JPS6051654A - Iron removal purification for ceramic raw material - Google Patents

Iron removal purification for ceramic raw material

Info

Publication number
JPS6051654A
JPS6051654A JP15634683A JP15634683A JPS6051654A JP S6051654 A JPS6051654 A JP S6051654A JP 15634683 A JP15634683 A JP 15634683A JP 15634683 A JP15634683 A JP 15634683A JP S6051654 A JPS6051654 A JP S6051654A
Authority
JP
Japan
Prior art keywords
raw material
chloride
ceramic raw
small amount
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15634683A
Other languages
Japanese (ja)
Inventor
鈴木 篁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15634683A priority Critical patent/JPS6051654A/en
Publication of JPS6051654A publication Critical patent/JPS6051654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は僅かに不純鉄分を含有するため有用な陶磁器、
耐火物等の原料となシ得ない窯業原料に、塩素または分
解し易い少量の塩化物、たとえば塩化アンモニウム、塩
化アルミニウム。
[Detailed Description of the Invention] The present invention provides ceramics useful because they contain a slight amount of impure iron,
Chlorine or small amounts of easily decomposed chlorides, such as ammonium chloride and aluminum chloride, are used as raw materials for ceramics, such as refractories.

塩化チタン、塩化錫、塩化亜鉛等を添加し、600℃以
上の温度(できれば700℃以上が望ましい)に一定時
間加熱し、後生成揮発物を除去し、残渣に精製窯業原料
を得ようとするものである1、加熱に際しては、その含
有鉄分が、FeC12になるに必要な量(当量がよい)
の塩素または塩化物を加え、更らに鉄分に当量の炭素質
物を加え、一定時間一定温度に加熱し十分その含有鉄分
をFeCl2にするようにして、後生成揮発物を追出し
て残渣に精製窯業原料を得る脱鉄精製法に関するもので
あって、これにより塩素および塩化物の消費を極力少く
して、経済的に容易に脱鉄を行なうことができ、また脱
鉄温度が比較的低温のため窯業原料の可塑性に著しい変
化を生じないという利点がある。
Add titanium chloride, tin chloride, zinc chloride, etc., heat to a temperature of 600°C or higher (preferably 700°C or higher) for a certain period of time, remove after-product volatiles, and obtain refined ceramic raw materials from the residue. 1. When heating, the amount of iron necessary to convert it to FeC12 (equivalent is better)
of chlorine or chloride, then add carbonaceous material equivalent to the iron content, and heat the iron content at a certain temperature for a certain period of time to sufficiently convert the iron content into FeCl2.Then, the after-produced volatiles are expelled and the residue is used for refining ceramics. This relates to a deiron refining method for obtaining raw materials, which allows deironization to be carried out economically and easily by minimizing the consumption of chlorine and chlorides, and because the deironation temperature is relatively low. It has the advantage of not causing significant changes in the plasticity of ceramic raw materials.

Fezesは割合低温度、たとえば500〜600℃で
塩素と反応し、または塩化物と反応し、FeC13とな
る。FeC13+の沸点は317℃で、はるかに低温の
だめ直に揮発する1、シがしFeOはこれより高い温度
でないと塩素または塩化物と反応しない。これを反応さ
せるためにはFeC13中に相当長時間一定温度以上に
保って、総ての鉄がFeCl2になるようにしなければ
ならない。十分な温度と時間に保てば、生成したFeC
J aと反応してFeOはFeC1zとなる。すなわち
、FeO+ 2FeC113+ C→3FeClz +
 COとなる。
Fezes reacts with chlorine at relatively low temperatures, e.g. 500-600<0>C, or with chlorides to form FeC13. FeC13+ has a boiling point of 317° C. and evaporates immediately at much lower temperatures, whereas sintered FeO only reacts with chlorine or chloride at higher temperatures. In order to cause this reaction, it is necessary to keep FeC13 at a temperature above a certain level for a considerable period of time so that all the iron becomes FeCl2. If kept at sufficient temperature and time, the generated FeC
FeO reacts with J a to become FeC1z. That is, FeO+ 2FeC113+ C→3FeClz +
Becomes CO.

このため、本発明では調合物を一定温度以上に一定時間
保つことを条件とし、容器は耐酸材料で内張すしだ、僅
かに加圧が可能のようKしたものを使用した。
For this reason, in the present invention, the preparation is kept at a certain temperature or higher for a certain period of time, and the container is lined with an acid-resistant material and is hardened so that it can be slightly pressurized.

