JPS605230A - Catalyst for treating combustion exhaust gas - Google Patents
Catalyst for treating combustion exhaust gasInfo
- Publication number
- JPS605230A JPS605230A JP58110688A JP11068883A JPS605230A JP S605230 A JPS605230 A JP S605230A JP 58110688 A JP58110688 A JP 58110688A JP 11068883 A JP11068883 A JP 11068883A JP S605230 A JPS605230 A JP S605230A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- alumina
- coating layer
- exhaust gas
- combustion exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Catalysts (AREA)
- Incineration Of Waste (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、長期活性持続型の燃焼排ガス処理触媒、より
詳細には石炭、木炭、ビート炭、ヤシがう炭などの天然
の炭化物及びそれらを原料としたコークス、煉炭、豆炭
、炭をはじめとする固形燃料などの燃焼時に粉塵を多く
伴なって排出される燃焼ガスをはじめとする燃焼ガス中
の一酸化炭素その他の成分を長期間に亘って有効に処理
することができる通気抵抗の少ない一体構造の燃焼排ガ
ス処理触媒に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a long-term activity-sustaining combustion exhaust gas treatment catalyst, more specifically, natural carbides such as coal, charcoal, beet charcoal, and coconut charcoal, as well as coke and briquettes made from them. To effectively treat carbon monoxide and other components in the combustion gas, including the combustion gas discharged with a large amount of dust during the combustion of solid fuels such as charcoal and charcoal, over a long period of time. This invention relates to a combustion exhaust gas treatment catalyst with an integrated structure and low ventilation resistance.
石炭、コークス、木炭、練炭、豆炭などは、固形燃料と
してストーブ、コンロ、火ばち、こたつ。Coal, coke, charcoal, briquettes, charcoal, etc. are used as solid fuels for stoves, stoves, hibachi, and kotatsu.
あんか、オンドルなどの暖房器や炊事用の熱源として使
用されているが、燃焼ガス中に含まれる一酸化炭素によ
る中毒をしばしば起すことが問題となっている。It is used as a heat source for heaters such as Anka and Ondol and for cooking, but the problem is that it often causes poisoning due to the carbon monoxide contained in the combustion gas.
かかる固体燃料は、気体及び液体燃料と異なシ、成分と
して、燃焼すると粉塵になり易い無機化合物の揮発性成
分、昇華性成分、灰分などを多く含んでおり、燃焼ガス
中には煤塵、ヒユーム、フライアッシュなどの概ね0.
01乃至100μmの粒度の粉塵が多く含まれている。Such solid fuels contain many volatile components of inorganic compounds that easily become dust when burned, sublimable components, ash, etc., which are different from gas and liquid fuels, and the combustion gas contains soot, fumes, Generally 0.
It contains a large amount of dust with a particle size of 0.01 to 100 μm.
例えば、煉炭の場合には、製法や原料の質にもよるが、
燻焼ガスは粉塵として、主にナトリウム、カリウム、カ
ルシウム、鉛、亜鉛、錫、アンチモン、ガリウム、珪素
、砒素などの酸化物、ハロケ゛ン化物、硫化物。For example, in the case of briquettes, depending on the manufacturing method and quality of raw materials,
Smoking gas is dust that mainly contains oxides, halides, and sulfides of sodium, potassium, calcium, lead, zinc, tin, antimony, gallium, silicon, and arsenic.
硫酸塩などの一部又は全部を含んでおり、これらの化合
物が酸化触媒の表面を直接嫁い、触媒内≠#成分の活性
表面積を短時間のうちに減少ぜしめることによシ触媒の
性能を有意に低下せしめることが知られている。Contains some or all of sulfates, etc., and these compounds directly impregnate the surface of the oxidation catalyst, reducing the active surface area of # components in the catalyst in a short period of time, thereby improving the performance of the catalyst. It is known to significantly reduce
しかるに、これら固形燃料の燃焼ガスに含まれる、例え
ば、−酸化炭素の濃度を低減させる方法として、従来、
コンロなどの燃焼器の上部の燃焼ガス通路に二次空気を
混入せしめ、燃焼がスをセラミックス、耐熱金属などの
材料でつくった反応器に通して、燃焼ガス中の一酸化炭
素濃度を低減させるという無触媒による一酸化炭素の除
去方法、並びに、上記反応器の代わシに一酸化炭素を酸
化するのに有効な酸化触媒、特に、−酸化炭素に対し低
温での酸化活性が著しい白金又はノjラジウム触媒をそ
のままの形態で使用する方法が実施されている。However, as a method for reducing the concentration of, for example, carbon oxide contained in the combustion gas of these solid fuels, conventionally,
Secondary air is mixed into the combustion gas passage at the top of a combustor such as a stove, and the combustion gas is passed through a reactor made of materials such as ceramics and heat-resistant metals to reduce the concentration of carbon monoxide in the combustion gas. This non-catalytic method for removing carbon monoxide, as well as an oxidation catalyst that is effective for oxidizing carbon monoxide in place of the above reactor, especially platinum or platinum, which has remarkable oxidation activity at low temperatures with respect to -carbon oxide. j Methods have been implemented in which radium catalysts are used in their raw form.
