JPS6051025B2 - Accumulator with float-operated expansion device - Google Patents

Accumulator with float-operated expansion device

Info

Publication number
JPS6051025B2
JPS6051025B2 JP52106616A JP10661677A JPS6051025B2 JP S6051025 B2 JPS6051025 B2 JP S6051025B2 JP 52106616 A JP52106616 A JP 52106616A JP 10661677 A JP10661677 A JP 10661677A JP S6051025 B2 JPS6051025 B2 JP S6051025B2
Authority
JP
Japan
Prior art keywords
accumulator
float
evaporator
refrigerant
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52106616A
Other languages
Japanese (ja)
Other versions
JPS5440351A (en
Inventor
一也 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52106616A priority Critical patent/JPS6051025B2/en
Publication of JPS5440351A publication Critical patent/JPS5440351A/en
Publication of JPS6051025B2 publication Critical patent/JPS6051025B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/315Expansion valves actuated by floats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Temperature-Responsive Valves (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は冷凍サイクル中の膨脹装置に関し、とくにフロ
ート作動式膨脹装置を有するアキュムレータに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an expansion device in a refrigeration cycle, and more particularly to an accumulator having a float-operated expansion device.

従来の冷凍装置では膨脹装置としてはキャピラリチュー
ブを使用するものを除いてはほとんど温度式自動膨脹弁
が使用されている。
Most conventional refrigeration systems use thermostatic automatic expansion valves as expansion devices, except for those that use capillary tubes.

この温度式自動膨脹弁の作動は既知の如く、蒸発器出口
に感熱筒を設けてこの位置での冷媒の過熱度が設定の値
になるように冷媒流量を調整するものである。
As is known, the thermostatic automatic expansion valve operates by providing a heat-sensitive tube at the outlet of the evaporator and adjusting the flow rate of the refrigerant so that the degree of superheat of the refrigerant at this position reaches a set value.

従つて温度式自動膨脹弁を使用する以上、蒸発器出口で
冷媒は必す数度の過熱をしていなくてはならない。
Therefore, as long as a thermostatic automatic expansion valve is used, the refrigerant must be superheated by several degrees at the evaporator outlet.

蒸発器でこの数度の過熱度を得るためには蒸発器の伝熱
面積のかなり大きな部分を必要とするが、一方この過熱
域は熱伝達が悪いのでほとんど伝熱には寄与しない。
In order to obtain a superheat degree of several degrees in the evaporator, a fairly large portion of the heat transfer area of the evaporator is required, but on the other hand, this superheat area contributes little to heat transfer because heat transfer is poor.

従つて、この過熱度を出来るだけ小さく抑えることが望
ましい。
Therefore, it is desirable to keep this degree of superheating as low as possible.

し力士、たとえば多バスの蒸発器の場合、各バスの冷媒
流量の分布は均等でなく安定な運転を得るには過熱度を
大きくとらなければならない。
For example, in the case of a multi-bus evaporator, the distribution of the refrigerant flow rate in each bus is not uniform, and the degree of superheating must be increased to obtain stable operation.

また、冷凍負荷の温度範囲が広い冷凍装置の場合では蒸
発温度の低い所で過熱度を小さく定めても蒸発温度の高
い所では過熱度は過大なものになる。以上のように温度
式自動膨脹弁の実際の使用にあたつては場合によつて過
熱域が蒸発器の伝熱面積の数十パーセントを占めること
もあり、蒸発器の小形化を妨げていた。
Furthermore, in the case of a refrigeration system with a wide temperature range of refrigeration load, even if the degree of superheating is set to be small at a location where the evaporation temperature is low, the degree of superheating will be excessive at a location where the evaporation temperature is high. As mentioned above, in actual use of thermostatic automatic expansion valves, the superheated region may occupy several tens of percent of the heat transfer area of the evaporator, which hinders miniaturization of the evaporator. .

本発明は上記の問題点に鑑み、蒸発器出口での過熱度を
oとするように冷媒流量を制御する膨脹装置付きアキュ
ムレータを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an accumulator with an expansion device that controls the flow rate of refrigerant so that the degree of superheating at the outlet of the evaporator is o.

