JP2013162009A - Mold transformer - Google Patents

Mold transformer Download PDF

Info

Publication number
JP2013162009A
JP2013162009A JP2012023926A JP2012023926A JP2013162009A JP 2013162009 A JP2013162009 A JP 2013162009A JP 2012023926 A JP2012023926 A JP 2012023926A JP 2012023926 A JP2012023926 A JP 2012023926A JP 2013162009 A JP2013162009 A JP 2013162009A
Authority
JP
Japan
Prior art keywords
insulating sheet
winding
hole
resin
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012023926A
Other languages
Japanese (ja)
Inventor
Chie Omatsu
千絵 大松
Kinya Kobayashi
金也 小林
Yutaka Morita
森田  裕
Atsushi Otake
大嶽  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2012023926A priority Critical patent/JP2013162009A/en
Publication of JP2013162009A publication Critical patent/JP2013162009A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress occurrence of crack due to thermal stress, by maintaining the original insulation performance of an insulation sheet arranged between winding conductors.SOLUTION: A mold transformer includes a core, a secondary winding wound around the core, and a primary winding wound around the secondary winding. An insulation sheet is placed between the layers of winding conductor wound by multiple number of turns in the primary winding and secondary winding, and they are resin molded integrally. A hole is formed in at least a part of the insulation sheet, and filled with the resin.

Description

本発明はモールド変圧器に係り、特に、巻線導体同士の層間に絶縁シートが設置されているものに好適なモールド変圧器に関する。   The present invention relates to a molded transformer, and more particularly, to a molded transformer suitable for an insulating sheet provided between layers of winding conductors.

近年、電力需要は特に都市部において増加の一途をたどっており、これに伴い、都市の様々な場所に変電、受配電設備が設けられ、これらの設備に対する防災性、安全性の要求が高まっている。   In recent years, demand for electric power has continued to increase, especially in urban areas. As a result, substations and power distribution facilities have been installed at various locations in the city, and demands for disaster prevention and safety for these facilities have increased. Yes.

この様な状況のもと、変圧器に関しては、これまで主流であった油入変圧器に代わって、難燃性変圧器として合成樹脂を用いたモールド変圧器、或いは不燃性変圧器としてSFガスを封入したガス絶縁変圧器が設置されるようになってきた。特に、モールド変圧器は、小型であるという利点からビル、学校、病院用などに需要が多く、現在では、屋内配電用変圧器の主流の座を占めるに至っている。 Under such circumstances, with regard to transformers, instead of oil-filled transformers that have been the mainstream so far, molded transformers using synthetic resin as flame retardant transformers, or SF 6 as non-flammable transformers. Gas-insulated transformers that contain gas have been installed. In particular, molded transformers are in great demand for buildings, schools, hospitals, etc. because of their small size, and now they occupy the mainstream of indoor distribution transformers.

このモールド変圧器に使用されているモールド樹脂は、巻線導体とエポキシ樹脂の間の熱膨張係数の違いによるクラックを防ぐため、樹脂にシリカなどの無機粒子を大量に充填して、モールド樹脂の熱膨張係数を巻線導体に近付け、熱応力を緩和するようにしている。更に、モールド変圧器の巻線導体間の絶縁を維持しつつ、工数や材料費を削減するため、巻線導体間の絶縁には、絶縁シートが使用されている。   The mold resin used in this mold transformer is filled with a large amount of inorganic particles such as silica to prevent cracking due to the difference in thermal expansion coefficient between the winding conductor and the epoxy resin. The thermal expansion coefficient is set close to that of the winding conductor so as to relieve the thermal stress. Furthermore, in order to reduce man-hours and material costs while maintaining insulation between the winding conductors of the molded transformer, an insulating sheet is used for the insulation between the winding conductors.

特開2000−286134号公報JP 2000-286134 A

しかしながら、モールド樹脂に無機粒子を大量に充填して、モールド樹脂の熱膨張係数を巻線導体に近付けることで、巻線導体とモールド樹脂間のクラックは抑制できるが、巻線導体間に配置されている絶縁シートとモールド樹脂の熱膨張係数の差が大きくなり、絶縁シートとモールド樹脂の境界でクラックが発生するという問題が出てきた。   However, cracks between the winding conductor and the mold resin can be suppressed by filling the mold resin with a large amount of inorganic particles and bringing the thermal expansion coefficient of the mold resin close to that of the winding conductor. The difference between the thermal expansion coefficients of the insulating sheet and the mold resin increases, and a problem has arisen that cracks occur at the boundary between the insulating sheet and the mold resin.