更に添加物毎の化学反応を考えれば、塩素の場合、 FeC13+ 2C12+ 30−+ 2FeC12+
 3CO(1)FeO+ CA’2 + C−+ Fe
Cl2+ CO(2)F’eO+ 2FeCJ3+ C
→3FeCA’2+ CO(3)添加物がAICA’3
の場合は、 Fe20a + 2AICA!3−+ 2FeCA!3
+Al2O3(4)FeC13+ FeO+ C−+ 
2FeCAh + CO(5)FeO+Fe2O3+2
AIC13+ C−+ 3FeCA!2+A1z03+
 CO(6) (4)〜(6)反応が適宜性なわれ最後はFeCl2と
なる。
Furthermore, considering the chemical reaction of each additive, in the case of chlorine, FeC13+ 2C12+ 30-+ 2FeC12+
3CO(1)FeO+ CA'2 + C-+ Fe
Cl2+ CO(2)F'eO+ 2FeCJ3+ C
→3FeCA'2+ CO(3) additive is AICA'3
In the case of , Fe20a + 2AICA! 3-+2FeCA! 3
+Al2O3(4)FeC13+ FeO+ C-+
2FeCAh + CO(5)FeO+Fe2O3+2
AIC13+ C-+ 3FeCA! 2+A1z03+
CO(6) (4) - (6) The reaction takes place as appropriate, and the final product is FeCl2.

添加物がNH4C12の場合は、 FeO+ 2NH4CA’−+FeC1z + 2NH
3+H2OFe20s+4NH<CI+C→2FeC1
2+4NHs+2HzO+COこの場合十分反応させて
FeCl2にするだめに社少量の炭素質物を加え、僅か
に加圧′状態に保つ必要がある。
When the additive is NH4C12, FeO+ 2NH4CA'-+FeC1z + 2NH
3+H2OFe20s+4NH<CI+C→2FeC1
2+4NHs+2HzO+CO In this case, in order to react sufficiently to form FeCl2, it is necessary to add a small amount of carbonaceous material and maintain a slightly pressurized state.

更に実施例を挙げて説明すれば次の通りである。Further explanation will be given below with reference to examples.

実施例1 天草陶石10011をとシ、塩素1.36.9炭素質物
0.9gを加え、800℃に1時間加熱後反応揮発物を
追出して、残渣に精製窯業原料94gを得だ。脱鉄前後
の原料及び生成物の化学成分は次の通シである。なお、
この際の脱鉄率は約95%であった。
Example 1 Amakusa pottery stone 10011 was ground, 0.9 g of chlorine 1.36.9 carbonaceous material was added, and after heating at 800° C. for 1 hour, reaction volatiles were expelled to obtain 94 g of refined ceramic raw material as a residue. The chemical composition of raw materials and products before and after iron removal is as follows. In addition,
The iron removal rate at this time was about 95%.

項目 1g、1oSs 5iOz Al2O3Fe2Q
3脱鉄前 3.82 75.67 14.32 3.8
6脱鉄後 1.23 81.50 15.50 0.1
2実施例2 サバ土、蛙目粘土調合物100Iに対し、0.911の
塩化アルミニウムを加え、さらに少量の炭素質物を加え
、前記処理容器に入れ、800℃に1時間処理後揮発生
成物を追出して精製物98.Pを得た。精製前後の化学
成分は次表の通りである。この際の脱鉄率は約95%に
達した。
Item 1g, 1oSs 5iOz Al2O3Fe2Q
3 Before iron removal 3.82 75.67 14.32 3.8
6 After iron removal 1.23 81.50 15.50 0.1
2 Example 2 0.911 aluminum chloride was added to 100 I of the mackerel soil and frog's eye clay preparation, a small amount of carbonaceous material was added, the mixture was placed in the treatment container, and the volatile products were removed after being treated at 800°C for 1 hour. Purified products98. I got P. The chemical components before and after purification are shown in the table below. The iron removal rate at this time reached approximately 95%.