しかしながら、無触媒による除去方法は、ガス温度が6
30℃堤上の高温にならないと一酸化炭素を除去するこ
とができず、また、高温における除去率も低いという欠
点を有している。一方、酸化触媒による方法は、上記し
たように、燃焼ガス中の粉塵に含まれる触媒毒成分が触
媒メタル成分の活性部分を直接被覆して、−酸化炭素を
酸化除去する能力を喪失せしめるという欠点を有してい
る。かかる点に対処するため、−酸化炭素に対し特に低
温で活性を有する白金又は・ぐラジウム触媒を高担持メ
タル濃度で使用するという方法が提案されているが、か
かる方法は高価な貴金属を多量に用いるという欠点があ
り、総じて比較的安価な固体燃料の燃焼装置には適さず
、実用化されるには至っていない。However, in the non-catalytic removal method, the gas temperature is 6.
It has the disadvantage that carbon monoxide cannot be removed unless the temperature reaches a high temperature of 30° C., and the removal rate at high temperatures is also low. On the other hand, as mentioned above, the method using an oxidation catalyst has the drawback that the catalyst poison component contained in the dust in the combustion gas directly coats the active part of the catalyst metal component, causing the loss of the ability to oxidize and remove carbon oxides. have. To address this issue, methods have been proposed in which platinum or radium catalysts, which are particularly active against carbon oxides at low temperatures, are used at high metal concentrations; however, such methods require large amounts of expensive precious metals. Generally speaking, it is not suitable for relatively inexpensive solid fuel combustion devices, and has not been put into practical use.
本発明は、従来技術が有する上記した欠点に鑑みてなさ
れたものである@
従って、本発明の目的は、粉塵を多く伴なって排出され
る固体燃料の燃焼ガスをはじめとする燃焼排ガスを長期
間に亘って有効に処理することのできる燃焼排ガス処理
触媒を提供することにある。The present invention has been made in view of the above-mentioned drawbacks of the prior art. Therefore, an object of the present invention is to reduce combustion exhaust gas, including solid fuel combustion gas that is emitted with a large amount of dust, for a long time. It is an object of the present invention to provide a combustion exhaust gas treatment catalyst that can effectively treat combustion exhaust gas over a period of time.
本発明によれば、触媒層と該触媒層の表面に形成された
熱安定性を有する酸化物からなる被覆層とを備えてなる
燃焼排ガス処理触媒が提供されている。According to the present invention, there is provided a combustion exhaust gas treatment catalyst comprising a catalyst layer and a coating layer made of a thermally stable oxide formed on the surface of the catalyst layer.
以下、本発明を本発明の一実施例に係る一酸化炭素酸化
除去触媒に関して説明する。Hereinafter, the present invention will be explained regarding a carbon monoxide oxidation removal catalyst according to an embodiment of the present invention.
煉炭のような安価な固形燃料の燃焼ガス中の一酸化炭素
を除去するのに酸化触媒を使用する上記した従来の方法
は、担体として、コーゾェライト(2Mg0・2At2
03・5SiO2)、ムライト(3At205・2S
10□)。The above-mentioned conventional method of using an oxidation catalyst to remove carbon monoxide from the combustion gas of inexpensive solid fuels such as briquettes uses corzoerite (2Mg0.2At2) as a carrier.
03.5SiO2), mullite (3At205.2S
10□).
アルミナ(At203)#ジルコン(zro2−sto
2) 、ジルコニア(Zr02) 、アルミニウム・チ
タネート(At203・Tl02) 、スピネル(Mg
O−At20.) 、スポンノユメン(L1□0・At
203・48102)、シリコンカーバイド(stc)
などのセラミックδ:鉄、ステンレスなどの耐熱金属:
あるいは耐熱繊維によシ形成したノ・ニカム構全体、多
孔体あるいは網目状構造体を用い、この担体にBET表
面積を大きくし触媒メタル成分を担持し易くする目的で
、BET表面積の大きい活性アルミナやシリカを被覆し
、更にこの活性表面層に触媒メタル成分として一酸化炭
素の酸化除去に有効な触媒V、特に低温活性の著しい白
金又はパラジウムを担持せしめて々る構成の触媒を使用
し、燃焼ガスを通過せしめるようにしている。Alumina (At203) #Zircon (zro2-sto
2), zirconia (Zr02), aluminum titanate (At203/Tl02), spinel (Mg
O-At20. ), Sponnoyumen (L1□0・At
203/48102), silicon carbide (stc)
Ceramics such as δ: Heat-resistant metals such as iron and stainless steel:
Alternatively, the entire structure, porous body, or network structure formed of heat-resistant fibers may be used, and in order to increase the BET surface area on this carrier and make it easier to support the catalytic metal component, activated alumina, which has a large BET surface area, or a A catalyst is coated with silica, and this active surface layer is further supported with catalyst V, which is effective in oxidizing and removing carbon monoxide, as a catalyst metal component, especially platinum or palladium, which has remarkable low-temperature activity. I am trying to let it pass.