そこで本発明ではアキュムレータ内にニードル弁とフロ
ートを設置し、このフロートとニードル弁の弁棒を連結
して、アキュムレータ内の液位が上昇するとニードル弁
が閉まる方向に動き、また液位が下降すると弁が開くよ
うにした。このニードル弁の入口側は凝縮器出口と接続
され又出口側は蒸発器入口側と接続されている。従つて
、この弁はアキュムレータの液位が一定になるように蒸
発器への冷媒流量を制御する。このため蒸発器出口から
はアキユムレータヘ常にある程度の液が戻ることになり
、蒸発器出口では過熱度が0に保たれる。以下、この発
明の一実施例を第1図にもとづいて説明する。
Therefore, in the present invention, a needle valve and a float are installed in the accumulator, and the float and the valve stem of the needle valve are connected to each other, so that when the liquid level in the accumulator rises, the needle valve moves in the direction of closing, and when the liquid level falls, the needle valve moves in the direction of closing. Made the valve open. The inlet side of this needle valve is connected to the condenser outlet, and the outlet side is connected to the evaporator inlet side. This valve therefore controls the flow of refrigerant to the evaporator so that the liquid level in the accumulator remains constant. Therefore, a certain amount of liquid always returns to the accumulator from the evaporator outlet, and the degree of superheat is maintained at 0 at the evaporator outlet. An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の膨脹装置を用いた冷凍サイクルを示し
たものである。
FIG. 1 shows a refrigeration cycle using the expansion device of the present invention.

圧縮機1で圧縮された高温高圧の冷媒ガスは凝縮器2で
凝縮し、アキュムレータん内に設置されたフロート作動
式膨脹装置uで膨脹し蒸発器3に送られる。
The high-temperature, high-pressure refrigerant gas compressed by the compressor 1 is condensed in the condenser 2, expanded by a float-operated expansion device u installed in the accumulator, and sent to the evaporator 3.

蒸発器で蒸発した冷媒は湿り状でアキュムレータ4に流
入し、内部のフロートを作動させ、再び圧縮機1吸入さ
れる。
The refrigerant evaporated in the evaporator flows into the accumulator 4 in a wet state, operates an internal float, and is sucked into the compressor 1 again.

次にアキュムレータ内に設置されたフロート作動式膨脹
装置の構成について第2図を用いて詳細に説明する。
Next, the structure of the float-operated expansion device installed in the accumulator will be explained in detail with reference to FIG.

アキュムレータ容器6内にフロート作動式膨脹弁7(ニ
ードル弁)、フロート8、Uバイブ9が設けられており
、フロート8はロッド10により、フロート作動式膨脹
弁7(ニードル弁)の弁棒11に支点12、ピン13を
介して連結されている。
A float-operated expansion valve 7 (needle valve), a float 8, and a U-vibe 9 are provided in the accumulator container 6, and the float 8 is connected to the valve stem 11 of the float-operated expansion valve 7 (needle valve) by a rod 10. They are connected via a fulcrum 12 and a pin 13.

従つて、フロートがアキュムレータ内の液により上昇す
れは弁棒11は弁を閉める方向に動き、フロートが下降
すれば弁を開く方向に動く。
Therefore, when the float rises due to the liquid in the accumulator, the valve stem 11 moves in the direction of closing the valve, and when the float falls, it moves in the direction of opening the valve.

凝縮器出口の液冷媒はバイブ14から膨脹弁(ニードル
弁)の流入室15にはいり、オリフィス16を通り、流
出室17に至りバイブ18により蒸発器入口につながる
。流出室と容器6内はともに低圧てあるのて弁棒11部
のシールは問題にならない。蒸発器出口からの冷媒のバ
イブ19を通つてアキュムレータ1にはいり、液部分は
アキュムレータ内にたまり、ガス部分はUバイブ9の上
端開口部から吸入され圧縮機吸入側につながる。Uバイ
ブ9の下部には油戻し孔20が設けられており、アキュ
ムレータ内の滞留液冷媒はこの孔から圧縮機へー定量流
出する。
The liquid refrigerant at the condenser outlet enters the inlet chamber 15 of the expansion valve (needle valve) from the vibrator 14, passes through the orifice 16, reaches the outlet chamber 17, and is connected to the evaporator inlet by the vibrator 18. Since both the outflow chamber and the inside of the container 6 are at low pressure, sealing the valve stem 11 is not a problem. The refrigerant from the evaporator outlet enters the accumulator 1 through the vibrator 19, the liquid part accumulates in the accumulator, and the gas part is sucked in from the upper end opening of the U-vibe 9 and connected to the compressor suction side. An oil return hole 20 is provided in the lower part of the U-vibe 9, and the liquid refrigerant remaining in the accumulator flows out in a fixed amount from this hole to the compressor.

フロートの動きを制限するようにロッドの上下にストッ
パ21が設けられており、上のストッパの位置で膨脹弁
7(ニードル弁)は全閉となり、下のストッパの位置で
全開となる。
Stoppers 21 are provided above and below the rod to limit the movement of the float, and the expansion valve 7 (needle valve) is fully closed when the upper stopper is positioned, and fully open when the lower stopper is positioned.

次に膨脹弁7の作動について説明する。Next, the operation of the expansion valve 7 will be explained.