このような問題に対して、一次側巻線と二次側巻線との間に配置された絶縁シートの両側面部を波形切込み形状にすることで沿面距離を増やし、かつ、モールド樹脂との密着性を向上させて剥離を抑制することが特許文献1に記載されている。   For such a problem, the creepage distance is increased by making the both side surfaces of the insulating sheet disposed between the primary side winding and the secondary side winding into a corrugated shape, and the adhesion with the mold resin is increased. Patent Document 1 describes that the peeling is suppressed by improving the property.

ところが、特許文献1では、一次側巻線と二次側巻線との間に配置された絶縁シートの端部を波型形状にすることで、鉄心の軸方向に対して平行に伸びている絶縁シートの端部に凸型形状ができてしまう。この結果、絶縁シートの凸型の部分とモールド樹脂との間の熱応力が大きくなり、クラックが発生しやすくなる。従って、特許文献1では、熱応力を緩和したモールド変圧器を提供することは難しかった。   However, in Patent Document 1, the end portion of the insulating sheet disposed between the primary side winding and the secondary side winding is formed in a corrugated shape so as to extend parallel to the axial direction of the iron core. A convex shape is formed at the end of the insulating sheet. As a result, the thermal stress between the convex portion of the insulating sheet and the mold resin increases, and cracks are likely to occur. Therefore, in patent document 1, it was difficult to provide the mold transformer which relieved the thermal stress.

本発明は上述の点に鑑みなされたもので、その目的とするところは、巻線導体間に配置された絶縁シートの本来の絶縁性能を維持し、熱応力によるクラックの発生を抑制することのできるモールド変圧器を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to maintain the original insulating performance of the insulating sheet disposed between the winding conductors and to suppress the occurrence of cracks due to thermal stress. It is to provide a mold transformer that can be used.

本発明のモールド変圧器は、上記目的を達成するために、鉄心と、該鉄心に巻装された二次側巻線と、該二次側巻線の周囲に巻装された一次側巻線とを備え、前記一次側巻線と二次側巻線は、それぞれが複数巻回された巻線導体同士の層間に絶縁シートが配置され、これらが樹脂で一体にモールドされているモールド変圧器において、前記絶縁シートの少なくとも一部に孔が形成され、該孔には前記樹脂が充填されていることを特徴とする。   In order to achieve the above object, a molded transformer according to the present invention includes an iron core, a secondary winding wound around the iron core, and a primary winding wound around the secondary winding. A molded transformer in which an insulating sheet is disposed between layers of a plurality of wound conductors of the primary side winding and the secondary side winding, and these are integrally molded with a resin In the above, a hole is formed in at least a part of the insulating sheet, and the hole is filled with the resin.

本発明によれば、巻線導体間に配置された絶縁シートの残留熱応力が減少するので、熱応力によるクラックの発生を抑制することができる効果がある。   According to the present invention, since the residual thermal stress of the insulating sheet disposed between the winding conductors is reduced, there is an effect that the generation of cracks due to the thermal stress can be suppressed.

本発明のモールド変圧器の実施例1の全体構成を示す斜視図及びその一部を示す部分断面図である。It is the perspective view which shows the whole structure of Example 1 of the molded transformer of this invention, and the fragmentary sectional view which shows the one part. 図1の実施例1における巻線部分及びその巻線部分の端部を拡大して示す斜視図である。It is a perspective view which expands and shows the coil | winding part in Example 1 of FIG. 1, and the edge part of the coil | winding part. 本発明のモールド変圧器の実施例2における巻線部分及びその巻線部分の端部を拡大して示す斜視図である。It is a perspective view which expands and shows the winding part in Example 2 of the mold transformer of this invention, and the edge part of the winding part. 本発明のモールド変圧器の実施例3における絶縁シートを示す斜視図である。It is a perspective view which shows the insulating sheet in Example 3 of the mold transformer of this invention. 本発明のモールド変圧器の実施例4の全体構成を示す斜視図及びその一部を示す部分断面図である。It is the perspective view which shows the whole structure of Example 4 of the mold transformer of this invention, and the fragmentary sectional view which shows the part. 本発明の実施例1乃至3のいずれか1つが適用されて製作されたモールド変圧器を示す正面図である。It is a front view which shows the mold transformer manufactured by applying any one of Example 1-3 of this invention.

以下、図示した実施例に基づいて本発明のモールド変圧器を説明する。尚、符号は、各実施例で同一のものは同符号を使用する。   Hereinafter, the molded transformer of the present invention will be described based on the illustrated embodiments. The same reference numerals are used for the same reference numerals in each embodiment.

