JPS6050316B2 - Nuclear power plant reactor power distribution control method - Google Patents

Nuclear power plant reactor power distribution control method

Info

Publication number
JPS6050316B2
JPS6050316B2 JP53124585A JP12458578A JPS6050316B2 JP S6050316 B2 JPS6050316 B2 JP S6050316B2 JP 53124585 A JP53124585 A JP 53124585A JP 12458578 A JP12458578 A JP 12458578A JP S6050316 B2 JPS6050316 B2 JP S6050316B2
Authority
JP
Japan
Prior art keywords
power distribution
reactor
core
feed water
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53124585A
Other languages
Japanese (ja)
Other versions
JPS5551397A (en
Inventor
勉 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP53124585A priority Critical patent/JPS6050316B2/en
Publication of JPS5551397A publication Critical patent/JPS5551397A/en
Publication of JPS6050316B2 publication Critical patent/JPS6050316B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電所の負荷追従運転を行なうため、原
子炉の給水温度を制御して炉内出力分布を調整する原子
力発電所の炉出力分布制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactor power distribution control method for a nuclear power plant, which controls the reactor feed water temperature and adjusts the power distribution within the reactor in order to perform load following operation of the nuclear power plant.

原子力発電所の電力系統に占める割合は今後急速に増加
する傾向にあるが、これに伴なつて従来−4←−cを■
Z、す辷、宙±一ユ、、3ノ杏≠#゛出クμ』T=′一
ηγ且トトス、以]巨が生じている。
The proportion of nuclear power plants in the power system is likely to increase rapidly in the future, and as a result, the conventional -4←-c
Z, length, space ± one yu,, 3 no ≠ #゛outμ〉 T = ``1 ηγ and totos, 〉] is occurring.

沸騰水型原子力発電所を例にとれば、前述の負荷追従運
転を従来の方式で行なうと、負荷追従が急激であれば燃
料ペレットとこれを被覆する被覆材の相互作用によつて
被覆材に危裂が生するので、これを防止するためPre
conditioningInterimOperat
ingMana朋mentRecommendatjo
ns(PCIOMRと略称する)に従う運転パターンの
実施が推賞されている。
Taking a boiling water nuclear power plant as an example, if the load following operation described above is carried out using the conventional method, if the load following is rapid, the interaction between the fuel pellets and the cladding material will cause damage to the cladding material. To prevent this, Pre
condition ing Interim Operat
ingMana Friendship Recommendation
ns (abbreviated as PCIOMR) is recommended.

PCIOMRとは原子核燃料製作中に含まれる水化物(
Hydrlde)の形成や、ペレット対被覆管の相互作
用(pelletCladInteraction)等
によるひび割れのような燃料棒の損傷を起し難い出力上
昇パターンで運転することをいうのである。以下さらに
詳しく説明する。第1図において、線出力密度が8kW
/■、すなわち炉出力約40%の点Aまでは、制御棒は
自由に引抜いて出力を上昇させることができるが、それ
以上では線出力密度は時間当りO、o6kW/ft以下
でゆつくり炉心流量をあげてゆき、100%流量のフ点
Bに達したとき、その状態を1満間保持すれば燃料のプ
レコンデイシヨニング(Preconditionin
g)が行なわれたことになる。
PCIOMR refers to hydrates (
This means operating in an output increasing pattern that does not easily cause damage to the fuel rods such as cracks due to the formation of hydrocarbons or pellet-to-clad interaction. This will be explained in more detail below. In Figure 1, the linear power density is 8kW.
/■, that is, up to point A, which is about 40% of the reactor output, the control rods can be freely withdrawn to increase the output, but beyond that point, the linear power density is O per hour, and the reactor core slows down to less than 6 kW/ft. When the flow rate is increased and reaches point B, which is 100% flow rate, if this state is maintained for one full hour, fuel preconditioning will occur.
g) has been carried out.

