JPS6052027A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6052027A
JPS6052027A JP15981283A JP15981283A JPS6052027A JP S6052027 A JPS6052027 A JP S6052027A JP 15981283 A JP15981283 A JP 15981283A JP 15981283 A JP15981283 A JP 15981283A JP S6052027 A JPS6052027 A JP S6052027A
Authority
JP
Japan
Prior art keywords
semiconductor
insulator
superlattice
film
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15981283A
Other languages
Japanese (ja)
Inventor
Masaki Ogawa
正毅 小川
Takashi Mizutani
隆 水谷
Toshio Baba
寿夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15981283A priority Critical patent/JPS6052027A/en
Publication of JPS6052027A publication Critical patent/JPS6052027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain low interface density by forming a superlattice insulator film by the laminating of a substance having a lattice constant at an integral ratio to a lattice constant of a semiconductor substrate on the substrate. CONSTITUTION:A superlattice insulating film 4 having structure in which first insulators 2 and second insulators or semiconductors 3 are laminated alternately is applied on the surface of a semiconductor substrate 1, and a metallic thin-film 5 is applied on the insulating film 4. When P type GaAs is used as the semiconductor substrate 1, CaF2 is selected as the first insulator 2 and BaF2 as the second insulator, and each insulator is applied alternately through a molecular-beam epitaxial method at every 15Angstrom and 6Angstrom , or Ba0.26Ca0.74F2 is employed as the first insulator and GaAs or AlAs as the second semiconductor. Since the superlattice film by the laminating of a substance having a lattice constant at an integral ratio to a lattice constant of a substrate semiconductor is used, strains among the semiconductor and the insulating films can be absorbed.

Description

【発明の詳細な説明】 本発明は界面準位の少ない良好な特性を示す半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that exhibits good characteristics with few interface states.

半導体表面への絶縁膜形成技術は、絶縁ゲート屋電界効
果トランジスタ(MI 8FlaT )や、半導体装置
の表面安定化にとってきわめて重要であり、半導体自体
の酸化膜を形成する方法(熱酸化法、陽極酸化法、プラ
ズマ酸化法)や被着法によって絶縁膜を形成する方法(
化学気相成長法、スパッタリング法などKよる酸化ケイ
素膜、窒化ケイ素M、酸化アルクニウム膜の形成)が試
みられてきた。これらの中で低界面単位密度が得られて
いる良好なMIa系はシリコン(sl)の熱酸化によっ
て形成された二酸化ケイ素(8i02)−シリコン系の
みであった。とくにI−V化合物半導体では、材料のも
つ不安定性のため、良好なMIS特性祉得られるに至り
ていない。
The technology for forming an insulating film on the surface of a semiconductor is extremely important for the surface stabilization of insulated gate field effect transistors (MI8FlaT) and semiconductor devices. method, plasma oxidation method) or deposition method (
Attempts have been made to form silicon oxide films using K, silicon nitride M, and alkium oxide films, such as chemical vapor deposition and sputtering methods. Among these, the only good MIa system with a low interfacial unit density was the silicon dioxide (8i02)-silicon system formed by thermal oxidation of silicon (sl). In particular, IV compound semiconductors have not been able to provide good MIS characteristics due to the instability of the material.

上記の従来の方法で形成される絶縁膜は非晶質のもので
あり走が、最近、これを単結晶化し、しかも基板となる
半導体と格子整合のとれた絶縁膜を半導体表面上に被着
する仁とが試みられている。
The insulating film formed by the conventional method described above is amorphous, but recently it has been made into a single crystal, and an insulating film that is lattice-matched to the semiconductor that serves as the substrate is deposited on the semiconductor surface. An attempt is being made to do this.

仁のような単結晶の絶縁膜を用い次場合には、半導体と
絶縁膜の格子整合を正確にとらなければ、低界面密度が
得られない。このため、これらの試みは未だ成功してい
ない。
When using a single-crystal insulating film such as nickel, a low interfacial density cannot be obtained unless the lattice matching between the semiconductor and the insulating film is accurately achieved. For this reason, these attempts have not yet been successful.

