JPS605206B2 - Electrical equipment coil and its manufacturing method - Google Patents

Electrical equipment coil and its manufacturing method

Info

Publication number
JPS605206B2
JPS605206B2 JP54091382A JP9138279A JPS605206B2 JP S605206 B2 JPS605206 B2 JP S605206B2 JP 54091382 A JP54091382 A JP 54091382A JP 9138279 A JP9138279 A JP 9138279A JP S605206 B2 JPS605206 B2 JP S605206B2
Authority
JP
Japan
Prior art keywords
coil
insulator
resin
bodies
mold resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54091382A
Other languages
Japanese (ja)
Other versions
JPS5615011A (en
Inventor
恒利 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54091382A priority Critical patent/JPS605206B2/en
Publication of JPS5615011A publication Critical patent/JPS5615011A/en
Publication of JPS605206B2 publication Critical patent/JPS605206B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating

Description

【発明の詳細な説明】 この発明は電気機器コイルおよびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical equipment coil and a method of manufacturing the same.

従来変圧器等の樹脂モールドコイルの製造方法として、
コイル秦体を金型内に収納し、この内部にシリカ粉末等
の充填剤が混入されたモールド樹脂を真空注形する方法
と、コイル素体の周囲に繊維質の絶縁材料を巻回した状
態で鋳型を用いることなくその繊維質の絶縁材料にモー
ルド樹脂を真空含浸する方法とがある。
Conventional methods for manufacturing resin molded coils for transformers, etc.
A method in which the coil body is housed in a mold and a mold resin mixed with filler such as silica powder is vacuum cast inside the mold, and a state in which a fibrous insulating material is wound around the coil body. There is a method in which the fibrous insulating material is vacuum impregnated with mold resin without using a mold.

第1図は前者の方法で製造された樹脂モールドコィルの
一部を断面した図で、10はモールド樹脂層「 21,
22,23,24はコイル素体、31,32は端子、4
0‘ま層間絶縁物である。
FIG. 1 is a partially cross-sectional view of a resin molded coil manufactured by the former method, in which 10 is a molded resin layer "21,
22, 23, 24 are coil bodies, 31, 32 are terminals, 4
0' is an interlayer insulator.