この場合この線出力密度でプレコンデイシヨニング(以
下PCと略称する)包絡線が作成される。さら5に炉出
力を上昇させるには、炉心流量を前と逆に減少させて、
点Aに復帰させ制御棒を引抜き、点Aから点Cまで炉出
力を上昇させる。その後再び炉心流量をゆつくりと増加
させ、100%流量の点Dに達したとき、目的とする1
00%出力となる事から、この状態で帛時間炉出力を保
持する。するとこの炉心状態でPC包絡線が作り出され
る。すなわち第1図は代表的なPCIOMR運転の出力
上昇パターンを示す図である。第2図は以上説明した運
転に基づき作成されたPC包絡線Eの図である。
In this case, a preconditioning (hereinafter abbreviated as PC) envelope is created at this linear power density. Furthermore, in order to increase the reactor output in step 5, the reactor core flow rate is decreased in the opposite way as before,
Return to point A, pull out the control rod, and increase the reactor output from point A to point C. After that, the core flow rate is slowly increased again, and when it reaches point D, which is 100% flow rate, the target 1
Since the output will be 00%, the furnace output will be maintained for a period of time in this state. Then, a PC envelope is created in this core state. That is, FIG. 1 is a diagram showing a typical output increase pattern of PCIOMR operation. FIG. 2 is a diagram of the PC envelope E created based on the operation described above.

第3図はPCIOMRに従つて日負荷追従運転を行なつ
た場合の出力P1ゼノン濃度Xeおよび炉心流量Wの変
化を示す代表的例である。
FIG. 3 is a typical example showing changes in output P1 xenone concentration Xe and core flow rate W when daily load following operation is performed according to PCIOMR.

出力Pはa図に示すように一定出力で運転されるが、た
とえば夜の午后1C@で出力は図示するように下降させ
られ、翌朝の午前7時にはもとの出力に戻されて、以後
この出力を夜の午后1(ロ)まで維持し前述の出力変化
パターンを繰返すものとする。
The output P is operated at a constant output as shown in figure a, but for example, at 1C @ in the afternoon at night, the output is lowered as shown in the figure, and at 7 a.m. the next morning, it is returned to the original output. It is assumed that the output is maintained until 1:00 p.m. in the evening and the above-described output change pattern is repeated.

この出力変化パターンに対するXe濃度はb図に示すよ
うに、出力を減じた夜の午后1叫から翌朝の午前7時ま
では増加し、7時以後は減少する。炉心流量Wはc図に
示すように、朝の午前7時ではXe濃度のフィードバッ
ク効果のためにPC包絡線を作成した時点より増加し、
数時間経過した1満には前述した現象と逆に炉心流量W
は低下する。前出の第2図には、午前7時と1満におけ
る軸方向出力分布が一点鎖線Fと点線Gで示されている
As shown in figure b, the Xe concentration for this output change pattern increases from 1 p.m. on the night when the output is reduced until 7 a.m. the next morning, and decreases after 7 o'clock. As shown in Figure c, the core flow rate W increases at 7 am in the morning compared to the time when the PC envelope was created due to the feedback effect of the Xe concentration.
At 1:00 a.m., several hours have passed, contrary to the phenomenon described above, the core flow rate W
decreases. In the above-mentioned FIG. 2, the axial power distribution at 7:00 a.m. and 1:00 a.m. is shown by a dashed line F and a dotted line G.

午前7時ては炉心流量が増加するため、ボイドの発生量
、換言すれば中性子の洩れ量が少なくなり、炉心上方で
の出力分布曲線FがPC包絡線Eを超えている。1′5
!までは炉心流量が減少するため、ボイドの発生量が増
加して炉心下方での出力分布曲線GがPC包絡線Eを超
えている。
At 7 a.m., the core flow rate increases, so the amount of voids generated, in other words, the amount of neutrons leaked, decreases, and the power distribution curve F above the core exceeds the PC envelope E. 1'5
! Until then, the core flow rate decreases, so the amount of voids generated increases and the power distribution curve G below the core exceeds the PC envelope E.

このように午前7時と1満の出力分布パターンはPC.
包絡線と一致せず部分的に破られる。以上の説明では給
水温度の制御は考慮に入れてないため、負荷追従運転を
行なう際従来の方法で作成されるPC包絡線が破られる
ことが予想されるため過渡的に最大となる出力分布を包
含した一PC包絡線の作成(これを以後PC包絡線の拡
張とよぶことにする)が必要となる。本発明の目的は負
荷追従運転を行なうため、あらかじめ給水温度を変化さ
せて原子炉出力分布を制御し、PC包絡線を拡張する方
法を提供するにある。本発明の原理を以下に説明する。
In this way, the output distribution pattern at 7 a.m. and 1:00 a.m. is PC.
It does not match the envelope and is partially broken. The above explanation does not take into account the control of the supply water temperature, so it is expected that the PC envelope created by the conventional method will be broken when performing load following operation, so the transient maximum output distribution will be calculated. It is necessary to create a one-PC envelope (hereinafter referred to as expansion of the PC envelope) that includes this. An object of the present invention is to provide a method for expanding the PC envelope by controlling the reactor power distribution by changing the feed water temperature in advance in order to perform load following operation. The principle of the present invention will be explained below.