本発明は、単結晶絶縁膜のかゎりに超格子絶縁膜を用い
ることにより、従来存在した単結晶絶縁膜と半導体間の
格子不整合にもとすく歪みを超格子内に吸収させ、MI
8構造に限らず一般に半導体上に絶縁体が形成された半
導体装置において良好な低界面密度の構造を得ようとす
るものである。
By using a superlattice insulating film in place of a single crystal insulating film, the present invention can easily absorb strain in the superlattice due to the lattice mismatch between the conventional single crystal insulating film and the semiconductor, and the MI
The purpose of this invention is to obtain a structure with a good low interface density not only in the 8 structure but also in general in a semiconductor device in which an insulator is formed on a semiconductor.

以下、本発明の実施例を図面にもとづいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の第1の実施例であるMIS装置の断面
を示す。半導体基板1の表面に第1の絶縁体2と第2の
絶縁体3が交互に積層された構造をもつ超格子絶縁膜4
が被着され、さらにその上に金属薄膜5が被着されてい
る。ここで半導体基板1としては例えばp型GaAsを
用いた場合には第1の絶縁層はCartを、第2の絶縁
層としてはBaF2を選びそれぞれ15Aおよび6Aづ
つ分子線エピタキシ法で全体の厚さが210OAになる
まで交互に被着する。金属薄膜5としてはAIを厚さ3
000 Aだけ真空蒸着法で被着した。このMIS装置
の界面密度はI X 10’ ” cm−”ときわめて
低い値が得られた。半導体基板1としてp型InPを用
いた場合には、CaFj2 として15 Ah BaF
t として17Aの積層からなる超格子絶縁膜を用いる
と低界面密度が得られる。絶縁物としてCaF2とBa
F2以外にスピネル(MgAJ、 O,)とMgOの組
みあわせも有効である。この場合、スピネルおよびMg
Oは下地半導体基板の格子常数とほぼ整数比を示す格子
常数をもつため、その積層による超格子薄膜も容易に半
導体基板上に単結晶化して成長する。
FIG. 1 shows a cross section of an MIS device that is a first embodiment of the present invention. A superlattice insulating film 4 having a structure in which first insulators 2 and second insulators 3 are alternately stacked on the surface of a semiconductor substrate 1.
is deposited, and a metal thin film 5 is further deposited thereon. Here, when p-type GaAs is used as the semiconductor substrate 1, for example, Cart is selected as the first insulating layer, and BaF2 is selected as the second insulating layer, and the total thickness is reduced to 15A and 6A by molecular beam epitaxy, respectively. are alternately deposited until 210OA is reached. The metal thin film 5 is made of AI with a thickness of 3
000 A was deposited by vacuum evaporation. The interfacial density of this MIS device was as low as I x 10' cm-. When p-type InP is used as the semiconductor substrate 1, 15 Ah BaF as CaFj2
When a superlattice insulating film consisting of a 17A stack is used as t, a low interfacial density can be obtained. CaF2 and Ba as insulators
In addition to F2, a combination of spinel (MgAJ, O,) and MgO is also effective. In this case, spinel and Mg
Since O has a lattice constant that is approximately an integer ratio with the lattice constant of the underlying semiconductor substrate, a superlattice thin film formed by stacking O is also easily grown as a single crystal on the semiconductor substrate.

第2図は本発明の第2の実施例であるNIB装置の断面
を示す。半導体基板1の表面に第1の絶縁体2と第2の
半導体31が交互に積層された構造をもつ超格子絶縁膜
41が被着され、さらにその上に金属薄膜5が被着され
ている。半導体基板1としてp型GaAsを用いた場合
には第1の絶縁体としてけBa6.t6CaO,14F
2が、第2の半導体31としては不純物をドープしてい
ないG a A sもしくはAlAsが分子線エピタキ
シ法によって被着される。
FIG. 2 shows a cross section of an NIB device which is a second embodiment of the present invention. A superlattice insulating film 41 having a structure in which a first insulator 2 and a second semiconductor 31 are alternately laminated is deposited on the surface of a semiconductor substrate 1, and a metal thin film 5 is further deposited thereon. . When p-type GaAs is used as the semiconductor substrate 1, Ba6. t6CaO, 14F
2, GaAs or AlAs not doped with impurities is deposited as the second semiconductor 31 by molecular beam epitaxy.