図1及び図2に、本発明のモールド変圧器に実施例1を示す。図1は本発明のモールド変圧器の全体構成の概略と、その部分断面を示し、図2は巻線部分と、その巻線部分の端部を拡大して示す。   1 and 2 show a first embodiment of the molded transformer of the present invention. FIG. 1 shows an outline of the overall configuration of the molded transformer of the present invention and a partial cross section thereof, and FIG. 2 shows an enlarged view of a winding portion and an end portion of the winding portion.

図1に示す如く、本実施例のモールド変圧器は、内側から鉄心1と、この鉄心1に巻装され、電流を出力する巻線導体が複数巻かれて形成される二次側巻線2と、二次側巻線2の外周に巻装され、電流を入力する巻線導体が複数巻かれて形成される一次側巻線3と、これらを支持する筐体支持部4とで概略構成されている。   As shown in FIG. 1, the molded transformer of this embodiment includes an iron core 1 and a secondary winding 2 formed by winding a plurality of winding conductors wound around the iron core 1 and outputting current. A primary winding 3 wound around the outer periphery of the secondary winding 2 and formed by winding a plurality of winding conductors for inputting a current, and a housing support 4 that supports these windings. Has been.

一次側巻線3と二次側巻線2は、図1の断面図に示すように、鉄心1の外周に複数巻回された巻線導体5同士の層間に絶縁シート6が配置され、更に、その周囲が、絶縁シート6とは熱膨張係数が異なるエポキシ樹脂等のモールド樹脂7で一体にモールドされて構成されている。尚、絶縁シート6は、例えば、ポリエチレンテレフタレート(PET)製などの有機絶縁シートからなる。   As shown in the sectional view of FIG. 1, the primary side winding 3 and the secondary side winding 2 are each provided with an insulating sheet 6 between the winding conductors 5 wound around the outer periphery of the iron core 1. The periphery of the insulating sheet 6 is integrally molded with a mold resin 7 such as an epoxy resin having a different thermal expansion coefficient from that of the insulating sheet 6. The insulating sheet 6 is made of an organic insulating sheet made of, for example, polyethylene terephthalate (PET).

このように構成されたモールド変圧器では、硬化温度から室温まで冷却した際に熱応力が大きくなりクラックの発生が懸念される部位に、巻線導体5と接しておらず、かつ、巻線導体5から鉄心1の軸方向に対して平行に伸びている絶縁シート6の端部とモールド樹脂7間がある。   In the molded transformer configured as described above, when the thermal stress is increased from the curing temperature to room temperature, the winding conductor 5 is not in contact with the portion where the thermal stress increases and the occurrence of cracks is a concern. 5 between the end portion of the insulating sheet 6 extending in parallel with the axial direction of the iron core 1 and the mold resin 7.

ここで、クラックとは、成形されたモールド樹脂7にひび割れが入ることであり、熱応力とは、拘束されている物体に熱変化が加わったときに生じる内力のことである。拘束のない物体の場合は、熱変化が加わったときに自由膨張、或いは自由収縮する。しかし、物体が拘束されていると、この変形を妨げるように熱応力が発生する。   Here, the crack means that a crack is formed in the molded mold resin 7, and the thermal stress is an internal force generated when a thermal change is applied to the constrained object. In the case of an unconstrained object, it freely expands or contracts when a thermal change is applied. However, when the object is constrained, thermal stress is generated to prevent this deformation.

そこで、上述したクラックを抑制するため、実施例1では、熱応力を低減しようとするものである。以下、その詳細について図2を用いて説明する。   Therefore, in order to suppress the above-described cracks, Example 1 is intended to reduce thermal stress. The details will be described below with reference to FIG.

図2に示すように、本実施例では、巻線導体5と接しておらず、かつ、巻線導体5から鉄心軸方向に対して平行に伸びている絶縁シート6の端部に、円弧の形をした貫通孔8(楕円形状でも構わない)を設けている。この貫通孔8を絶縁シート6の端部に設けることで、貫通孔8にはモールド樹脂7が充填されることになり、絶縁シート6の端部とモールド樹脂7の間の熱応力を緩和することができる。   As shown in FIG. 2, in this embodiment, the end of the insulating sheet 6 that is not in contact with the winding conductor 5 and extends parallel to the iron core direction from the winding conductor 5 A shaped through-hole 8 (which may be oval) is provided. By providing the through hole 8 at the end of the insulating sheet 6, the through hole 8 is filled with the mold resin 7, and the thermal stress between the end of the insulating sheet 6 and the mold resin 7 is relieved. be able to.