かかる従来技術で用いられている酸化触媒は、多孔性で
一体構造の担体のBET表面槓が1グラム重貸当シ1.
Om2以下であって、このままでは触媒成分を担持出
来ないので、担体の表面に活性アルミナを被覆している
が、このような被覆を施こしてもBET表面積は1グラ
ム重景当シ概ね15m2以下である。また、この活性ア
ルミナの表面被覆の場合、窒素吸着法による細孔分布測
定法による細孔直径300X以下のミクロボーアの存在
蓋も、酸化触媒全体で1グラム重量当、90.01:
ml以下である。このように、従来の酸、化触媒は、ア
ルミナ被覆層と触媒メタル成分とが同一層でメタル成分
が表面に露出していること、BET表面積が小さいこと
、300X以下の径の細孔の容積が少なすぎることなど
が原因で、燃焼ガスに含まれる粉塵による触媒メタル成
分及び活性表面積の襠覆を防止することができないとい
う欠点を有している。The oxidation catalyst used in the prior art has a porous, monolithic support with a BET surface weight of 1 gram.
Om2 or less, and the catalyst component cannot be supported as it is, so the surface of the carrier is coated with activated alumina, but even with such a coating, the BET surface area is approximately 15 m2 or less per 1 gram heavy surface area. It is. In addition, in the case of this activated alumina surface coating, the presence of microbore with a pore diameter of 300X or less as determined by the pore distribution measurement method using the nitrogen adsorption method was 90.01 per gram weight for the entire oxidation catalyst.
ml or less. In this way, conventional acid conversion catalysts have the following problems: the alumina coating layer and the catalyst metal component are in the same layer and the metal component is exposed on the surface, the BET surface area is small, and the volume of pores with a diameter of 300X or less This has the disadvantage that it is not possible to prevent the catalyst metal components and active surface area from being covered by dust caused by the dust contained in the combustion gas.
本発明者は、かかる従来技術の欠点に鑑み、鋭意検討し
た結果、固体燃料の燃焼ガス中の粉塵の粒径は、上記し
たように、概ね0.01μm(xooX)乃至100μ
mであシ、一方、反応に関与する一酸化炭素、酸素、二
酸化炭素、水蒸気などの分子断面積はいずれも20X2
(平方オングストローム)以下であるから、触媒活性メ
タル成分の表面に100X以下の細孔を豊富に含んでい
る熱安定性のある酸化物を被覆して、粉塵をこの被覆層
で捉えれば、燃焼ガス成分は細孔を通過して触媒メタル
成分の表面で反応が行なわれるので、触媒メタル成分は
長期間に亘って触媒活性を有効に保持することができる
という事実を知得し、本発明を完成した。In view of the shortcomings of the prior art, the inventors of the present invention have made extensive studies and found that the particle size of dust in the combustion gas of solid fuel is approximately 0.01 μm (xooX) to 100 μm, as described above.
On the other hand, the molecular cross-sections of carbon monoxide, oxygen, carbon dioxide, water vapor, etc. involved in the reaction are all 20×2
(square angstrom) or less, therefore, if the surface of the catalytically active metal component is coated with a thermally stable oxide containing abundant pores of 100X or less and dust is captured by this coating layer, the combustion gas The present invention was completed based on the knowledge that the catalytic metal component can effectively maintain its catalytic activity over a long period of time because the components pass through the pores and react on the surface of the catalytic metal component. did.