原子炉出力Pを一定とし、原子炉への給水温度Tをきめ
られた値より高く(または低く)した場合、炉心内で発
生するボイド量が増大(または減少)するが、そのまま
の状態で炉心流量を一定とすると、炉出力は減少(また
は増加)するので、炉心流量を上昇(または下降)させ
る。これに伴なつて炉内出力・分布は炉心上方で増加(
または減少)し、炉心下方で減少(または増加)するこ
とになる。この特性を利用することにより、負荷追従運
転を行なう場合、作成されたPC包絡線をさらに所望の
値に移すことが可能となり、PC包絡線の下で運転する
制限条件を容易に満足させることができる。前出の第1
図に示す100%出力のD点において、給水温度Tをゆ
るやかに上昇させることにより、炉出力分布は炉心上方
で徐々に拡張される。逆に給水温度Tを下降させること
により、炉出力“分布は炉心下方で拡大される。さらに
C点またはC−D間で給水温度を高く(または低く)し
、炉心流量をゆつくり上昇させることによつてPC包絡
線の拡張が前述したのと同じ理由で可能となる。給水温
度を制御してPCIOMR運転で作成されるPC包絡線
を拡張するには次の手段が考えられる。
If the reactor power P is kept constant and the water supply temperature T to the reactor is made higher (or lower) than a predetermined value, the amount of voids generated in the reactor core will increase (or decrease); If the flow rate is constant, the reactor power decreases (or increases), so the core flow rate is increased (or decreased). Along with this, the in-core power and distribution increases above the core (
(or decrease) and decrease (or increase) below the core. By utilizing this characteristic, when performing load following operation, it becomes possible to further shift the created PC envelope to a desired value, and it is possible to easily satisfy the restrictive conditions for operation under the PC envelope. can. 1st above
At point D of 100% output shown in the figure, by gradually increasing the feed water temperature T, the reactor power distribution is gradually expanded above the core. Conversely, by lowering the feed water temperature T, the reactor power distribution is expanded below the core. Furthermore, by increasing (or lowering) the feed water temperature at point C or between C and D, the core flow rate can be slowly increased. This makes it possible to expand the PC envelope for the same reason as mentioned above.The following means can be considered to expand the PC envelope created by PCIOMR operation by controlling the feed water temperature.

(a)炉心上部におけるPC包絡線を拡張するには、拡
張幅に応じて給水温度を上昇させる。
(a) To expand the PC envelope in the upper part of the core, the feed water temperature is increased according to the expansion width.

(b)炉心下部におけるPC包絡線を拡張するには、拡
張幅に応じて給水温度を下降させる。給水温度の制御方
法について第5図を用いて説明する。図において原子炉
1の炉心2には複数本の制御棒3が挿入されている。
(b) To expand the PC envelope in the lower part of the core, lower the feed water temperature according to the expansion width. A method of controlling the supply water temperature will be explained using FIG. 5. In the figure, a plurality of control rods 3 are inserted into a core 2 of a nuclear reactor 1.

炉出力の制御は制御棒の挿入、引抜のほかに原子炉外部
に設けられてある再循環ポンプ4によつて炉内のジェッ
トポンプ5を駆動し、冷却材を炉心2の内部に強制循環
させることにより行われる。ジェットポンプ5により送
り出された冷却材は炉心2の下方より上昇する間に加熱
されて蒸気となる。
In addition to inserting and withdrawing control rods, the reactor output is controlled by driving a jet pump 5 inside the reactor using a recirculation pump 4 installed outside the reactor to forcefully circulate coolant inside the reactor core 2. This is done by The coolant sent out by the jet pump 5 is heated and becomes steam while rising from below the core 2.