本発明者等は、絶縁シート6の端部とモールド樹脂7間の熱応力低減を確認するため、応力解析ソフトを用いて熱応力解析を行った。解析条件には、巻線導体(アルミや銅など)5、モールド樹脂7、絶縁シート6の熱膨張係数を代入した。   The present inventors conducted thermal stress analysis using stress analysis software in order to confirm the reduction in thermal stress between the end portion of the insulating sheet 6 and the mold resin 7. The thermal expansion coefficients of the winding conductor (aluminum, copper, etc.) 5, the mold resin 7 and the insulating sheet 6 were substituted into the analysis conditions.

その結果、温度履歴を200℃から20℃まで設定した場合、絶縁シート6の端部に円弧の形をした貫通孔8を設け、この貫通孔8にモールド樹脂7が充填されることで、解析結果から貫通孔8を設けた場合は、貫通孔8が無い場合に比べて約35%の熱応力低減が可能となることが分かった。   As a result, when the temperature history is set from 200 ° C. to 20 ° C., a through hole 8 having an arc shape is provided at the end of the insulating sheet 6, and analysis is performed by filling the through hole 8 with the mold resin 7. From the results, it was found that when the through hole 8 is provided, the thermal stress can be reduced by about 35% compared to the case where the through hole 8 is not provided.

このような本実施例によれば、絶縁シート6に貫通孔8を設け、この貫通孔8にモールド樹脂7が充填されることで、残留熱応力を減少することができ、これにより、モールド変圧器において問題となる熱応力によるクラックを抑制できる。更に、クラックを抑制することで、クラックから水分、塵埃などが巻線内に侵入することがなくなり、絶縁破壊事故が起こることを防げることができる。   According to such a present Example, by providing the through-hole 8 in the insulating sheet 6 and filling the through-hole 8 with the mold resin 7, the residual thermal stress can be reduced. Cracks due to thermal stress, which is a problem in the vessel, can be suppressed. Furthermore, by suppressing cracks, it is possible to prevent moisture, dust and the like from entering the windings from the cracks, thereby preventing an insulation breakdown accident.

図3に、本発明のモールド変圧器の実施例2を示す。   FIG. 3 shows a second embodiment of the molded transformer of the present invention.

実施例1では、絶縁シート6の端部に円弧の形をした貫通孔8を設けているが、本実施例では、絶縁シート6の端部を含む全体、特に、絶縁シート6の鉄心軸方向に円弧の形をした貫通孔8(楕円形状でも構わない)を複数個設け、この複数個の貫通孔8にモールド樹脂7が充填されているものである。   In Example 1, the arc-shaped through-hole 8 is provided at the end of the insulating sheet 6, but in this example, the whole including the end of the insulating sheet 6, particularly the iron core axial direction of the insulating sheet 6. A plurality of through-holes 8 (which may be elliptical) are provided in the shape of a circular arc, and the plurality of through-holes 8 are filled with a mold resin 7.

このような本実施例の構成としても、その効果は実施例1と同様であるが、本実施例では、絶縁シート6の全体に設けられた複数個の貫通孔8にモールド樹脂7が充填されることから、絶縁シート6の熱膨張が緩和され、熱応力によるクラックがより抑制できる。   The effect of the configuration of this example is the same as that of Example 1, but in this example, a plurality of through holes 8 provided in the entire insulating sheet 6 are filled with the mold resin 7. Therefore, the thermal expansion of the insulating sheet 6 is relaxed, and cracks due to thermal stress can be further suppressed.

図4に、本発明のモールド変圧器の実施例2を示す。該図は、巻線導体5間に配置される絶縁シート6を示す。   FIG. 4 shows a second embodiment of the molded transformer of the present invention. The figure shows an insulating sheet 6 disposed between the winding conductors 5.

実施例2では、絶縁シート6に円弧の形をした複数個の貫通孔8を設けているが、本実施例では、絶縁シートを複数枚(本実施例では2枚)積層して、穴あき部分(貫通孔)が重ならないようにし、その穴あき部分にモールド樹脂が充填されて絶縁シートが構成されるものである。   In Example 2, a plurality of through-holes 8 having an arc shape are provided in the insulating sheet 6, but in this example, a plurality of insulating sheets (two in this example) are stacked and perforated. The insulating sheet is formed by preventing the portions (through holes) from overlapping and filling the hole with mold resin.