各コイル素体21〜24は絶縁された素線50を層間絶
縁物40を介して数層巻回されている。各コイル黍体2
1〜24は互に所定間隔を存して上下に配置され、かつ
各コイル素体21〜24は直列に接続され、上部および
下部のコイル素体21の巻終り24の巻始めには端子3
1,32が接続されており、この状態のコイル素体21
〜24は図示しない鋳型内に収納される。そして鋳型内
にシリカ等の充填剤入のモールド樹脂が真空荘形され、
モールド樹脂の硬化によってコイル素体21〜24の外
周にモ−ルド樹脂層10が形成されている。この場合モ
ールド樹脂は充填剤入であるので、注形時の粘度は約1
0000センチポィズと高くモールド樹脂の含浸性が悪
くなる。このようなことから従来モールド樹脂の含浸性
を高めるため各コイル秦体21〜24の巻幅hを10物
肌程度に制限する必要があった。またコイル素体21〜
24の角部におけるモールド樹脂層1川こ発生する熱応
力を小さくするためにも、従来コイル秦体21〜24の
巻取hを制限する必要があった。この両条件を満足させ
るために、コイル黍体を図のように21〜24と複数個
に分割していた。このためコイル素体21〜24を巻回
する時間、コイル素体21〜24相互を接続する時間、
鋳型内に収納する時間が多くかかる欠点があった。また
以上述べた前者の方法ではコイル秦体21〜24と分割
しているためにコイル内にコイル素体冷却用の冷却ダク
トを設けることが困難であり、温度上昇を所定限度にお
さえるにはコイル素体21〜24を構成している絶縁素
線50の電流密度を小さくする必要があり、経済的にも
好し〈ない。第2図は後者の方法で製造された樹脂モー
ルドコィルの一部を断面した図で、第1図と同様に外周
が絶縁された絶縁素線50を層間絶縁物40を介して数
層巻回してコイル素体21〜24を得る。
Each of the coil bodies 21 to 24 includes an insulated wire 50 wound in several layers with an interlayer insulator 40 interposed therebetween. Each coil millet 2
1 to 24 are arranged one above the other at a predetermined interval, and each of the coil bodies 21 to 24 is connected in series, and a terminal 3 is connected at the end of winding 24 of the upper and lower coil bodies 21 and at the beginning of winding.
1 and 32 are connected, and the coil body 21 in this state
24 are housed in a mold (not shown). Then, mold resin containing filler such as silica is vacuum molded into the mold.
A mold resin layer 10 is formed around the outer periphery of the coil bodies 21 to 24 by curing the mold resin. In this case, the mold resin contains filler, so the viscosity at the time of casting is approximately 1.
It is as high as 0,000 centipoise, and the impregnating property of the mold resin becomes poor. For this reason, it has conventionally been necessary to limit the winding width h of each coil body 21 to 24 to about 10 mm in order to improve the impregnability of the molding resin. Also, the coil body 21~
Conventionally, it has been necessary to limit the winding length of the coil bodies 21 to 24 in order to reduce the thermal stress generated in the molded resin layer at the corners of the coil body 24. In order to satisfy both of these conditions, the coil mill body was divided into a plurality of pieces 21 to 24 as shown in the figure. Therefore, the time for winding the coil bodies 21 to 24, the time for connecting the coil bodies 21 to 24,
This had the disadvantage that it took a lot of time to store it in the mold. In addition, in the former method described above, it is difficult to provide a cooling duct for cooling the coil body within the coil because the coil bodies 21 to 24 are separated, and it is difficult to provide a cooling duct for cooling the coil body within the coil. It is necessary to reduce the current density of the insulated wires 50 constituting the elements 21 to 24, which is not economically preferable. FIG. 2 is a partially cross-sectional view of a resin molded coil manufactured by the latter method, in which an insulated wire 50 with an insulated outer periphery is wound in several layers with an interlayer insulator 40 in between, as in FIG. 1. Coil bodies 21 to 24 are obtained.

このコイル秦体21〜24の外周に、それぞれトロイダ
ル状に含浸性の良い繊維質の絶縁材料60を1〜2肋の
厚さに巻回し、このコイル素体21〜24を粘度の低い
モールド樹脂槽内に収納して真空合浸してその後絶縁材
料60の含浸したモールド樹脂を硬化させる。このよう
に絶縁材料60‘こモールド樹脂を含浸硬化したコイル
素体(以下樹脂硬化コイル素体21A〜24Aと称す)
を絶縁筒70の外周に挿入し、樹脂硬化コイル素体21
A〜24A相互間にスベーサ80を介在させてある。な
お樹脂硬化コイル秦体21A〜24A相互は直列に接続
され、樹脂硬化コイル秦体21Aの巻終り、24Aの巻
始めに端子31,32が接続されている。このような製
造方法において含浸‘性をよくするために、モールド樹
脂としては粘度の低いものを用いている。
A fibrous insulating material 60 with good impregnability is wound in a toroidal shape around the outer periphery of each of the coil bodies 21 to 24 to a thickness of 1 to 2 ribs, and the coil bodies 21 to 24 are molded with a low viscosity molding resin. The mold resin is stored in a tank and subjected to vacuum co-immersion, and then the mold resin impregnated with the insulating material 60 is cured. The coil element body impregnated and cured with the insulating material 60' mold resin (hereinafter referred to as resin-cured coil element bodies 21A to 24A)
is inserted into the outer periphery of the insulating tube 70, and the resin-cured coil body 21 is
A spacer 80 is interposed between A to 24A. The resin-cured coil bodies 21A to 24A are connected in series, and terminals 31 and 32 are connected to the end of the resin-cured coil body 21A and the beginning of the resin-cured coil body 24A. In order to improve impregnating properties in such a manufacturing method, a molding resin with low viscosity is used.