゛この蒸気は気水分離器6を通過して水分を分離する。
乾燥蒸気はタービン7に導かれ、タービンの回転エネル
ギーに変換され、タービンに連結された発電機8で電気
エネルギーとなり電力系統に送電され使用される。ター
ビン7で機械的仕事をした蒸気は次に復水器9で冷却さ
れて復水となり、復水ポンプ10により給水加熱器11
に送られる。給水加熱器11はタービン7を流れる蒸気
の一部を抽出して、抽気弁12を経て送られる蒸気によ
り加熱される。このようにタービンからの抽気を加熱媒
体として復水温度を上昇させられた給水は、給水ポンプ
13により原子炉1内に供給される。従つて、給水温度
を制御するには、運転制御盤14から給水温度設定値を
給水温度制御装置15に送り、給水温度制御信号に変換
し、蒸気タービンから抽気される蒸気を制御する抽気弁
の開度を制御する。第4図は前記の手段によりPC包絡
線の拡張を行なつた図である。
``This steam passes through a steam/water separator 6 to separate moisture.
The dry steam is guided to the turbine 7, where it is converted into rotational energy of the turbine, and turned into electrical energy by a generator 8 connected to the turbine, which is then transmitted to the power system and used. The steam that has undergone mechanical work in the turbine 7 is then cooled in a condenser 9 to become condensate, and is then transferred to a feed water heater 11 by a condensate pump 10.
sent to. Feedwater heater 11 extracts a portion of the steam flowing through turbine 7 and is heated by the steam sent through bleed valve 12 . The feed water whose condensate temperature has been raised using the air extracted from the turbine as a heating medium is supplied into the reactor 1 by the feed water pump 13 . Therefore, in order to control the feed water temperature, the feed water temperature setting value is sent from the operation control panel 14 to the feed water temperature control device 15, where it is converted into a feed water temperature control signal, and the extraction valve that controls the steam extracted from the steam turbine is activated. Control opening degree. FIG. 4 is a diagram in which the PC envelope is expanded by the above-described means.

図中実線Hは従来のPCIOMR運転で作成された軸方
向平均出力分布を示す。
A solid line H in the figure shows the axial average power distribution created by conventional PCIOMR operation.

このときの炉心状態は、炉出力が100%定格、炉心流
量が89%、炉心入口エンタルピが289Kca1/K
9である。一方破線1は炉出力が100%、炉心流量9
8%、炉心入口エンタルピが293Kca1/Kgと給
水温度を上昇させた結果を示している。これから炉心上
方でPC包絡線が拡張されていることがわかる。以上詳
細に説明したように、本発明によれば、沸騰水型原子力
発電所において負荷追従運転を行なう場合、PC包絡線
が拡張され、拡張された範囲内で前記運転が可能となり
燃料の健全性が確保される利点は大きいものてある。
The core state at this time is that the reactor power is 100% rated, the core flow rate is 89%, and the core inlet enthalpy is 289Kca1/K.
It is 9. On the other hand, broken line 1 indicates that the reactor power is 100% and the core flow rate is 9.
8%, and the core inlet enthalpy was 293 Kca1/Kg, which is the result of increasing the feed water temperature. It can be seen from this that the PC envelope is expanded above the core. As explained in detail above, according to the present invention, when load following operation is performed in a boiling water nuclear power plant, the PC envelope is expanded, and the operation is possible within the expanded range, thereby ensuring the integrity of the fuel. The benefits of ensuring this are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPCIOMR運転の典型的パターンの説明図、
第2図は負荷追従運転におけるPC包絡線と軸方向平均
炉出力分布を示す図、第3図は日負荷追従運転における
出力、ゼノン濃度および流量の時間変化を示す図、第4
図は本発明方法による炉出力分布制御の結果を示す図、
第5図は本発明による制御系統のブロック図である。
Figure 1 is an explanatory diagram of a typical pattern of PCIOMR operation,
Figure 2 is a diagram showing the PC envelope and axial average furnace power distribution in load following operation, Figure 3 is a diagram showing time changes in output, Zenone concentration, and flow rate in daily load following operation, and Figure 4
The figure shows the results of reactor power distribution control using the method of the present invention;
FIG. 5 is a block diagram of a control system according to the present invention.

