlled over the entire operating range from non-turbo to on-turbo, so that the compression ratio of the engine can be maintained at It is possible to reliably prevent knocking and engine damage during turbocharging without having to set the engine too low, and it also provides maximum output and improved fuel efficiency in all operating ranges.
Moreover, since the diaphragm of the actuating mechanism in the present invention only needs to be provided with a spring that operates in the advance and retard directions, the structure is not only extremely simple, but it can operate reliably with few failures and can be provided at low cost. This has the effect that the control characteristics can be arbitrarily set according to the engine using the spring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混合気の着火燃焼の過程を示す圧力線図、第2
図はエンジンの回転数に対する進角特性を示す図、第3
図は負荷に対する進角特性を示す図、第4図は本発明実
施例装置の図、第5図は第4図の−視拡大断面図、第6
図及び第7図他の実施例の断面図である。 1・・・・・エンジン、4・・・・・・ターボ過給機、
5・・・排気タービン、6・・・・・・ブロワー圧縮機
、9・・・・・・吸気通路、10・・・・エアフローメ
ータ、11・・・・・・スカツトル弁、15・・・・デ
イストリビユータ、16・・・・カム軸、17・・・・
・・遠心進角機構、18・・・・・・ブレーカーアーム
、1『・・・・接点、19・・・・・・ブレーカープレ
ート、22・・・・・・作動機構、25・・・・・・ダ
イヤフラム、26・・・・・・ダイヤフラム室、28,
29,2『,29゛・・・・ばね、30・・・・・・ス
ロットルボート。
Figure 1 is a pressure diagram showing the process of ignition and combustion of air-fuel mixture;
The figure shows the advance angle characteristics with respect to the engine speed.
4 is a diagram showing the advance angle characteristics with respect to load, FIG. 4 is a diagram of the device according to the embodiment of the present invention, FIG.
FIG. 7 is a sectional view of another embodiment. 1... Engine, 4... Turbo supercharger,
5... Exhaust turbine, 6... Blower compressor, 9... Intake passage, 10... Air flow meter, 11... Scuttle valve, 15...・Distributor, 16...Camshaft, 17...
...Centrifugal advance mechanism, 18...Breaker arm, 1'...Contact, 19...Breaker plate, 22...Operating mechanism, 25... ...Diaphragm, 26...Diaphragm chamber, 28,
29,2',29゛...spring, 30...throttle boat.

Claims (1)

【特許請求の範囲】[Claims] 1 排気ターボ過給機におけるブロワー圧縮機の吸入側
上流に吸入空気量制御用スロットル弁を設けて成るター
ボ過給式エンジンにおいて、該スロットル弁の閉位置よ
り稍上流部にスロットルポートを設ける一方、前記エン
ジンにおける遠心進角機構付きデイストリビユータには
、そのブレーカープレートを進角・遅角方向に作動する
ダイヤフラム式の作動機構を設け、該作動機構のダイヤ
フラムにはその進角・遅角の両方向に作動するばねを設
けると共に、そのダイヤフラム室には前記スロットルポ
ートからの圧力及びブロワー圧縮機よりエンジンに至る
吸気通路からの圧力を導入したことを特徴とするターボ
過給式エンジンの点火時期制御装置。
1. In a turbocharged engine in which a throttle valve for controlling the amount of intake air is provided upstream on the suction side of a blower compressor in an exhaust turbocharger, a throttle port is provided slightly upstream from the closed position of the throttle valve; The distributor with a centrifugal advance mechanism in the engine is provided with a diaphragm-type actuation mechanism that operates the breaker plate in the advance and retard directions, and the diaphragm of the actuator has a diaphragm that operates the breaker plate in both the advance and retard directions. An ignition timing control device for a turbocharged engine, characterized in that the diaphragm chamber is provided with a spring that operates, and the pressure from the throttle port and the pressure from the intake passage leading from the blower compressor to the engine are introduced into the diaphragm chamber. .
JP54029580A 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines Expired JPS6052312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54029580A JPS6052312B2 (en) 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54029580A JPS6052312B2 (en) 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines

Publications (2)

Publication Number Publication Date
JPS55123365A JPS55123365A (en) 1980-09-22
JPS6052312B2 true JPS6052312B2 (en) 1985-11-18

Family

ID=12280030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54029580A Expired JPS6052312B2 (en) 1979-03-13 1979-03-13 Ignition timing control device for turbocharged engines

Country Status (1)

Country Link
JP (1) JPS6052312B2 (en)

Also Published As

Publication number Publication date
JPS55123365A (en) 1980-09-22

Similar Documents

Publication Publication Date Title
JPH0642357A (en) Combustion control device for engine
US4077373A (en) Ignition timing control device for an internal combustion engine
US11236684B1 (en) Two-stroke engine with supercharger
US4727719A (en) Apparatus for controlling inlet air flow in a turbocharged internal combustion engine
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP2994112B2 (en) Engine intake system
JPS6052312B2 (en) Ignition timing control device for turbocharged engines
JPS6052314B2 (en) Ignition timing control method for turbocharged engine
JP2519110B2 (en) Otto-cycle engine
JP2566232B2 (en) Valve timing controller for engine with supercharger
JPS6052313B2 (en) Ignition timing control device for turbocharged engines
JPS6052315B2 (en) Ignition timing control device for turbocharged engines
JP4019492B2 (en) Spark ignition internal combustion engine
JPS6235898Y2 (en)
JP2569076B2 (en) Ignition timing control device for supercharged engine
JPS6131145Y2 (en)
JPS6160981B2 (en)
US4499874A (en) System for controlling the ignition timing of an engine
JPH01318A (en) supercharged engine
JP2022136514A (en) engine
JPH0545790Y2 (en)
JPS6240546B2 (en)
JPH0134665Y2 (en)
JP3315468B2 (en) Intake device for engine with mechanical supercharger
JPS6030449Y2 (en) Boost pressure control device for diesel engine with supercharger