このためコイル素体21〜24をモールド樹脂槽から引
き上げ加熱硬化する間に、モールド樹脂が滴下してコイ
ル素体21〜24の内部に空隙ができないようにシール
樹脂を塗布したり、あるいはコイル素体21〜24を回
転しながら引き上げ硬化していく必要がある。又前者の
製造方法と同様にコイル素体21〜24を容易に製造す
るために、複数個に分割しているので、この冷却ダクト
を設けることの困難性がある。この発明はこのような事
情にかんがみてなされたもので、金型やシール樹脂を塗
布する必要なく、冷却ダクトを容易に設けることができ
るとともに複雑なコイル形状でも容易に製作でき経済的
にも有利な電気機器コイルおよびその製造方法を提供す
ることを目的とする。
For this reason, while the coil bodies 21 to 24 are pulled up from the mold resin bath and heated to harden, a sealing resin is applied to prevent the mold resin from dripping and creating voids inside the coil bodies 21 to 24. It is necessary to pull up and harden the bodies 21 to 24 while rotating them. Further, as in the former manufacturing method, since the coil bodies 21 to 24 are divided into a plurality of pieces in order to easily manufacture them, it is difficult to provide the cooling duct. This invention was made in view of the above circumstances, and it is economically advantageous because it allows cooling ducts to be easily installed without the need for molds or applying sealing resin, and can also be easily manufactured even with complex coil shapes. The purpose of the present invention is to provide a coil for electrical equipment and a method for manufacturing the same.

以下この発明について図面を参照して説明するが、はじ
めに電気機器コイルの構造について説明する。
The present invention will be described below with reference to the drawings, but first the structure of the electrical equipment coil will be described.

第3図a,bに示すようにコイル素体21,22が同0
的に配置され、コイル素体21,22の相互間に複数個
(図では8個)のダクトピース90が軸万向に等間隔に
配設され、これによつて絶縁上および冷却上必要な空間
95が形成されている。コイル秦体21,22は大きさ
の大小の差があるだけで、構成は同じであるのでここで
はコイル黍体22について説明する。すなわち第4図の
ように多数の穴100aを有する剛性の円筒状絶縁物1
00が配設され、この円筒状絶縁物100の外周には多
孔質絶縁物111を介して絶縁素線60が1層巻回され
ている。この絶縁素線50の外周に、フィルム状絶縁物
112の内外周を多孔質絶縁物lilではさんだ層間絶
縁物110が配設されている。この層間絶縁物110の
外周に、前記内周側に配設された絶縁素線50と直列に
接続された絶縁秦線50が1層巻回され、この絶縁素線
50の外周には多孔質絶縁物111が配設されている。
また各層の絶縁素線50の端部と多孔質絶縁物111の
端部間には、それぞれ多孔質絶縁物からなる端部絶縁物
113が配設されている。この織部絶縁物113の幅は
、絶縁素線50の厚さとほぼ等しくし、例えば2仇肋と
する。前記多孔質絶縁物1 1 1および端部絶縁物1
13はモールド樹脂や真空含浸され硬化されている。
なおコイル秦体21,22は例えば直列に接続され、織
部に従来と同様に端子が設けられることはいうまでもな
い。このような構成のコイルは以下のようにして製造さ
れる。
As shown in Fig. 3a and b, the coil bodies 21 and 22 are the same.
A plurality of duct pieces 90 (eight in the figure) are arranged between the coil bodies 21 and 22 at equal intervals in all directions of the axis, thereby providing necessary insulation and cooling. A space 95 is formed. Since the coil bodies 21 and 22 have the same structure except for the difference in size, only the coil body 22 will be explained here. That is, as shown in FIG. 4, a rigid cylindrical insulator 1 having a large number of holes 100a.
00 is disposed, and one layer of insulating wire 60 is wound around the outer periphery of this cylindrical insulator 100 with a porous insulator 111 in between. An interlayer insulator 110 is disposed around the outer periphery of this insulating wire 50, in which the inner and outer peripheries of a film-like insulator 112 are sandwiched between porous insulators lil. One layer of insulated wire 50 connected in series with the insulated wire 50 disposed on the inner circumferential side is wound around the outer periphery of this interlayer insulator 110. An insulator 111 is provided.
Further, end insulators 113 made of porous insulators are provided between the ends of the insulating wires 50 and the ends of the porous insulators 111 in each layer. The width of the Oribe insulator 113 is approximately equal to the thickness of the insulating wire 50, for example, two ribs. The porous insulator 1 1 1 and the end insulator 1
13 is cured by being impregnated with mold resin or vacuum.
It is needless to say that the coil bodies 21 and 22 are connected in series, for example, and terminals are provided in the weave as in the past. A coil having such a configuration is manufactured as follows.