((6) (イ) (イ) (イ) 精製前 5.93 66.67 24.12 1.05
精製後 1.20 69.30 25.20 0.10
実施例3 北支産守土頁岩100I に対し、2.51!の塩素と
1.511の炭素質物を加え、800℃で1時間処理し
て後生成揮発物を追出して残渣に精製券±頁岩85.9
を得だ。脱鉄前後の化学成分は次表の通りであり、精製
頁岩の4大度はS。
((6) (A) (A) (A) Before purification 5.93 66.67 24.12 1.05
After purification 1.20 69.30 25.20 0.10
Example 3 2.51 for Kitashibun Morito Shale 100I! of chlorine and 1.511 of a carbonaceous material were added, and the mixture was treated at 800°C for 1 hour to drive out the after-produced volatiles and the residue was purified into a refined shale of 85.9%.
I got it. The chemical composition before and after iron removal is as shown in the table below, and the four degrees of refined shale are S.

K、40であった。K, it was 40.

(働 (イ) (@(働 15.0 20.2 60.1 3.52.30 24
゜0 72.0 1.0実施例4 山東産告土頁岩100 g に対し塩化アルミニウム3
.6!!を加え、さらに1gの炭素質物を加え、800
℃に1時間処理し、揮発物を追出して、残渣に精製呑土
頁岩83Fを得た。脱鉄前後の化学成分は次の通りであ
る。また脱鉄率はほぼ85q6であり、精製原料の面1
火度はS、に、40であった。
(Work (I) (@(Work 15.0 20.2 60.1 3.52.30 24
゜0 72.0 1.0 Example 4 3 aluminum chloride for 100 g of Shandong shale
.. 6! ! and 1g of carbonaceous material, 800
℃ for 1 hour to drive out the volatiles, and the residue was purified Dono Shale 83F. The chemical components before and after iron removal are as follows. In addition, the iron removal rate is approximately 85q6, which is approximately 1% of the refined raw material.
The fire level was S, 40.

実施例5 フライアッシュ100gに対し塩素2E。Example 5 2E of chlorine for 100g of fly ash.

(炭素質物は未燃カーボンを利用するため添加せず)脱
鉄容器に取り、800℃で1時間処理し、精製フライア
ッシュ9’lを得た。フライアッシュは微粉で、熱処理
を経た中空材料であり、精製すれば陶磁器原料、電子材
料その他に好適な原料である。精製前後の化学成分の例
は次の通りである。脱鉄率は約95チに達した。
(No carbonaceous material was added because unburned carbon was used.) The mixture was placed in a deironization container and treated at 800°C for 1 hour to obtain 9'l of purified fly ash. Fly ash is a fine powder, a hollow material that has undergone heat treatment, and if refined, it is a suitable raw material for ceramic raw materials, electronic materials, and other uses. Examples of chemical components before and after purification are as follows. The iron removal rate reached approximately 95 cm.

精製前後のフライアッシュ成分 精製後 1.0056.7 282 02 − − 一
本発明方法によると、僅かに不純鉄分を含有するため有
用な原料となり得ない窯業原料から塩素および塩化物の
消費は非常に少くて経済的に容易に脱鉄を行なって有用
な窯業原料を精製することが可能であυ、しかも、この
場合の脱鉄温度が比較的低温であるから得られた窯業原
料の可塑性に著しい変化がないという利点がある。
Fly ash components before and after refining After refining 1.0056.7 282 02 - - According to the method of the present invention, the consumption of chlorine and chloride from the ceramic raw material, which cannot be used as a useful raw material because it contains a slight amount of impure iron, is greatly reduced. It is possible to refine a useful ceramic raw material by removing iron in a small amount and economically.Moreover, since the iron removal temperature in this case is relatively low, the plasticity of the obtained ceramic raw material is remarkable. It has the advantage of not changing.

特許出願人 鈴 木 箪Patent applicant Suzuki Kan

Claims (1)