図4の構造では、図4の左側に示す鉄心に近い側の絶縁シート6Aに円弧の形をした複数個の貫通孔8A(楕円形状でも構わない)を設けると共に、その裏面に設置されている絶縁シート6B、即ち、図4の右側に示す鉄心に遠い側の絶縁シート6Bに円弧の形をした複数個の貫通孔8B(楕円形状でも構わない)を設け、これら貫通孔8A、8Bにモールド樹脂7が充填されるものである。この際に、各絶縁シート6A、6Bにあけた貫通孔8A、8Bが重ならないような構造にしている。   In the structure of FIG. 4, the insulating sheet 6A on the side close to the iron core shown on the left side of FIG. 4 is provided with a plurality of arc-shaped through-holes 8A (may be oval) and installed on the back surface thereof. The insulating sheet 6B, that is, the insulating sheet 6B far from the iron core shown on the right side of FIG. 4 is provided with a plurality of arc-shaped through holes 8B (may be oval), and the through holes 8A and 8B are molded. The resin 7 is filled. At this time, the through holes 8A and 8B formed in the insulating sheets 6A and 6B are structured so as not to overlap each other.

このような本実施例の構成としても、その効果は実施例2と同様であるが、本実施例では、各絶縁シート6A、6Bにあけた貫通孔8A、8Bが重ならないことから、隣接する巻線導体が短絡する心配がなくなる。   Even in the configuration of this example, the effect is the same as that of Example 2. However, in this example, the through holes 8A and 8B opened in the insulating sheets 6A and 6B do not overlap with each other. There is no need to worry about short-circuiting the winding conductor.

図5に、本発明のモールド変圧器の実施例4を示す。   FIG. 5 shows a fourth embodiment of the molded transformer of the present invention.

該図に示す本実施例は、上述した実施例1乃至3で説明した絶縁シート6の何れかを、図5に示す如く、鉄心1の軸方向を中心に巻回された巻線の曲率が小さい一次側巻線3及び二次側巻線2のコーナー部10に採用したものである。   In the present embodiment shown in the figure, the curvature of the winding obtained by winding any one of the insulating sheets 6 described in the above-described embodiments 1 to 3 around the axial direction of the iron core 1 as shown in FIG. This is employed in the corner portion 10 of the small primary winding 3 and secondary winding 2.

即ち、本実施例では、実施例1で説明した軸方向端部に円弧の形をした貫通孔8を設けた絶縁シート6がコーナー部10に採用され、コーナー部10以外は、貫通孔のない絶縁シートが採用されている一次側巻線3及び二次側巻線2としたものである。   That is, in this embodiment, the insulating sheet 6 provided with the arc-shaped through hole 8 at the axial end described in the first embodiment is used for the corner portion 10, and there is no through hole except for the corner portion 10. The primary side winding 3 and the secondary side winding 2 employ an insulating sheet.

また、これ以外に、実施例2で説明した軸方向端部を含む全体に円弧の形をした貫通孔8を複数個設けた絶縁シート6、或いは実施例3で説明した貫通孔8A、8Bが重ならないような絶縁シート6A、6Bをコーナー部10に用い、コーナー部10以外は、実施例1で説明した軸方向端部に円弧の形をした貫通孔8を設けた絶縁シート6を用いた一次側巻線3及び二次側巻線2としても良い。   In addition, the insulating sheet 6 provided with a plurality of arc-shaped through-holes 8 as a whole including the axial ends described in the second embodiment, or the through-holes 8A and 8B described in the third embodiment. Insulating sheets 6A and 6B that do not overlap are used for the corner portion 10, and except for the corner portion 10, the insulating sheet 6 provided with the arc-shaped through-holes 8 at the axial ends described in the first embodiment is used. The primary winding 3 and the secondary winding 2 may be used.

このような本実施例の構成としても、その効果は上述した各実施例と同様であるが、本実施例では、応力が集中するコーナー部に本発明を適用しているので、コーナー部での応力が緩和され、クラック抑制の効果が更に期待できる。   Even in the configuration of this embodiment, the effect is the same as that of each embodiment described above, but in this embodiment, the present invention is applied to a corner portion where stress is concentrated. The stress is relaxed, and the effect of suppressing cracks can be further expected.

次に、少なくとも実施例1乃至3のいずれか1つを適用してモールド変圧器を作製した例について、図6を用いて説明する。   Next, an example in which at least one of Examples 1 to 3 is applied to produce a mold transformer will be described with reference to FIG.

図6は、本実施例が採用されるモールド変圧器を示す。該図に示す如く、実施例1乃至3のいずれかの絶縁シートを巻線導体間に巻回して作製した一次側巻線3に、実施例1乃至のいずれかの絶縁シートを巻回して作製した二次側巻線2を配置した後、この二次側巻線2の内側に鉄心1を配置してモールド変圧器を構成している。   FIG. 6 shows a molded transformer in which this embodiment is adopted. As shown in the figure, the insulating sheet of any of Examples 1 to 3 is wound around the primary side winding 3 that is manufactured by winding the insulating sheet of any of Examples 1 to 3 between the winding conductors. After the secondary winding 2 is arranged, the iron core 1 is arranged inside the secondary winding 2 to constitute a molded transformer.