例えば第4図のように直径5肋の穴100aが等間隔に
穿設され厚さが例えば0.25肋の剛性絶縁物を円筒状
に形成して円筒状絶縁物100aを得る。この円筒状絶
縁物の外周に、含浸性の良好な多孔質絶縁物111を例
えば厚さ0.5側に巻き、この多孔質絶縁物111の外
周に絶縁素線50を1層巻回する。この絶縁素線50の
外周に、多孔質絶縁物1 1 1を例えば厚さ0.5肌
に巻き、この上に絶縁耐力の高い例えば長さ0.25側
のフィルム状絶縁物112を巻き、この上にさらに多孔
質絶縁物11 1を例えば厚さ0.5肋に巻き、この外
周に絶縁秦線50を1層巻く。このようにしてコイル素
体22を得、同様にコイル素体21を得、このコイル素
体21,22を第3図のように同心的に配置しこのコイ
ル素体21,22相互間にダクトピース90を複数個等
間隔に挿入する。なお絶縁素線50を巻くときコイル素
体21,22の両端部に絶縁素線50と厚さがほぼ等し
くなるように多孔質絶縁物からなる端部絶縁物1 13
を例えば幅2仇肌こ巻く。このように形成されたコイル
全体を真空乾燥し、この後多孔質絶縁物111と端部絶
縁物113にモールド樹脂を含浸洋形させ、これを加熱
硬化してモールドコイルが完成する。モールド樹脂を含
浸荘形する場合、コイルからモールド樹脂がたれてコイ
ル秦体21,22の内部に空隙ができることがあるので
、これを防ぐにはモールド樹脂の含浸時の粘度が500
0〜20000センチポィズであるとき最適であること
が実験結果から明らかである。なお高粘度のモールド樹
脂を得るためにはモールド樹脂そのをのを高粘度のもの
を用いるかあるいは、低粘度のモールド樹脂に充填剤を
加えて高粘度に調節したモールド樹脂を用いてもよい。
第5図は前述したモールド樹脂がコイル素体21,22
に合浸していく状態を示す図で、矢印はその経路を示し
ている。
For example, as shown in FIG. 4, a cylindrical insulator 100a is obtained by forming a rigid insulator into a cylindrical shape, in which holes 100a having a diameter of 5 ribs are bored at equal intervals and having a thickness of, for example, 0.25 ribs. A porous insulator 111 with good impregnability is wound around the outer periphery of this cylindrical insulator, for example, to a thickness of 0.5, and one layer of insulating wire 50 is wound around the outer periphery of this porous insulator 111. A porous insulator 1 1 1 is wound around the outer periphery of the insulating wire 50 to a thickness of, for example, 0.5 mm, and a film-like insulator 112 having a high dielectric strength, for example, a length of 0.25 mm is wound on top of this. A porous insulator 111 is further wound thereon to a thickness of, for example, 0.5 ribs, and one layer of insulating wire 50 is wound around the outer periphery of the porous insulator 111. In this way, a coil body 22 is obtained, a coil body 21 is obtained in the same manner, and the coil bodies 21 and 22 are arranged concentrically as shown in FIG. A plurality of pieces 90 are inserted at equal intervals. When winding the insulated wire 50, end insulators 1 to 13 made of a porous insulator are placed on both ends of the coil bodies 21 and 22 so that the thickness is approximately equal to that of the insulated wire 50.
For example, wrap it around 2 inches wide. The entire coil thus formed is vacuum-dried, and then the porous insulator 111 and the end insulator 113 are impregnated with a molding resin, which is heated and cured to complete a molded coil. When impregnated with mold resin, the mold resin may drip from the coil and create voids inside the coil bodies 21 and 22. To prevent this, the viscosity of the mold resin at the time of impregnation must be 500.
It is clear from experimental results that a range of 0 to 20,000 centipoise is optimal. In order to obtain a high viscosity mold resin, a high viscosity mold resin may be used, or a low viscosity mold resin may be adjusted to have a high viscosity by adding a filler.
FIG. 5 shows that the above-mentioned mold resin is used for coil bodies 21 and 22.
This is a diagram showing how the water is immersed in water, and the arrows indicate the route.