本発明において使用することのできる熱安定性のある酸
化物としてはアルミナが適している。アルミナとしては
、例えば、γ−アルミナ、η−アルミナ、δ−アルミナ
、に−アルミナ、χ−アルミナ、θ−アルミナを使用す
ることができるが、アルミナゾル、水酸化アルミニウム
、硝酸アルミニウムでの焼成によシ形成される無定形の
アルミナも使用に適する。この場合には、被覆層のアル
ミナ成分のBET表面積がアルミナ1グラム重量当り1
00 m2以上であシ、かつ、窒素吸着法による細孔分
布測定法による細孔直径で100X以下のミクロボーア
の細孔容積がアルミナ1グラム重量当p Q、 2 m
1以上であるのが好ましい。更に、熱安定性のちる酸化
物としては、かかるアルミナと他の熱安定性酸化物との
混合物も使用することができる。かかる他の酸化物”と
しては、シリカ(StO□)チタニア(TiO□)、セ
リア(CeO2)−ジルコニア(Z r O2)がある
。かかる酸化物はアルミナに対し、M址比で0.1乃至
0.5添加することができる。これらの酸化物は、それ
ぞれ市販品を使用することができるが、シリカゾル、チ
タン化合物、セリウム化合物及びジルコニウム化合物を
それぞれ熱分解温度で焼成すると形成される13ET表
面積の比較的大きい酸化物も使用することができる。こ
れら酸化物のBIT表面積は1グラム重ダ当シ50m2
以上が好ましい。あるいは、かかる酸化物の混合体は、
水溶性のチタン、セリウム又はジルコニウム化合物をア
ルミナとともにゼールミルに装填し、混合粉砕してアル
ミナに担持させたものを酸化触媒に被覆した後に焼成し
、最終的に酸化物に形成することもできる。Alumina is a suitable thermally stable oxide that can be used in the present invention. As the alumina, for example, γ-alumina, η-alumina, δ-alumina, ni-alumina, χ-alumina, and θ-alumina can be used. Formed amorphous alumina is also suitable for use. In this case, the BET surface area of the alumina component of the coating layer is 1 gram per gram of alumina.
00 m2 or more, and the pore volume of microbore with a pore diameter of 100X or less as determined by pore distribution measurement method using nitrogen adsorption method is pQ, 2 m per 1 gram weight of alumina.
It is preferable that it is 1 or more. Furthermore, as the thermally stable oxide, a mixture of such alumina and other thermally stable oxides can also be used. Examples of such other oxides include silica (StO□), titania (TiO□), and ceria (CeO2)-zirconia (ZrO2).Such oxides have an M area ratio of 0.1 to alumina. Commercially available products can be used for each of these oxides. Relatively large oxides can also be used.The BIT surface area of these oxides is 50 m2 per gram weight.
The above is preferable. Alternatively, a mixture of such oxides is
It is also possible to load a water-soluble titanium, cerium or zirconium compound together with alumina into a Zeel mill, mix and grind the compound, support it on alumina, coat it on an oxidation catalyst, and then sinter it to finally form an oxide.
熱安定性のある酸化物あるいはその主成分を形成するア
ルミナは、その表面に粉塵を沈積さる場を多く提供する
ことができるように、BET表面積及び細孔容積が大き
いことが好都合であり、BET表面積は1グラム重量当
9100 m”以上、また100X以下の径の細孔の容
積は1グラム重h1−当p Q、 2 m1以上である
ことが好ましい。It is advantageous for a thermally stable oxide or alumina, which forms its main component, to have a large BET surface area and a large pore volume so as to provide many places for dust to be deposited on its surface. Preferably, the surface area is at least 9100 m'' per gram weight, and the volume of pores with a diameter of 100X or less is at least pQ,2 m1 per gram weight h1-.
かかる熱安定性のある酸化物は、種々の方法によシ酸化
触媒に被着することができる。例えば、界面活性剤の水
溶液に上記したようfilt化物又はその混合物を入れ
て?−ルミルで50時間以上粉砕処理を行ない、平均粒
径が10μm以下のスラリ全形成し、次いでとのス2り
に、例えば担体に担持した酸化触媒を浸漬した後空気流
を利用して余分のスラリを除去した後に乾燥させ、最後
に500℃以上の温度で焼成することによシ、触媒を酸
化物の層で被覆することができる。この場合、被覆層の
厚さは、スラリ中の被覆層成分の濃度あるいはスラリの
粘度を水で調整することによ多制御することができる。Such thermally stable oxides can be deposited on the silicon oxidation catalyst by a variety of methods. For example, by adding a filtrate or a mixture thereof to an aqueous solution of a surfactant? - Perform pulverization treatment in Lumir for more than 50 hours to completely form a slurry with an average particle size of 10 μm or less, and then immerse, for example, an oxidation catalyst supported on a carrier in a slurry, and then remove excess by using an air flow. The catalyst can be coated with a layer of oxide by drying after removal of the slurry and final calcination at temperatures above 500°C. In this case, the thickness of the coating layer can be controlled by adjusting the concentration of coating layer components in the slurry or the viscosity of the slurry with water.
かくして形成された酸化触媒の一例が第1図に拡大して
示されている。第1図において、参照番号1はハニカム
構造の担体、2は触媒層、そして3は酸化物被覆層を示
す。担体1は、従来の触媒と同様に、コージェライト、
ムライト、アルミナ。An example of the oxidation catalyst thus formed is shown enlarged in FIG. In FIG. 1, reference numeral 1 indicates a honeycomb structure carrier, 2 a catalyst layer, and 3 an oxide coating layer. Support 1 is made of cordierite, similar to conventional catalysts.
Mullite, alumina.