モールド変圧器は、一次側巻線3の巻線開始側の端子用結線金具11には一次側電源接続用端子が、巻線終了側の端子用結線金具には巻線接続バー12が、タップ切り替え端子13にはタップ接続バー14がそれぞれ接続される。   The molded transformer has a tap for connecting the primary power supply to the terminal connection fitting 11 on the winding start side of the primary winding 3, and a winding connection bar 12 to the terminal connection fitting on the winding end side. A tap connection bar 14 is connected to each switching terminal 13.

このようにして作製したモールド変圧器は、実施例1乃至3のいずれかの絶縁シートを適用しているため、絶縁性能の維持と熱応力軽減の両方を兼ね備えたモールド変圧器を提供することが可能になった。   Since the molded transformer produced in this manner uses the insulating sheet of any one of Examples 1 to 3, it is possible to provide a molded transformer that has both maintenance of insulation performance and reduction of thermal stress. It became possible.

尚、実施例1乃至3の絶縁シートを適用したモールド巻線は、一次側巻線3のみ若しくは二次側巻線2のみでも良い。また、上述した各実施例は、貫通孔で説明したが、貫通孔である必要はない。   Note that the molded winding to which the insulating sheets of Examples 1 to 3 are applied may be only the primary side winding 3 or only the secondary side winding 2. Moreover, although each Example mentioned above demonstrated by the through-hole, it does not need to be a through-hole.

1…鉄心、2…二次側巻線、3…一次側巻線、4…筐体支持部、5…巻線導体、6、6A、6B…絶縁シート、7…モールド樹脂、8、8A、8B…貫通孔、10…コーナー部、11…巻線開始側の端子用結線金具、12…巻線接続バー、13…タップ切り替え端子、14…タップ接続バー。   DESCRIPTION OF SYMBOLS 1 ... Iron core, 2 ... Secondary side winding, 3 ... Primary side winding, 4 ... Housing support part, 5 ... Winding conductor, 6, 6A, 6B ... Insulation sheet, 7 ... Mold resin, 8, 8A, 8B ... Through hole, 10 ... Corner, 11 ... Terminal fitting on the winding start side, 12 ... Wind connection bar, 13 ... Tap switching terminal, 14 ... Tap connection bar.

Claims (9)