コイル秦体21,22の外周から多孔質絶縁物1 1
1を通してフィルム状絶縁物112まで含浸する経路は
大きくみても10柳程度で、内側から円筒状絶縁物10
0の穴100aを通してフィルム状絶縁物112まで含
浸する経路は穴100aのピッチにもよるが、例えば穴
100aピッチを20肌とすれば含浸経路は大きくみて
も肋十鱗=物となる。こ似う蛤浸経路が短いので、20
000センチポィズの粘度までモールド樹脂が含浸する
ことが実験により確認されている。
Porous insulator 1 from the outer periphery of coil bodies 21 and 22
The impregnating path through 1 to the film-like insulator 112 is about 10 willows at most, and the cylindrical insulator 112 is impregnated from the inside.
The path of impregnation through the 0 holes 100a to the film-like insulator 112 depends on the pitch of the holes 100a, but for example, if the pitch of the holes 100a is set to 20 holes, the impregnation path will be roughly equivalent to 10 scales. The similar clam immersion route is short, so 20
It has been confirmed through experiments that the mold resin can be impregnated to a viscosity of 0.000 centipoise.

高粘度のモールド樹脂を合浸したコイルを、モールド樹
脂槽から取り出すと表面に余分なモールド樹脂が付着し
ているので、硬化工程に入るまえに一度硬化温度より高
い温度例えばモールド樹脂の粘度−温度特性硬化温度に
よって異るが、130午0の熱風をコイルの表面に吹き
つけて余分のモールド樹脂を滴下させ例えば100午0
の温度で硬化させる。このようにしてできた樹脂モール
ドコィルの多孔質絶縁物111および端部絶縁物113
の中にモールド樹脂が含浸されているので、耐クラツク
性がすぐれている。
When a coil coated with high-viscosity molding resin is taken out from the molding resin tank, there will be excess molding resin attached to the surface, so before entering the curing process, the coil must be heated to a temperature higher than the curing temperature, such as the viscosity of the molding resin - temperature. Characteristics Although it varies depending on the curing temperature, for example, hot air at 130°C is blown onto the surface of the coil to drip excess mold resin.
Cure at a temperature of Porous insulator 111 and end insulator 113 of the resin molded coil thus made
It has excellent crack resistance because it is impregnated with molding resin.

さらに前述の方法でできた樹脂モールドコィルは絶縁層
が薄いために、モールドコィル内部と表面の温度差がほ
とんどないので熱発生応力も4・し、。なおモールド樹
脂のかたまりの大きい部分の耐クラツク性が悪いので、
これを防ぐために、シリカ粉末等の充填剤をモールド樹
脂に入れればよい。前述したこの発明方法は含浸注形法
であるために金型が不要であり、又シール樹脂を塗布し
てモールド樹脂の漏れを防止する必要もないことから例
えばコイル内部に冷却ダクトを設けることができるなど
複雑な形状に注型できる。さらにコイル素体21,22
の層間絶縁物11川ま、絶縁耐力の高いフィルム状絶縁
物112の両側にモールド樹脂を合浸した多孔質絶縁物
111を配置したので、その肉厚を薄くすることができ
る。またコイル素体21,22間の絶縁は、コイル黍体
22の外周にあるモールド樹脂を含浸した多孔質絶縁物
111と空間95およびコイル素体21の内周にある円
筒状絶縁物100とモ−ルド樹脂を含浸した多孔質絶縁
物111より構成されているので、電圧は殆ど空間95
に印加されるが、多孔質絶縁物111が両電極間(絶縁
素線50)にあるため、部分放電電圧が高く、又インパ
ルス耐電圧も高くなる。この発明は前述の実施例に限定
されず、次のように変形できる。
Furthermore, since the resin molded coil made by the above-mentioned method has a thin insulating layer, there is almost no temperature difference between the inside and the surface of the molded coil, so the stress generated by heat is also reduced. In addition, crack resistance is poor in areas with large lumps of molded resin, so
To prevent this, a filler such as silica powder may be added to the mold resin. Since the above-mentioned method of the present invention is an impregnation casting method, a mold is not required, and there is no need to apply sealing resin to prevent mold resin from leaking, so it is possible to provide a cooling duct inside the coil, for example. Can be cast into complex shapes. Furthermore, coil bodies 21 and 22
Since the porous insulating material 111 impregnated with the molding resin is disposed on both sides of the interlayer insulating material 11 and the film-like insulating material 112 having high dielectric strength, the thickness of the interlayer insulating material 11 can be reduced. Insulation between the coil bodies 21 and 22 is achieved by a porous insulator 111 impregnated with mold resin on the outer periphery of the coil mill 22 and a space 95 and a cylindrical insulator 100 on the inner periphery of the coil body 21. -Since it is composed of a porous insulator 111 impregnated with a resin, the voltage is mostly applied to the space 95.
However, since the porous insulator 111 is between the two electrodes (the insulated wire 50), the partial discharge voltage is high and the impulse withstand voltage is also high. The present invention is not limited to the embodiments described above, but can be modified as follows.