BaO,!6CaOJ4F2の厚さは30 Ah Ga
AaもしくはA I A sの厚さは6人が適当である
。第2の半導体としてG a A sを選んだ場合にお
いてもその厚さは充分薄いので、超格子の価電子帯と伝
導帯間のエネルギーギャップは2.4eV以上になり、
GaAsに不純物をドープしない場合には、超格子層は
絶縁体特性を示す。この場合の界面準位密度は5X10
”6R−2ときわめて低い値を示した。第1の絶縁体と
しては13ao、ts Cab、?4 Ft以外にGa
Asの格子定数と整数比の格子定数をもつ絶縁物であれ
ば、他のものでもよく例えばMgO1MgAhO4等が
用いられる。半導体基板1としてInPを用いた場合に
は、第1の絶縁体としてFiBao、1scao、as
 Ptが最適であり、第2の半導体としてはInP *
 In6.52AI6.4@ As等が用いられる。
BaO,! The thickness of 6CaOJ4F2 is 30 Ah Ga
The appropriate thickness for Aa or AIAs is 6 people. Even when Ga As is selected as the second semiconductor, its thickness is sufficiently thin, so the energy gap between the valence band and conduction band of the superlattice is 2.4 eV or more,
When GaAs is not doped with impurities, the superlattice layer exhibits insulating properties. In this case, the interface state density is 5X10
``It showed an extremely low value of 6R-2.As the first insulator, in addition to 13ao, ts Cab, and ?4Ft, Ga
Any other insulator may be used as long as it has a lattice constant that is an integer ratio to the lattice constant of As, such as MgO1MgAhO4. When InP is used as the semiconductor substrate 1, FiBao, 1scao, as
Pt is optimal, and InP* as the second semiconductor
In6.52AI6.4@As etc. are used.

本発明による半導体装置は、従来良好な界面特性が得ら
れなかったI−V化合物、 II−Vl化合物に対して
もきわめて低い界面密度を与える。この結果、GaAs
 e InP等のi−v化合物に対しても、良好な特性
のnチャンネルもしくはpチャンネル絶縁ゲート型電界
効果トランジスタ、及び良好な特性のフィールド領域を
含む半導体装置が提供できる。
The semiconductor device according to the present invention provides extremely low interfacial density even for IV compounds and II-Vl compounds, for which good interfacial properties have not conventionally been obtained. As a result, GaAs
Even for i-v compounds such as e InP, it is possible to provide an n-channel or p-channel insulated gate field effect transistor with good characteristics and a semiconductor device including a field region with good characteristics.

5一 本発明の特徴は、絶縁体として基板半導体の格子常数と
整数比の格子常数をもつ物質の積層による超格子膜を用
いて構成された半導体装置である。
51 A feature of the present invention is a semiconductor device constructed using, as an insulator, a superlattice film formed by stacking materials having a lattice constant in an integer ratio with the lattice constant of a substrate semiconductor.

その低界面密度特性は半導体と絶縁膜間の歪みを超格子
膜内に吸収することKよって得られている。
Its low interface density property is obtained by absorbing strain between the semiconductor and the insulating film into the superlattice film.

したがって本発明の実施例で示した材料の組あわせ以外
に対しても有効であることは云うまでもない。例えば半
導体基板としては、p型InGaAs 。
Therefore, it goes without saying that the present invention is effective for combinations of materials other than those shown in the examples. For example, the semiconductor substrate is p-type InGaAs.

I n GaAs P混晶等が用いられる。In GaAs P mixed crystal etc. are used.

また前記実施例ではMI8装置を用いて本発明を説明し
たが、別にこれに限る必要はなく、一般に半導体上に低
い界面準位密度で絶縁体を形成したいとき本発明は有効
である。
Furthermore, although the present invention has been explained using an MI8 device in the above embodiment, there is no need to limit it to this, and the present invention is generally effective when it is desired to form an insulator with a low interface state density on a semiconductor.

また上記整数比については5整数の値祉なるべく5を超
えない方がよい。(例えば3:5.2:5など)整数比
からのずれも10%以内であることが望ましい。
Regarding the above integer ratio, it is preferable that the value of 5 integers does not exceed 5 if possible. (For example, 3:5.2:5, etc.) It is desirable that the deviation from the integer ratio is also within 10%.