ジルコン、ジルコニア、アルミニウム・チタネート、ス
ピネル、スIンジュメン、シリコン・カーバイドなどの
セラミックス;鉄、ステンレスなどの耐熱金属;あるい
は耐熱繊維で形成したハニカム構造体、多孔体あるいは
網目状、構造体とすることができる。Ceramics such as zircon, zirconia, aluminum titanate, spinel, stainless steel, and silicon carbide; heat-resistant metals such as iron and stainless steel; or honeycomb structures, porous bodies, or mesh structures formed from heat-resistant fibers. I can do it.
本発明における酸化物被覆層は酸化触媒の表面に15乃
至60μmの厚さをもって形成される。The oxide coating layer in the present invention is formed on the surface of the oxidation catalyst to a thickness of 15 to 60 μm.
15μmよシも薄くなると触媒の延命効果が得にくくな
シ、一方60μmを越えにつれて被覆層成形あるが、触
媒断面の金属顕微鏡観察あるいは走査型電子顕微鏡観察
によっても測定することもできる。When the thickness becomes thinner than 15 μm, it becomes difficult to obtain the effect of prolonging the life of the catalyst.On the other hand, as the thickness exceeds 60 μm, there is formation of the coating layer, which can also be measured by observing the cross section of the catalyst with a metallurgical microscope or a scanning electron microscope.
以上のように、酸化物被覆層を表面に備えてなる本実施
例の酸化触媒は、練炭の燃焼排ガスのような粉塵を多く
含む燃焼ガスに対しても、その中に含まれる一酸化炭素
を長期間に亘って保持することができるのである。これ
は、表面に被覆した高BET表面積を有する被覆層忙よ
シ粉塵が捉えられ、粉塵中の触媒毒物質の触媒表面での
沈積が防止されることによるものである。As described above, the oxidation catalyst of this example, which is provided with an oxide coating layer on the surface, can remove carbon monoxide contained in combustion gas containing a lot of dust, such as combustion exhaust gas of briquettes. It can be maintained for a long period of time. This is because the dust is captured by the coating layer having a high BET surface area, which prevents catalyst poisonous substances in the dust from being deposited on the catalyst surface.
以下、本発明を実施例によシ更KM明する。Hereinafter, the present invention will be further explained with reference to examples.
実施例
コージェライト(2Mg0・2At203・58 to
□)製のハニカム構造の担体にγ−アルミナを被覆し、
その上に/4′ラジウムを担持させてなる公知の構成の
一酸化炭素触媒(従来例1)と、この従来例1のものの
触媒面に厚さが14μmのγ−アルミナ被覆を施こして
なる公知の構成の触媒(従来例2)とを形成した。更に
、従来例1のものの表面に上記した方法でγ−アルミナ
被覆層をそれぞれ21μm135μm及び60μmの厚
さに形成してなる本発明に係る酸化触媒をつくった。こ
れらの触媒の物理的特性は第1表に示す通シであった。Example cordierite (2Mg0・2At203・58 to
□) coated with γ-alumina on a honeycomb structure carrier made of
A carbon monoxide catalyst having a known structure (conventional example 1) with /4' radium supported thereon, and a γ-alumina coating with a thickness of 14 μm applied to the catalyst surface of this conventional example 1. A catalyst having a known configuration (Conventional Example 2) was formed. Further, oxidation catalysts according to the present invention were prepared by forming γ-alumina coating layers on the surface of Conventional Example 1 to thicknesses of 21 μm, 135 μm, and 60 μm, respectively, by the method described above. The physical properties of these catalysts were as shown in Table 1.
第 1 表
※l・・・パラジウム濃度は、触媒容置11当シのノ母
ラジウム担持グラム重量である。Table 1*l...The palladium concentration is the weight in grams of radium supported on catalyst container 11.
夏2・・・アルミナ被覆層の厚さは、触媒の断面をX線
マイクロアナライザ(島津製作所(株)製のEMX−8
M7 ) f:用いてパラジウム及びアルミニウムでス
キャンし、パラジウムが含☆れるアルミナ層と新たに表
面に被覆したア化ミナ層とを区別して測定した。Summer 2...The thickness of the alumina coating layer was determined by measuring the cross section of the catalyst using an X-ray microanalyzer (EMX-8 manufactured by Shimadzu Corporation).
M7) f: was used to scan with palladium and aluminum, and measurements were made to distinguish between the alumina layer containing palladium and the aminum oxide layer newly coated on the surface.
※8・・・細孔容積と分布は、窒素吸着による測定器で
あるカルロエルバ(Carloerba)社製のツーブ
トマチック(SOAPTOMATIC) 1670−3
型を使用して測定した。*8... Pore volume and distribution are measured using SOAPTOMATIC 1670-3 manufactured by Carloerba, which is a measuring instrument based on nitrogen adsorption.
Measured using a mold.