すなわち電気機器の定格によってフィルム状絶縁物11
2を省略することができる。この場合円筒状絶縁物10
0の穴100aが形成されなくてもモールド樹脂は最外
層の多孔質絶縁物111、層間に介在する多孔質絶縁物
111を通して完全に含浸できる。又、電気機器の定格
によっては層数を奇数に設計した方が経済的な場合があ
る。
In other words, depending on the rating of the electrical equipment, the film-like insulator 11
2 can be omitted. In this case, the cylindrical insulator 10
Even if the zero hole 100a is not formed, the mold resin can be completely impregnated through the outermost porous insulator 111 and the porous insulator 111 interposed between the layers. Furthermore, depending on the rating of the electrical equipment, it may be more economical to design the number of layers to be an odd number.

その場合には第6図のごとく、コイル素体を配置しても
よい。すなわち、コイル秦体22の層数を1個にすると
、モールド樹脂は外周から含浸できるので、円筒状絶縁
物100の穴100aをなくすことができる。さらに前
述したモールドコィルは多孔質絶縁物111や薄い剛性
のある円筒絶縁物100を使用しているので、モールド
樹脂を含浸硬化するまで、機械的強度が弱いことから運
搬用捨具を必要とする難点がある。
In that case, the coil body may be arranged as shown in FIG. That is, when the number of layers of the coil body 22 is reduced to one, the molding resin can be impregnated from the outer periphery, so that the hole 100a of the cylindrical insulator 100 can be eliminated. Furthermore, since the mold coil described above uses a porous insulator 111 and a thin, rigid cylindrical insulator 100, its mechanical strength is weak until it is impregnated with the mold resin and hardened, so it has the disadvantage of requiring disposable tools for transportation. There is.