鉄心と、該鉄心に巻装された二次側巻線と、該二次側巻線の周囲に巻装された一次側巻線とを備え、前記一次側巻線と二次側巻線は、それぞれが複数巻回された巻線導体同士の層間に絶縁シートが配置され、これらが樹脂で一体にモールドされているモールド変圧器において、
前記絶縁シートの少なくとも一部に孔が形成され、該孔には前記樹脂が充填されていることを特徴とするモールド変圧器。
An iron core, a secondary winding wound around the iron core, and a primary winding wound around the secondary winding, wherein the primary winding and the secondary winding are In a molded transformer in which an insulating sheet is disposed between layers of a plurality of wound conductors, each of which is molded integrally with a resin,
A mold transformer, wherein a hole is formed in at least a portion of the insulating sheet, and the hole is filled with the resin.
請求項1に記載のモールド変圧器において、
前記孔は、前記巻線導体と接しておらず、かつ、該巻線導体から鉄心軸方向に対して平行に伸びている前記絶縁シートの端部に形成された貫通孔であり、該貫通孔に前記樹脂が充填されていることを特徴とするモールド変圧器。
The molded transformer according to claim 1,
The hole is a through hole formed in an end portion of the insulating sheet that is not in contact with the winding conductor and extends in parallel to the iron core axis direction from the winding conductor, and the through hole The mold transformer is filled with the resin.
請求項1に記載のモールド変圧器において、
前記孔は、前記絶縁シートの全体に形成された複数個の貫通孔であり、該複数個の貫通孔に前記樹脂が充填されていることを特徴とするモールド変圧器。
The molded transformer according to claim 1,
The hole is a plurality of through holes formed in the entire insulating sheet, and the resin is filled in the plurality of through holes.
請求項3に記載のモールド変圧器において、
前記複数個の貫通孔が形成された絶縁シートは、前記貫通孔が重ならないように複数枚積層して形成され、その各貫通孔に前記樹脂が充填されていることを特徴とするモールド変圧器。
The molded transformer according to claim 3,
The insulating sheet in which the plurality of through holes are formed is formed by laminating a plurality of sheets so that the through holes do not overlap with each other, and each through hole is filled with the resin. .
請求項1乃至4のいずれか1項に記載のモールド変圧器において、
前記孔又は貫通孔が円形若しくは楕円形状であることを特徴とするモールド変圧器。
The molded transformer according to any one of claims 1 to 4,
The mold transformer, wherein the hole or the through hole is circular or elliptical.
請求項1乃至5のいずれか1項に記載のモールド変圧器において、
前記絶縁シートは、有機絶縁シートからなることを特徴とするモールド変圧器。
The molded transformer according to any one of claims 1 to 5,
The mold transformer is an organic insulating sheet.
鉄心と、該鉄心に巻装された二次側巻線と、該二次側巻線の周囲に巻装された一次側巻線とを備え、前記一次側巻線と二次側巻線は、それぞれが複数巻回された巻線導体同士の層間に絶縁シートが配置され、これらが樹脂で一体にモールドされているモールド変圧器において、
前記鉄心の軸方向を中心に巻回された巻線の曲率が小さい一次側巻線及び二次側巻線の少なくとも何れかのコーナー部に位置する前記絶縁シートの少なくとも一部に孔が形成され、該孔には前記樹脂が充填されていることを特徴とするモールド変圧器。
An iron core, a secondary winding wound around the iron core, and a primary winding wound around the secondary winding, wherein the primary winding and the secondary winding are In a molded transformer in which an insulating sheet is disposed between layers of a plurality of wound conductors, each of which is molded integrally with a resin,
A hole is formed in at least a part of the insulating sheet positioned at a corner portion of at least one of the primary side winding and the secondary side winding with a small curvature of the winding wound around the axial direction of the iron core. The mold transformer is characterized in that the hole is filled with the resin.
請求項7に記載のモールド変圧器において、
前記コーナー部に位置する前記絶縁シートは、前記巻線導体と接しておらず、かつ、該巻線導体から鉄心軸方向に対して平行に伸びている前記絶縁シートの端部に貫通孔が形成された絶縁シートであり、かつ、前記コーナー部以外の絶縁シートは、貫通孔のない絶縁シートであり、前記貫通孔には前記樹脂が充填されていることを特徴とするモールド変圧器。
The molded transformer according to claim 7,
The insulating sheet located at the corner portion is not in contact with the winding conductor, and a through hole is formed at an end portion of the insulating sheet extending in parallel to the core axis direction from the winding conductor. The molded transformer is characterized in that the insulating sheet other than the corner portion is an insulating sheet having no through hole, and the through hole is filled with the resin.
請求項7に記載のモールド変圧器において、
前記コーナー部に位置する前記絶縁シートは、該絶縁シートの全体に複数個の貫通孔が形成されているか、若しくは前記複数個の貫通孔が形成された絶縁シートが、前記貫通孔が重ならないように複数枚積層して形成された絶縁シートであり、かつ、前記コーナー部以外の絶縁シートは、前記巻線導体と接しておらず、該巻線導体から鉄心軸方向に対して平行に伸びている前記絶縁シートの端部に貫通孔が形成された絶縁シートであり、前記貫通孔には前記樹脂が充填されていることを特徴とするモールド変圧器。
The molded transformer according to claim 7,
The insulating sheet located at the corner portion has a plurality of through holes formed in the whole insulating sheet, or the insulating sheet in which the plurality of through holes are formed does not overlap the through holes. And the insulating sheet other than the corner portion is not in contact with the winding conductor and extends in parallel to the core axis direction from the winding conductor. A molded transformer having a through hole formed at an end of the insulating sheet, wherein the resin is filled in the through hole.
JP2012023926A 2012-02-07 2012-02-07 Mold transformer Pending JP2013162009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023926A JP2013162009A (en) 2012-02-07 2012-02-07 Mold transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023926A JP2013162009A (en) 2012-02-07 2012-02-07 Mold transformer

Publications (1)

Publication Number Publication Date
JP2013162009A true JP2013162009A (en) 2013-08-19

Family

ID=49174008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023926A Pending JP2013162009A (en) 2012-02-07 2012-02-07 Mold transformer

Country Status (1)