Claims (1)

【特許請求の範囲】 1 燃料ペレット対被覆相互作用による被覆材の損傷を
防止するため、原子炉出力分布を制御する方法において
、炉心上方における出力分布をさらに大きくするときは
、原子炉炉心に供給される給水温度を上昇させ、さらに
炉心下方における出力分布を大きくするときは、前記給
水温度を下降させ、原子炉出力分布を制御し、以後の急
激な出力変化に耐えるよう燃料を調整することを特徴と
する原子力発電所の原子炉出力分布制御方法。 2 給水温度を徐々に変化させ出力分布を変えることを
特徴とする特許請求の範囲第1項記載の原子力発電所の
原子炉出力分布制御方法。 3 給水温度を変え、炉心流量を徐々に上昇させ、出力
分布を変えることを特徴とする特許請求の範囲第1項記
載の原子力発電所の出力分布制御方法。
[Claims] 1. In a method for controlling the reactor power distribution in order to prevent damage to the cladding material due to fuel pellet-to-cladding interaction, when the power distribution above the reactor core is further increased, the power supply to the reactor core is When increasing the feed water temperature and increasing the power distribution below the reactor core, it is recommended to lower the feed water temperature, control the reactor power distribution, and adjust the fuel to withstand subsequent rapid changes in power. Characteristics of nuclear power plant reactor power distribution control method. 2. A reactor power distribution control method for a nuclear power plant according to claim 1, characterized in that the power distribution is changed by gradually changing the feed water temperature. 3. The power distribution control method for a nuclear power plant according to claim 1, characterized by changing the feed water temperature, gradually increasing the core flow rate, and changing the power distribution.
JP53124585A 1978-10-12 1978-10-12 Nuclear power plant reactor power distribution control method Expired JPS6050316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53124585A JPS6050316B2 (en) 1978-10-12 1978-10-12 Nuclear power plant reactor power distribution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53124585A JPS6050316B2 (en) 1978-10-12 1978-10-12 Nuclear power plant reactor power distribution control method

Publications (2)

Publication Number Publication Date
JPS5551397A JPS5551397A (en) 1980-04-15
JPS6050316B2 true JPS6050316B2 (en) 1985-11-07

Family

ID=14889100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53124585A Expired JPS6050316B2 (en) 1978-10-12 1978-10-12 Nuclear power plant reactor power distribution control method

Country Status (1)

Country Link
JP (1) JPS6050316B2 (en)

Also Published As

Publication number Publication date
JPS5551397A (en) 1980-04-15

Similar Documents

Publication Publication Date Title
JPS61105003A (en) Method and device for connecting boiler to pressurized steamsupply line in fluid manner
JPS6050316B2 (en) Nuclear power plant reactor power distribution control method
Wang et al. Simulation study of frequency control characteristics of a generation III+ nuclear power plant
JPS5844240B2 (en) How to operate a boiling water nuclear power plant
US4279698A (en) Nuclear reactor operation control process
JPS581398B2 (en) Nuclear power plant reactor power distribution control method and device
JP2009133723A (en) Method for operating nuclear power generation plant and nuclear power generation
JP3133812B2 (en) Boiling water reactor and start-up method thereof
JP7508389B2 (en) Nuclear power plant output control device and output control method
US3411299A (en) Peak load operation in steam power plants
Covert et al. Effect of various control modes on the steady-state full and part load performance of a direct-cycle nuclear gas turbine power plant
JPS62138794A (en) Nuclear reactor feedwater-temperature controller
JPH05256991A (en) Activation method for natural circulation type reactor
JPS6262310B2 (en)
JP2008304264A (en) Nuclear power plant and its operation method
JPS5819240B2 (en) Fast breeder reactor inlet sodium temperature control method and device
JPH09304586A (en) Boiling water nuclear power plant
JP2554099B2 (en) Control device for combined cycle power plant
JPS63113392A (en) Method and device for controlling nuclear reactor
JP2022129412A (en) Output control device and output control method for nuclear power plant
JPH04140699A (en) Nuclear reactor electric power generator
JP2006038499A (en) Nuclear power plant and method for operating it
JPH024875B2 (en)
JP2007225461A (en) Output control method of nuclear reactor and nuclear reactor plant
Carroll et al. Response characteristics of boiling water reactor generating units