これを解決するために第7図のように絶縁素線が太く機
械的強度の強い、二次コイル114の上にダクトピース
115を複数個等間隔に配置して冷却および絶縁に必要
な空間116を設けて直接コイル素体21,22を巻く
と特別な治具なしで運搬できる。また二次コイル114
とともにモールド樹脂を含浸注形することにより、前述
のモールドコィル117(一次コィル)と二次コイル1
14がダクトピース90を介して一体に強固に接着でき
るので、例えば変圧器の二次短絡によって生じる軸方向
の機械力が一次コイル、二次コイルを綿付けているコイ
ル押え、ワランプ(いずれも図示しない)に作用しない
ので、コイル押え、ワランプを簡素化できる利点を有し
ている。また二次コイル114の上に直接コイル素体2
2を巻くことができるので、第8図のようにモールドコ
ィルを円筒形以外の角筒形にすることができる。従来の
角筒形モールドコィルの場合は、この内部に挿入する鉄
心の断面が矩形なので、段付鉄心に比して重量が軽く、
加工費が安いなどの利点をもっているが、半径方向の機
械力が弱いために小容量の例えば変圧器にしか適用でき
なかった。ところがこの発明では、同心状に配設されて
いる一次コイル、二次コイル共にモールド樹脂を含浸狂
形できるので、半径方向の機械力が向上し、例えば20
00KVA程度の変圧器の製作が可能である。以上述べ
たこの発明によれば金型やシール樹脂の塗布の必要挫か
なく、冷却ダクト(実施例で空間と称した)を容易に設
けることができ、複雑な形状であっても容易に製作でき
、経済的にも有利な電気機器コイルおよびその製造方法
を提供できる。
To solve this problem, as shown in FIG. 7, a plurality of duct pieces 115 are arranged at equal intervals above the secondary coil 114, which has thick insulated wires and strong mechanical strength, to create a space 116 necessary for cooling and insulation. If the coil elements 21 and 22 are directly wound by providing a holder, transportation is possible without a special jig. Also, the secondary coil 114
The molded coil 117 (primary coil) and the secondary coil 1 described above are formed by impregnating and casting a molding resin together with the molded coil 117 (primary coil) and the secondary coil 1.
14 can be firmly bonded together via the duct piece 90, for example, the axial mechanical force generated by a secondary short circuit of a transformer can be applied to the coil holder and wall lamp (both shown in the figure) that attach the primary coil and secondary coil. This has the advantage of simplifying the coil holder and wall lamp. In addition, the coil body 2 is directly placed on the secondary coil 114.
2, the molded coil can be made into a rectangular tube shape other than a cylinder, as shown in FIG. In the case of a conventional rectangular cylindrical molded coil, the core inserted inside the coil has a rectangular cross section, so it is lighter in weight than a stepped core.
Although it has advantages such as low processing costs, it can only be applied to small capacity transformers, for example, because the mechanical force in the radial direction is weak. However, in this invention, since both the primary coil and the secondary coil, which are arranged concentrically, can be impregnated with mold resin, the mechanical force in the radial direction is improved.
It is possible to manufacture transformers of approximately 00KVA. According to the invention described above, a cooling duct (referred to as a space in the embodiment) can be easily provided without the need for a mold or the application of sealing resin, and even if it has a complicated shape, it can be manufactured easily. It is possible to provide an electrical equipment coil and a method for manufacturing the same which are both economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ異る従来のモールドコィ
ルの一部を断面した正面図、第3図aおよびbはこの発
明による電気機器コイルの一実施例の一部を断面した正
面図および平面図、第4図は同実施例に用いる剛性絶縁
物の正面図、第5図は同実施例においてモールド樹脂が
含浸する状態・を説明するための図、第6図、第7図お
よび第8図はそれぞれ異るこの発明の変形例の一部を断
面した正面図、平面図および平面図である。 21〜24・・・・・・コイル素体、IQ0・・・・・
・円筒状絶縁物、100a・…・・穴、110・・・・
・・層間絶縁物、111・・・・・・多孔質絶縁物、1
12・・・・・・フィルム状絶縁物、113・・・・・
・端部絶縁物、114・・・・・・二次コイル、115
・・・・・・ダクトピース、116・・・・・・空間、
117…・・・一次コイル。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図
1 and 2 are partially sectional front views of different conventional molded coils, and FIGS. 3 a and 3 b are partially sectional front views and plan views of an embodiment of the electrical equipment coil according to the present invention. Figure 4 is a front view of the rigid insulator used in the same example, Figure 5 is a diagram for explaining the state in which the mold resin is impregnated in the same example, Figures 6, 7, and 8. The figures are a partially sectional front view, a top view, and a plan view of different modifications of the invention. 21-24... Coil body, IQ0...
・Cylindrical insulator, 100a...hole, 110...
...Interlayer insulator, 111... Porous insulator, 1
12...Film-like insulator, 113...
・End insulator, 114...Secondary coil, 115
...Duct piece, 116...Space,
117...Primary coil. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1 複数の筒状コイル素体が同心状に配設され、かつコ
イル素体相互間に複数個のダクトピースにより空間が形
成され、前記各コイル素体の内周、外周および層間に少
なくとも多孔質絶縁物を有し、この多孔質絶縁物にモー
ルド樹脂が含浸硬化された電気機器コイル。 2 複数の筒状のコイル素体の内周、外周および層間に
少なくとも多孔質絶縁物を有し、前記各コイル素体を互
いに空間を存して同心状に配置した状態で、前記多孔質
絶縁物に粘度が5000センチポイズ以上のモールド樹
脂又は充填剤入のモールド樹脂を前記空間を経て含浸注
形し、これを硬化する電気機器コイルの製造方法。
[Scope of Claims] 1. A plurality of cylindrical coil bodies are arranged concentrically, and a space is formed between the coil bodies by a plurality of duct pieces, and the inner and outer peripheries of each of the coil bodies are and an electrical equipment coil having at least a porous insulator between layers, the porous insulator being impregnated and cured with a molding resin. 2. At least a porous insulator is provided between the inner periphery, outer periphery, and layers of a plurality of cylindrical coil bodies, and the porous insulator is disposed concentrically with a space between the coil bodies. A method for manufacturing an electrical equipment coil, comprising impregnating and casting a mold resin having a viscosity of 5000 centipoise or more or a mold resin containing a filler through the space, and curing the product.
JP54091382A 1979-07-18 1979-07-18 Electrical equipment coil and its manufacturing method Expired JPS605206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54091382A JPS605206B2 (en) 1979-07-18 1979-07-18 Electrical equipment coil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54091382A JPS605206B2 (en) 1979-07-18 1979-07-18 Electrical equipment coil and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5615011A JPS5615011A (en) 1981-02-13
JPS605206B2 true JPS605206B2 (en) 1985-02-08