【特許請求の範囲】[Claims] ■、僅かに不純鉄分を含有するため有用な窯業原料にな
り得ない、たとえば陶石、粘土、珪砂、竹土頁炭、微粉
石炭灰等の低品位の窯業原料に、少量の炭素質物および
少量の塩素または分解し易い塩化物、たとえば塩化アン
モニウム、塩化アルミニウム、塩化チタン、塩化錫、塩
化亜鉛等を添加し、600℃以上の温度に一定時間加熱
を保ち、十分その含有鉄分をFeCl2とし、後生成揮
発物を追出して残渣に精製原料を得ようとするものであ
シ、不純鉄分が殆んど総てFeC12になることを待ち
、後生成揮発物を追出して精製することを特徴とする窯
業原料の脱鉄精製法。
■ Low-grade ceramic raw materials such as pottery stone, clay, silica sand, bamboo shale coal, and pulverized coal ash, which cannot be used as a useful ceramic raw material because they contain a small amount of impure iron, contain a small amount of carbonaceous matter and a small amount of carbonaceous material. Add chlorine or easily decomposable chlorides such as ammonium chloride, aluminum chloride, titanium chloride, tin chloride, zinc chloride, etc., maintain heating at a temperature of 600°C or higher for a certain period of time, sufficiently convert the iron content into FeCl2, and then This ceramic industry aims to obtain a refined raw material from the residue by expelling the produced volatiles, and is characterized by waiting until almost all of the impure iron becomes FeC12, and then refining by expelling the produced volatiles. Raw material deiron refining method.
JP15634683A 1983-08-29 1983-08-29 Iron removal purification for ceramic raw material Pending JPS6051654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15634683A JPS6051654A (en) 1983-08-29 1983-08-29 Iron removal purification for ceramic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15634683A JPS6051654A (en) 1983-08-29 1983-08-29 Iron removal purification for ceramic raw material

Publications (1)

Publication Number Publication Date
JPS6051654A true JPS6051654A (en) 1985-03-23

Family

ID=15625749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15634683A Pending JPS6051654A (en) 1983-08-29 1983-08-29 Iron removal purification for ceramic raw material

Country Status (1)

Country Link
JP (1) JPS6051654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183129B1 (en) 1995-11-20 2001-02-06 Minolta Co., Ltd. Projector and a measuring device provided with the same
US7485864B2 (en) 2003-08-06 2009-02-03 Testo Ag Radiometer, sighting device for a radiometer and method therefor
CN109053135A (en) * 2018-07-11 2018-12-21 佛山市湛蓝环保设备有限公司 Ceramic raw material iron-removal and whitening method
GB2574571A (en) * 2018-03-09 2019-12-18 Land Instruments Int Ltd Alignment system for an infra-red sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183129B1 (en) 1995-11-20 2001-02-06 Minolta Co., Ltd. Projector and a measuring device provided with the same
US6280082B1 (en) 1995-11-20 2001-08-28 Minolta Co., Ltd. Projector and a measuring device provided with the same
US7485864B2 (en) 2003-08-06 2009-02-03 Testo Ag Radiometer, sighting device for a radiometer and method therefor
GB2574571A (en) * 2018-03-09 2019-12-18 Land Instruments Int Ltd Alignment system for an infra-red sensor
CN109053135A (en) * 2018-07-11 2018-12-21 佛山市湛蓝环保设备有限公司 Ceramic raw material iron-removal and whitening method

Similar Documents

Publication Publication Date Title
US6231822B1 (en) Recovering chloride and sulfate compounds from spent potliner
RU2567977C2 (en) Method of extraction of metals from aluminium-bearing and titaniferous ores and residual rock
HU210639B (en) Procedure for operating of glass-melting furnace
JPS6060913A (en) Method of removing impurities from piece
CN113293299A (en) Resource utilization method for arsenic-containing hazardous waste
US2624698A (en) Method of producing a purified coke
JPS6051654A (en) Iron removal purification for ceramic raw material
JP6654758B2 (en) Method for treating residue containing rare earth
JP3852790B2 (en) Method for producing oxide ceramics
RU2200721C2 (en) Ceramic mass for wall ceramics article making
JP2994045B2 (en) Method for producing barium-containing inorganic solid composition, composition of this kind, additive for producing ceramics and ceramics
RU1791420C (en) Mass for ceramic article preparing
US1363387A (en) Samuel l
WO1991003433A1 (en) Method of manufacturing glass-ceramic articles
JP3624033B2 (en) Artificial lightweight aggregate
KR100522823B1 (en) Method of preparing pitch from tar sludge
JPH066487B2 (en) A method for producing high quality zeolite from fly ash.
JPS63291678A (en) Treatment of aluminum dross
DE2016766C3 (en) Artificial stone and method of making the same
Probst GRAVEL MUD- AN ADDITIVE RAW MATERIAL FOR STRUCTURAL CERAMIC PRODUCTS
SU1701697A1 (en) Ceramic mass for making bricks
SU1452785A1 (en) Method of removing dust from electric precipitator when cleaning flue gases in production of phosphorus
KR810000588B1 (en) Method for the production of aluminium-silicon alloys
SU1479415A1 (en) Method of producing silicon
JPH0774096B2 (en) Method for manufacturing mullite material