また絶縁膜上に被着される金属膜のかわりに低抵抗の半
導体膜を用いてもよい。
Furthermore, a low-resistance semiconductor film may be used instead of the metal film deposited on the insulating film.

6一61

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の実施例であるMI8
装置の断面を示す図であり、1は第1の半導体からなる
基板、2は第1の絶縁体、3は第2の絶縁体、31は第
2の半導体、4,41は超格子絶縁体膜、5は金属膜で
ある。 代理人弁理士内 原 晋 7− 第1図 第2図 工〕 入2 −(−1 149− 41 I
FIG. 1 and FIG. 2 each show an MI8 which is an embodiment of the present invention.
It is a diagram showing a cross section of the device, in which 1 is a substrate made of a first semiconductor, 2 is a first insulator, 3 is a second insulator, 31 is a second semiconductor, and 4 and 41 are superlattice insulators. The film 5 is a metal film. Representative Patent Attorney Susumu Hara 7- Figure 1, Figure 2] Iri 2-(-1 149- 41 I

Claims (1)

【特許請求の範囲】[Claims] 第1の半導体上に少なくとも絶縁膜が被着された半導体
装置において、該絶縁体が第1の絶縁体と第2の絶縁体
、もしくは第1の絶縁体と第2の半導体が交互に積層さ
れた超格子構造をもち、かつ第1の絶縁体と第2の絶縁
体もしくは第1の絶縁体と第2の半導体の格子定数が、
第1の半導体の格子定数とそれぞれほぼ!!数比を示す
ことを特徴とする半導体装置。
In a semiconductor device in which at least an insulating film is deposited on a first semiconductor, the insulator is a first insulator and a second insulator, or a first insulator and a second semiconductor are alternately stacked. has a superlattice structure, and the lattice constants of the first insulator and the second insulator or the first insulator and the second semiconductor are
The lattice constant of the first semiconductor and each approximately! ! A semiconductor device characterized by exhibiting a numerical ratio.
JP15981283A 1983-08-31 1983-08-31 Semiconductor device Pending JPS6052027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15981283A JPS6052027A (en) 1983-08-31 1983-08-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15981283A JPS6052027A (en) 1983-08-31 1983-08-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6052027A true JPS6052027A (en) 1985-03-23

Family

ID=15701787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15981283A Pending JPS6052027A (en) 1983-08-31 1983-08-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6052027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398135A2 (en) * 1989-05-13 1990-11-22 Forschungszentrum Jülich Gmbh Optoelectronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398135A2 (en) * 1989-05-13 1990-11-22 Forschungszentrum Jülich Gmbh Optoelectronic device

Similar Documents

Publication Publication Date Title
US7951684B2 (en) Semiconductor device method of manfacturing a quantum well structure and a semiconductor device comprising such a quantum well structure
JP2000150503A (en) Product comprising oxide layer on semiconductor substrate based on gallium-arsenic and gallium nitride
TW201826327A (en) Integrated Epitaxial Metal Electrodes
US4797716A (en) Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields
JP3200142B2 (en) Field-effect transistor
JPH0354854B2 (en)
JPH0570309B2 (en)
US4851886A (en) Binary superlattice tunneling device and method
JPH0661270A (en) Manufacture of semiconductor device and semiconductor device
US4532533A (en) Ballistic conduction semiconductor device
JP2679396B2 (en) Field effect transistor
JPS6052027A (en) Semiconductor device
JPH08306909A (en) Ingaas field effect transistor
JP2571583B2 (en) III-V compound semiconductor field effect transistor
JP3463776B2 (en) Heterojunction semiconductor device
US4823171A (en) Compound semiconductor device
WO2010119244A1 (en) P-type semiconductor devices
US9876090B1 (en) Lattice matched and strain compensated single-crystal compound for gate dielectric
JP2817718B2 (en) Tunnel transistor and manufacturing method thereof
JPS61268069A (en) Semiconductor device
JP2616634B2 (en) Field effect transistor
Yang et al. High‐field transport properties of InAs x P1− x/InP (0.3≤ x≤ 1.0) modulation‐doped heterostructures at 300 and 77 K
JPS61110469A (en) Semiconductor field effect transistor
JP2541280B2 (en) Semiconductor device
JPH031546A (en) Field-effect transistor