Family

ID=14024811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54091382A Expired JPS605206B2 (en) 1979-07-18 1979-07-18 Electrical equipment coil and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS605206B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756420A (en) * 1980-09-22 1982-04-05 Shiseido Co Ltd Bath agent
JPS60254604A (en) * 1984-05-30 1985-12-16 Fuji Elelctrochem Co Ltd Winding parts
JP2013162009A (en) * 2012-02-07 2013-08-19 Hitachi Industrial Equipment Systems Co Ltd Mold transformer
JP2019091730A (en) * 2016-03-09 2019-06-13 株式会社日立製作所 Stationary induction appliance

Also Published As

Publication number Publication date
JPS5615011A (en) 1981-02-13

Similar Documents

Publication Publication Date Title
US5621372A (en) Single phase dry-type transformer
US5461772A (en) Method of manufacturing a strip wound coil to reinforce edge layer insulation
US6160464A (en) Solid cast resin coil for high voltage transformer, high voltage transformer using same, and method of producing same
KR100536487B1 (en) Amorphous metal transformer having a generally rectangular coil
US5267393A (en) Method of manufacturing a strip wound coil to eliminate lead bulge
US3263196A (en) Encapsulated electrical coil having means to aid impregnation
US4649640A (en) Method for manufacturing a molded transformer
EP1060486B1 (en) A strip wound induction coil with improved heat transfer and short circuit withstandability
US5383266A (en) Method of manufacturing a laminated coil to prevent expansion during coil loading
KR100549558B1 (en) Dry-type transformer having a generally rectangular, resin encapsulated coil
JPS605206B2 (en) Electrical equipment coil and its manufacturing method
US3705372A (en) Cast-type winding structure for electrical inductive apparatus
US3626587A (en) Methods of constructing electrical transformers
US3400454A (en) Method of making encapsulated electrical members
CN110323050B (en) High-voltage coil, high-voltage coil manufacturing method and transformer
JP2622053B2 (en) Manufacturing method of coil for electromagnet
JPH0342687B2 (en)
JPS5857711A (en) Resin formed coil for propulsion of levitated rall way
JPH0193107A (en) Molded coil
JPS60207326A (en) Manufacture of resin molded coil
JPS6221205A (en) Resin-molded coil
JPH0218662Y2 (en)
JPS5927601Y2 (en) resin embedded coil
JPH0339806B2 (en)
JPH0660125U (en) Induction winding