膨脹弁7はフロートが上下のストッパの間に浮くような
液位になるように蒸発器へ流入する冷媒流量を調整する
The expansion valve 7 adjusts the flow rate of refrigerant flowing into the evaporator so that the liquid level is such that the float floats between the upper and lower stoppers.

また、アキュムレータ4内の液冷媒はUバイブ下部の油
戻し孔20から常にある一定量圧縮機に流出している。
Further, a certain amount of liquid refrigerant in the accumulator 4 always flows out to the compressor from the oil return hole 20 at the bottom of the U-vibe.

従つて、膨脹弁は液位を保つため、この流出量に見合う
だけ蒸発器から液戻りを生じるように冷媒を蒸発器に供
給する。従つて蒸発器出口ては常に過熱度はOに保たれ
る。
Therefore, in order to maintain the liquid level, the expansion valve supplies refrigerant to the evaporator so that liquid returns from the evaporator in proportion to the outflow amount. Therefore, the degree of superheat is always maintained at O at the outlet of the evaporator.

油孔20からの液冷媒流出量と同量の液冷媒が蒸発器か
ら戻つてくるが、油孔20からの流出量は液位と油孔径
が定まるとほぼ一定になる。このため、冷凍負荷の大き
い場合は圧縮機吸入の冷媒の湿り度は減少し、冷凍負荷
の小さな場合はこの湿り度は増大する。この実施例ては
圧縮機は冷媒を湿り状態て吸入するが、圧縮機入口て湿
り状態てあつても、内部でモータの発熱等でかなり加熱
されるためシリンダ入口では冷媒は過熱状態となる。
The same amount of liquid refrigerant returns from the evaporator as the amount of liquid refrigerant that flows out from the oil hole 20, but the amount that flows out from the oil hole 20 becomes approximately constant once the liquid level and the oil hole diameter are determined. Therefore, when the refrigeration load is large, the wetness of the refrigerant sucked into the compressor decreases, and when the refrigeration load is small, the wetness increases. In this embodiment, the compressor sucks refrigerant in a wet state, but even if the compressor inlet is wet, the refrigerant becomes superheated at the cylinder inlet because it is considerably heated internally by the heat generated by the motor.

従つてこの点を考慮して圧縮機吸入冷媒の湿り度が最大
となる冷凍負荷の最小の時点で、圧縮機が液圧縮に対し
て十分安全なように油孔20からの液戻り量を定めれば
よい。
Therefore, in consideration of this point, the amount of liquid returned from the oil hole 20 is determined so that the compressor is sufficiently safe for liquid compression at the time of the minimum refrigeration load when the wetness of the refrigerant sucked into the compressor is maximum. That's fine.

以上説明したように冷凍負荷にかかわらず、本発明の膨
脹機構により、常に蒸発器は過熱度0て用いることが出
来る。
As explained above, regardless of the refrigeration load, the expansion mechanism of the present invention allows the evaporator to always be used with zero superheat.

次に他の実施例について第3図、第4図を用いて説明す
る。
Next, another embodiment will be described using FIGS. 3 and 4.

図において第1,2図と同符号は同一または均ノ等部分
を示す。
In the figure, the same reference numerals as in FIGS. 1 and 2 indicate the same or equally sized parts.

圧縮機1が冷媒の湿り吸入に対して安全性の余裕がない
場合は、第3図に示すように圧縮機吸入側と高圧側のラ
イン(この例では凝縮器出口)との間に熱交換器22を
設け、圧縮機吸入位置で過・熱状態にする。
If the compressor 1 does not have a safety margin against wet refrigerant suction, heat exchange is performed between the compressor suction side and the high pressure side line (in this example, the condenser outlet) as shown in Figure 3. A container 22 is provided to bring the compressor into a superheated state at the suction position of the compressor.

また、第4図に示すようにアキュムレータ下部に熱交換
器23を設け、ここに高圧側ラインを導びいて、アキュ
ムレータ内の液を加熱する。
Further, as shown in FIG. 4, a heat exchanger 23 is provided at the bottom of the accumulator, and a high-pressure side line is led here to heat the liquid in the accumulator.