Country Link
JP (1) JP2013162009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211132A (en) * 2014-04-25 2015-11-24 富士電機株式会社 Resin mold coil, manufacturing method thereof and mold transformer
JP2019056244A (en) * 2017-09-21 2019-04-11 株式会社ディスコ Installation method of solar cell panel and solar cell panel
KR20200096836A (en) * 2018-01-19 2020-08-13 에이비비 파워 그리즈 스위처랜드 아게 Apparatus, system and method for temperature measurement on dry transformers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615011A (en) * 1979-07-18 1981-02-13 Toshiba Corp Coil for electric device and manufacture thereof
JPS58124930U (en) * 1982-02-16 1983-08-25 ソニー株式会社 transformer
JPS5991711U (en) * 1982-12-10 1984-06-21 ダイヤモンド電機株式会社 Molded ignition coil
JPS59186316A (en) * 1983-04-07 1984-10-23 Toshiba Corp Foil winding transformer
JPS607110A (en) * 1983-06-27 1985-01-14 Toshiba Corp Foil wound transformer
JPS61144650U (en) * 1985-02-28 1986-09-06
JPS62250617A (en) * 1986-04-23 1987-10-31 Toshiba Corp Foil-wound transformer
JPH0254957A (en) * 1988-08-19 1990-02-23 Hitachi Ltd Semiconductor device and manufacture thereof
JP2004241401A (en) * 2003-02-03 2004-08-26 Nichia Chem Ind Ltd Light emitting diode lamp

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615011A (en) * 1979-07-18 1981-02-13 Toshiba Corp Coil for electric device and manufacture thereof
JPS58124930U (en) * 1982-02-16 1983-08-25 ソニー株式会社 transformer
JPS5991711U (en) * 1982-12-10 1984-06-21 ダイヤモンド電機株式会社 Molded ignition coil
JPS59186316A (en) * 1983-04-07 1984-10-23 Toshiba Corp Foil winding transformer
JPS607110A (en) * 1983-06-27 1985-01-14 Toshiba Corp Foil wound transformer
JPS61144650U (en) * 1985-02-28 1986-09-06
JPS62250617A (en) * 1986-04-23 1987-10-31 Toshiba Corp Foil-wound transformer
JPH0254957A (en) * 1988-08-19 1990-02-23 Hitachi Ltd Semiconductor device and manufacture thereof
JP2004241401A (en) * 2003-02-03 2004-08-26 Nichia Chem Ind Ltd Light emitting diode lamp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211132A (en) * 2014-04-25 2015-11-24 富士電機株式会社 Resin mold coil, manufacturing method thereof and mold transformer
JP2019056244A (en) * 2017-09-21 2019-04-11 株式会社ディスコ Installation method of solar cell panel and solar cell panel
JP7092479B2 (en) 2017-09-21 2022-06-28 株式会社ディスコ How to install the solar panel
KR20200096836A (en) * 2018-01-19 2020-08-13 에이비비 파워 그리즈 스위처랜드 아게 Apparatus, system and method for temperature measurement on dry transformers
JP2021510821A (en) * 2018-01-19 2021-04-30 アー・ベー・ベー・パワー・グリッズ・スウィツァーランド・アクチェンゲゼルシャフトAbb Power Grids Switzerland Ag Equipment, systems and methods for temperature measurement for dry transformers
JP7078730B2 (en) 2018-01-19 2022-05-31 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Equipment, systems and methods for temperature measurement for drywall
KR102519785B1 (en) 2018-01-19 2023-04-10 히타치 에너지 스위처랜드 아게 Apparatus, system and method for temperature measurement on dry transformers
US11835392B2 (en) 2018-01-19 2023-12-05 Hitachi Energy Ltd Apparatus, system and method for temperature measurement for dry-type transformer

Similar Documents

Publication Publication Date Title
US7830233B2 (en) Electrical induction device for high-voltage applications
JP2013162009A (en) Mold transformer
EP2439755A1 (en) Dry-type electrical transformer
JP5414824B2 (en) Isolated DC-DC converter
JP6014747B2 (en) Oil-filled transformer
JP2012164914A (en) Transformer
JP6552779B1 (en) Stationary inductor
JP5377379B2 (en) Dry transformer
CN203850132U (en) Amorphous alloy transformer coil
JP6656187B2 (en) Stationary inductor
KR102618677B1 (en) Transformer containing windings
JP5177231B2 (en) Transformer used for arc welding machine and assembly method of transformer used for arc welding machine
CN105261468A (en) Flat high-voltage transformer and manufacturing method thereof
JP3216835U (en) Coil spacer structure for molded transformer
JP6255697B2 (en) Resin molded coil, manufacturing method thereof, and molded transformer
US11355278B2 (en) Insulating transformers
JP2016157915A (en) Transformer for reducing eddy current losses of coil
JP5885898B1 (en) Stationary induction equipment
Lucas Historical development of the transformer
KR200479356Y1 (en) Current transformer for gas insulated switchgear
KR20130076934A (en) Transformer
JP6729160B2 (en) Transformer
KR20140076456A (en) Circular coil mold transformer
JP2023005612A (en) High frequency transformer winding structure
KR20150125420A (en) Oil immersed power transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609