粉塵全長く含む燃焼排ガスとして練炭燃焼ガスを使用し
、第2図に示す装置を用いた一酸化炭素長期処理試験に
上記各触媒を供した。第2図の装置において、参照番号
4は触媒、5は燻炭、6は一次空気導入口、7は二次空
気導入口である。使用した燻炭5は、径が1501m、
高さが140++Ims重量が3.4乃至3.5 kg
で、発熱量は3200乃至4600kcatであった。Each of the catalysts described above was subjected to a long-term carbon monoxide treatment test using the apparatus shown in FIG. 2, using briquette combustion gas as the combustion exhaust gas containing dust. In the apparatus shown in FIG. 2, reference numeral 4 is a catalyst, 5 is charcoal, 6 is a primary air inlet, and 7 is a secondary air inlet. The smoked charcoal 5 used had a diameter of 1501 m.
Height: 140++Ims Weight: 3.4-3.5 kg
The calorific value was 3,200 to 4,600 kcat.
かかる燻炭5を2段重ねにして燃焼させ、下段の燻炭が
燃え尽きると、上段の燃焼中の燻炭を下段にするととも
に灰になった燻炭を捨て、新たな燻炭を上段にする操作
を繰返分析は堀場製作所fJ MEXA−201F非分
散型赤外(NDIR)−酸化炭素分析計を使用して行な
った。試験結果は第3図に示す通シであった。The smoky charcoal 5 is stacked in two layers and burned, and when the smoky charcoal in the lower tier burns out, the smoldering charcoal in the upper tier is moved to the lower tier, the ashed smoldering charcoal is discarded, and a new smoldering charcoal is placed in the upper tier. The analysis was performed using a Horiba fJ MEXA-201F non-dispersive infrared (NDIR)-carbon oxide analyzer. The test results were as shown in Figure 3.
被覆層のない従来の触媒(従来例1)は燻炭排ガス中の
粉塵が触媒表面に付着し、触媒活性を急激に失なった。In the conventional catalyst without a coating layer (Conventional Example 1), dust in the smoky charcoal exhaust gas adhered to the catalyst surface, causing a rapid loss of catalytic activity.
また、γ−アルミナ被覆層を14μmの厚さに形成した
触媒(従来例2)も寿命の延長効果が不充分であった。Further, the catalyst in which the γ-alumina coating layer was formed to a thickness of 14 μm (Conventional Example 2) also had an insufficient effect of extending the life.
これに対し、本発明の触媒はいずれも1600時間以上
の長期使用にも充分耐え、実用上の問題は何ら生じてい
ない。On the other hand, all the catalysts of the present invention can withstand long-term use of 1,600 hours or more without causing any practical problems.
本発明の被覆層を有する酸化触媒と従来の酸化触媒との
間の触媒活性に関するかかる大きな差は、前者の触媒に
おいて表層に触媒メタル成分が全く存在せず、被覆層形
成成分のみが存在することによるものである。The large difference in catalytic activity between the oxidation catalyst having the coating layer of the present invention and the conventional oxidation catalyst is due to the fact that in the former catalyst, no catalytic metal component is present in the surface layer, and only the coating layer forming component is present. This is due to
以上、本発明の燃焼排ガス処理触媒を、主として、その
一実施例である一酸化炭素酸化触媒に関して説明してき
たが、本発明はかかる酸化触媒に限定されるものではな
い。例えば、本発明の燃焼排ガス処理触媒は、粉塵を多
く含む排ガス中の炭化水素、悪臭発生有機物質などの触
媒燃焼による浄化又は酸化による熱回収用の触媒として
も具現できるものである。Although the combustion exhaust gas treatment catalyst of the present invention has been mainly described with respect to a carbon monoxide oxidation catalyst as an example thereof, the present invention is not limited to such an oxidation catalyst. For example, the combustion exhaust gas treatment catalyst of the present invention can be implemented as a catalyst for purifying hydrocarbons, malodor-producing organic substances, etc. in exhaust gas containing a large amount of dust by catalytic combustion, or for recovering heat by oxidation.
第1図は本発明に係る燃焼排ガス処理触媒の一実施例を
示す部分拡大断面図、第2図は本発明に係る触媒と従来
の触媒の性能を比較するのに使用した試験装置の概略断
面図、第3図は比較試験結果を示すグラフ図である。
1・・・担体、2・・・触媒層、3・・・被覆層、4・
・・触紘5・・・燻炭、6・・・−次空気導入口、7・
・・二次空気導入口。
代理人 弁理士 松 本 英 1々
Oノ234567B
燻炭ス然焼埼間 (村間)Fig. 1 is a partially enlarged cross-sectional view showing an embodiment of the combustion exhaust gas treatment catalyst according to the present invention, and Fig. 2 is a schematic cross-sectional view of a test device used to compare the performance of the catalyst according to the present invention and a conventional catalyst. 3 are graphs showing comparative test results. DESCRIPTION OF SYMBOLS 1...Carrier, 2...Catalyst layer, 3...Coating layer, 4...