この場合、バランス状態では蒸発器3からの液ノ戻り量
はUバイブの油孔20からの流出量と熱交換器23の加
熱による蒸発量の和に等しくなるので油孔からの液戻り
量を僅少におさえることができる。以上説明したように
本発明によれば、アキユムレータ内の液位を一定に保つ
ようにフロートを用いて膨脹弁(ニードル弁)開度を制
御する構成としたので冷凍負荷によらず蒸発器出口で過
熱度を0に保つ事が出来、従つて、従来大きな部分を占
めていた蒸発器の過熱域がなくなるため、蒸発器を大巾
に小形化することが可能となる。
In this case, in the balanced state, the amount of liquid returning from the evaporator 3 is equal to the sum of the amount flowing out from the oil hole 20 of the U-vibe and the amount of evaporation due to heating of the heat exchanger 23, so the amount of liquid returning from the oil hole is It can be suppressed slightly. As explained above, according to the present invention, the opening degree of the expansion valve (needle valve) is controlled using a float so as to keep the liquid level in the accumulator constant, so that the opening of the expansion valve (needle valve) is controlled at the outlet of the evaporator regardless of the refrigeration load. The degree of superheat can be maintained at 0, and therefore the superheat area of the evaporator, which conventionally occupied a large area, is eliminated, making it possible to significantly downsize the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の膨脹装置を用いた冷凍サイクルの系統
図、第2図は本発明のフロート作動式膨脹装置を有する
アキュムレータの断面図、第3図および第4図は本発明
の膨脹装置を用いた他の冷凍サイクルの系統図を示す。
FIG. 1 is a system diagram of a refrigeration cycle using the expansion device of the present invention, FIG. 2 is a sectional view of an accumulator having a float-operated expansion device of the present invention, and FIGS. 3 and 4 are diagrams of the expansion device of the present invention. A system diagram of another refrigeration cycle using

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、蒸発器、膨脹装置等で構成する冷
凍サイクル中のアキュムレータにおいて、アキュムレー
タ内部に、アキュムレータ内の液位の変化に対応して作
動するフロートと、該フロートに連動して作動するニー
ドル弁とを設け、前記ニードル弁の入口側を凝縮器出口
側の冷媒配管に接続し、前記ニードル弁の出口側を蒸発
器入口側の冷媒配管に接続したことを特徴とするフロー
ト作動式膨脹装置を有するアキュムレータ。
1. In an accumulator in a refrigeration cycle consisting of a compressor, a condenser, an evaporator, an expansion device, etc., there is a float inside the accumulator that operates in response to changes in the liquid level within the accumulator, and a float that operates in conjunction with the float. a needle valve, the inlet side of the needle valve is connected to a refrigerant pipe on the outlet side of the condenser, and the outlet side of the needle valve is connected to a refrigerant pipe on the inlet side of the evaporator. Accumulator with an expansion device.
JP52106616A 1977-09-07 1977-09-07 Accumulator with float-operated expansion device Expired JPS6051025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52106616A JPS6051025B2 (en) 1977-09-07 1977-09-07 Accumulator with float-operated expansion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52106616A JPS6051025B2 (en) 1977-09-07 1977-09-07 Accumulator with float-operated expansion device

Publications (2)

Publication Number Publication Date
JPS5440351A JPS5440351A (en) 1979-03-29
JPS6051025B2 true JPS6051025B2 (en) 1985-11-12

Family

ID=14438044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52106616A Expired JPS6051025B2 (en) 1977-09-07 1977-09-07 Accumulator with float-operated expansion device

Country Status (1)

Country Link
JP (1) JPS6051025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016801A (en) * 2016-06-22 2016-10-12 海信容声(广东)冷柜有限公司 Low-temperature oil freezing prevention self-cascade refrigerating system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410533Y2 (en) * 1985-12-07 1992-03-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016801A (en) * 2016-06-22 2016-10-12 海信容声(广东)冷柜有限公司 Low-temperature oil freezing prevention self-cascade refrigerating system and control method thereof

Also Published As

Publication number Publication date
JPS5440351A (en) 1979-03-29

Similar Documents

Publication Publication Date Title
US4899555A (en) Evaporator feed system with flash cooled motor
TW200825349A (en) Refrigerant vapor compression system with flash tank receiver
US6843064B2 (en) Method and apparatus for turbulent refrigerant flow to evaporator
DK149995B (en) Cooling Systems
US2245454A (en) Refrigerating apparatus
JPS6051025B2 (en) Accumulator with float-operated expansion device
JPS5841430B2 (en) Regulator for low pressure evaporator of refrigerator
US2206115A (en) Air conditioning apparatus
JPS6233502B2 (en)
JPH02263071A (en) Using method for expansion valve device and assembly of vaporizer and flow rate control means
JP2568709B2 (en) Heat transfer device
JPH0419408Y2 (en)
JPH05322323A (en) Freezer device
US3285032A (en) Refrigerant flow control
JP2808514B2 (en) Subcooling control valve, oil separator for refrigeration system, and refrigeration system
JPS59106771A (en) High pressure valve
JPH06195130A (en) Liquid level controller for air-conditioning heat exchanger and air-conditioning system using its controller
US4346567A (en) Heat pump control valve
JPS60120155A (en) Refrigeration cycle device
US1719074A (en) Regulating mechanism
JPS604039Y2 (en) air conditioner
JPS6230690Y2 (en)
JPH0325105Y2 (en)
JPS6294772A (en) Method and device for controlling refrigerant compressor
JPS5813819B2 (en) heat pump equipment