・Touch 5...Smoky charcoal, 6...Next air inlet, 7.
...Secondary air inlet. Agent Patent Attorney Hide Matsumoto 11Ono234567B Smoked Charcoal Suzenyaki Saima (Murama)
Claims (1)
を有する酸化物からなる被覆層とを備えてなる燃焼排ガ
ス処理触媒。 (2)前記触媒層は白金、・母ラジウム及び白金とパラ
ジウムとの混合物よりなる群から選ばれる物質によ多形
成されかつ担体に担持されており、しかも前記被覆層は
アルミナ又はアルミナとシリカ。 チタニア、セリア及びジルコニアよりなる群から選ばれ
た少なくとも一種類の酸化物との混合物から形成される
ことを特徴とする特許請求の範囲第1項に記載の燃焼排
ガス処理触媒。 (3)前記担体はセラ叱ツクス、耐熱金属及び耐熱無機
繊維よシなる群から選ばれる材料で形成されたハニカム
構造体、多孔体又は網目状構造体であることを特徴とす
る特許請求の範囲第2項に記載の燃焼排ガス処理触媒。 (4)前記被覆層は厚さが19乃至60μmであること
を特徴とする特許請求の範囲第1項又は第2項に記載の
燃焼排ガス処理触媒。 (5) 前記被覆層は被覆層と触媒層の総BET表面積
が触媒1グラム重量当1) 15 mzW上となるよう
に被覆されることを特徴とする特許請求の範囲第法によ
る細孔分布で細孔直径が300X以下のミクロボーアの
細孔容積が触媒1グラム重量当り0.02m1以上とな
るように前記被覆層を被覆することを特徴とする特許請
求の範囲第1項又は第2項に記載の燃焼排ガス処理触媒
。 (7) 前記被覆層のアルミナはアルミナ成分のBET
表面積がアルミナ1グラム重量当F) 100 m”以
上であシ、かつ、窒素吸着法による細孔分布測定法によ
る細孔直径で100X以下のミクロボーアの細孔容積が
アルミナ1グラム重世当り0.2 m1以上であること
を特徴とする特許請求の範囲第1項又は第2項に記載の
燃焼排ガス処理触媒。[Scope of Claims] (1) A combustion exhaust gas treatment catalyst comprising a catalyst layer and a coating layer made of a thermally stable oxide formed on the surface of the catalyst layer. (2) The catalyst layer is made of a material selected from the group consisting of platinum, mother radium, and a mixture of platinum and palladium, and is supported on a carrier, and the coating layer is alumina or alumina and silica. The combustion exhaust gas treatment catalyst according to claim 1, characterized in that it is formed from a mixture with at least one oxide selected from the group consisting of titania, ceria, and zirconia. (3) Claims characterized in that the carrier is a honeycomb structure, a porous body, or a network structure formed of a material selected from the group consisting of ceramics, heat-resistant metals, and heat-resistant inorganic fibers. The combustion exhaust gas treatment catalyst according to item 2. (4) The combustion exhaust gas treatment catalyst according to claim 1 or 2, wherein the coating layer has a thickness of 19 to 60 μm. (5) The coating layer is coated so that the total BET surface area of the coating layer and the catalyst layer is 1) 15 mzW or more per 1 gram of catalyst weight. Claim 1 or 2, characterized in that the coating layer is applied so that the pore volume of the microbore having a pore diameter of 300X or less is 0.02 m1 or more per gram weight of the catalyst. combustion exhaust gas treatment catalyst. (7) The alumina of the coating layer is a BET of alumina component.
The surface area is 100 m" or more per gram of alumina, and the pore volume of microbore with a pore diameter of 100X or less as measured by pore distribution measurement using nitrogen adsorption is 0.0 m" per gram of alumina. The combustion exhaust gas treatment catalyst according to claim 1 or 2, wherein the combustion exhaust gas treatment catalyst has a volume of 2 m1 or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58110688A JPS605230A (en) | 1983-06-20 | 1983-06-20 | Catalyst for treating combustion exhaust gas |
KR1019830002950A KR860002188B1 (en) | 1983-06-20 | 1983-06-29 | Catalysts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58110688A JPS605230A (en) | 1983-06-20 | 1983-06-20 | Catalyst for treating combustion exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS605230A true JPS605230A (en) | 1985-01-11 |
Family
ID=14541922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58110688A Pending JPS605230A (en) | 1983-06-20 | 1983-06-20 | Catalyst for treating combustion exhaust gas |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS605230A (en) |
KR (1) | KR860002188B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63290314A (en) * | 1987-05-22 | 1988-11-28 | Ngk Insulators Ltd | Method of processing combustion furnace waste gas |
US5898016A (en) * | 1994-11-22 | 1999-04-27 | Cataler Industrial Co., Ltd. | Metallic support catalyst |
CN103742234A (en) * | 2013-11-26 | 2014-04-23 | 南通华新环保设备工程有限公司 | Small automobile tail gas purifier |
CN104307518A (en) * | 2014-11-05 | 2015-01-28 | 华玉叶 | Preparation method for palladium-doped cerium-zirconium composite oxide |
WO2015087873A1 (en) * | 2013-12-13 | 2015-06-18 | 株式会社キャタラー | Exhaust purification catalyst |
CN114173923A (en) * | 2019-07-25 | 2022-03-11 | 赢创运营有限公司 | Off-site conditioning of catalyst compositions in preparation for sulfonation processes |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4826207B2 (en) * | 2005-10-28 | 2011-11-30 | 日産自動車株式会社 | Exhaust gas purification catalyst and method for producing exhaust gas purification catalyst |
JP2008168278A (en) * | 2006-12-15 | 2008-07-24 | Nissan Motor Co Ltd | Catalyst for cleaning exhaust gas and its manufacturing method |
CN111229005A (en) * | 2020-03-02 | 2020-06-05 | 南京工程学院 | Device and method for purifying and removing toxic smoke of 3D printing equipment |
-
1983
- 1983-06-20 JP JP58110688A patent/JPS605230A/en active Pending
- 1983-06-29 KR KR1019830002950A patent/KR860002188B1/en not_active IP Right Cessation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63290314A (en) * | 1987-05-22 | 1988-11-28 | Ngk Insulators Ltd | Method of processing combustion furnace waste gas |
JPH0463288B2 (en) * | 1987-05-22 | 1992-10-09 | Ngk Insulators Ltd | |
US5898016A (en) * | 1994-11-22 | 1999-04-27 | Cataler Industrial Co., Ltd. | Metallic support catalyst |
CN103742234A (en) * | 2013-11-26 | 2014-04-23 | 南通华新环保设备工程有限公司 | Small automobile tail gas purifier |
WO2015087873A1 (en) * | 2013-12-13 | 2015-06-18 | 株式会社キャタラー | Exhaust purification catalyst |
JPWO2015087873A1 (en) * | 2013-12-13 | 2017-03-16 | 株式会社キャタラー | Exhaust gas purification catalyst |
CN104307518A (en) * | 2014-11-05 | 2015-01-28 | 华玉叶 | Preparation method for palladium-doped cerium-zirconium composite oxide |
CN114173923A (en) * | 2019-07-25 | 2022-03-11 | 赢创运营有限公司 | Off-site conditioning of catalyst compositions in preparation for sulfonation processes |
Also Published As
Publication number | Publication date |
---|---|
KR850000007A (en) | 1985-02-25 |
KR860002188B1 (en) | 1986-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4501012B2 (en) | Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method | |
ES2458499T5 (en) | Method for preparing a NOx storage material | |
EP0960649B1 (en) | Exhaust gas clean-up catalyst | |
JP2009082915A (en) | Elimination of particles from exhaust gas of internal combustion engine operated mainly by stoichiometric-air/fuel mixture | |
JPWO2007043442A1 (en) | Particulate combustion catalyst, particulate filter and exhaust gas purification device | |
JP2009525161A (en) | Diesel exhaust system and catalyst composition therefor | |
BRPI1008393B1 (en) | engine exhaust gas catalyst composite, and method and system for treating a diesel engine discharge current | |
CN108602051A (en) | Multilayer nitrogen oxide storage catalyst with manganese | |
JP2007503977A (en) | Diesel particulate filter carrying a catalyst with improved thermal stability | |
CN108778490A (en) | Catalyst for nitrogen oxides reduction | |
US5102853A (en) | Three-way catalyst for automotive emission control | |
JPS605230A (en) | Catalyst for treating combustion exhaust gas | |
JP4238500B2 (en) | Exhaust gas purification catalyst | |
TW201634106A (en) | Catalyzed ceramic candle filter and method of cleaning process off- or exhaust gases | |
JP2021531956A (en) | High dopant carrier containing improved TWC catalyst | |
JPH11123306A (en) | Filter for cleaning gaseous emission and apparatus for cleaning gaseous emission in which the filter is used | |
JPH035851B2 (en) | ||
US6261990B1 (en) | Composite catalyst for purification of exhaust gas | |
JPS60202745A (en) | Catalyst for high-temperature combustion | |
JP4324018B2 (en) | Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method | |
JP5544921B2 (en) | Exhaust gas purification catalyst | |
JP4298071B2 (en) | Exhaust gas purification material and method for producing the same | |
JP6639309B2 (en) | Exhaust gas purification catalyst | |
Promhuad et al. | Soot Oxidation in Diesel Exhaust on Silver Catalyst Supported by Alumina, Titanium and Zirconium | |
JP5956496B2 (en) | Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same |