JPS6050204A - Metal-ceramics bonded body and its manufacturing process - Google Patents

Metal-ceramics bonded body and its manufacturing process

Info

Publication number
JPS6050204A
JPS6050204A JP58158070A JP15807083A JPS6050204A JP S6050204 A JPS6050204 A JP S6050204A JP 58158070 A JP58158070 A JP 58158070A JP 15807083 A JP15807083 A JP 15807083A JP S6050204 A JPS6050204 A JP S6050204A
Authority
JP
Japan
Prior art keywords
metal
ceramic
metal member
press
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158070A
Other languages
Japanese (ja)
Other versions
JPH0415361B2 (en
Inventor
Isao Oda
功 小田
Nobuo Tsuno
伸夫 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP58158070A priority Critical patent/JPS6050204A/en
Priority to US06/641,339 priority patent/US4690617A/en
Priority to AT84305818T priority patent/ATE35306T1/en
Priority to DE8484305818T priority patent/DE3472289D1/en
Priority to EP84305818A priority patent/EP0139406B1/en
Priority to CA000461847A priority patent/CA1230953A/en
Publication of JPS6050204A publication Critical patent/JPS6050204A/en
Publication of JPH0415361B2 publication Critical patent/JPH0415361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0852Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft
    • F16D1/0858Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft due to the elasticity of the hub (including shrink fits)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/85Ceramic-to-metal-connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/21Utilizing thermal characteristic, e.g., expansion or contraction, etc.
    • Y10T403/217Members having different coefficients of expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7062Clamped members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To dispense with any highly accurate machining for a fitting part as well as to make a manufacturing process ever so easy, by fitting a convex part of a ceramic turbine wheel into a concave part of a metallic rotary shaft in a way of making up some play between them. CONSTITUTION:A convex part 14 installed in a tip end of a rotary shaft 11 to be solidly formed with a ceramic turbine wheel 16 is fitted in a concave part 13 installed in a tip end of a metallic rotary shaft 12 in a way of making up some play between them, thus a turbine rotor is formed. With this constitution, a dimensional difference in time of fitting operation is well absorbed by plastic or elastic deformations in the concave part whereby a thermal expansion differential is as well absorbed by a clearance 15. Accordingly, highly machining accuracy in the fitting part is no longer required.

Description

【発明の詳細な説明】 本発明は金F4とセラミックスを機械的手段により結合
した金属・セラミックス結合体とその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal-ceramic bonded body in which gold F4 and ceramics are bonded by mechanical means, and a method for manufacturing the same.

ジルコニア、窒化けい素、炭化けい素等のセラミックス
は機械的強度、耐熱性、耐摩耗性にすぐれているため、
ガスタービンエンジン部品、エンジン部品等の高温構造
材料あるいは耐摩耗材料として注目されている。しかし
、セラミックスは一般に硬くて、脆いため金属材料に比
較して成形加工性が劣る。また、靭性に乏しいため衝撃
力に対する抵抗が弱い。このため、セラミックス材料の
みでエンジン部品のような機械部品を形成することは難
かしく、一般には金属製部材とセラミックス製部材とを
結合した複合構造体としての形で用いられる。
Ceramics such as zirconia, silicon nitride, and silicon carbide have excellent mechanical strength, heat resistance, and wear resistance.
It is attracting attention as a high-temperature structural material or wear-resistant material for gas turbine engine parts, engine parts, etc. However, since ceramics are generally hard and brittle, their moldability is inferior to that of metal materials. In addition, since it has poor toughness, it has low resistance to impact forces. For this reason, it is difficult to form mechanical parts such as engine parts only from ceramic materials, and they are generally used in the form of a composite structure in which metal members and ceramic members are combined.

エンジン部品として使用される金属・セラミックス結合
体の金属製部材とセラミックス製部材の、機械的結合構
造としては焼はめ構造(冷しばめ構造も含む)が知られ
ている。このような金属・セラミックス結合体の結合構
造の例としては、例えば金属製ピストン本体とセラミッ
クス製ピストンクラウンからなる断熱エンジン用ピスト
ンの結合構造として、セラミックス製ピストンクラウン
の周囲に金属製リングを焼ばめし、その金属製リングの
周囲にピストン本体を鋳造した構造(特開昭56−12
2659号公報)あるいはカムとの摺接面をセラミック
スとしたタペットの結合構造として、鋳鉄製タペットの
カムとの摺接面にセラミックス製部材を焼ばめした構造
(Wo 82101084号公報)等がある。しかし焼
ばめ構造(冷しばめも含む)にはつぎのような欠点があ
る。
A shrink fit structure (including a cold tight fit structure) is known as a mechanical connection structure between a metal member and a ceramic member of a metal/ceramic composite used as an engine part. An example of such a joint structure of a metal/ceramic composite body is a joint structure of a heat-insulating engine piston consisting of a metal piston body and a ceramic piston crown, in which a metal ring is baked around the ceramic piston crown. A structure in which the piston body is cast around the metal ring (Japanese Patent Laid-Open No. 56-12
(No. 2659), or as a coupling structure of a tappet whose sliding surface with the cam is made of ceramic, there is a structure in which a ceramic member is shrink-fitted to the sliding surface of a cast iron tappet with the cam (Wo 82101084). . However, shrink fit structures (including cold fit) have the following drawbacks.

(1)結合部材の加工に高精度が必要である。すなわち
、焼ばめ構造は結合部材の一方を加熱ないしは冷却して
、両部材間に嵌合可能な寸法差を生ぜしめ、その寸法差
を利用して両部材を嵌合してなるものであるから、両部
材の加工精度によって、焼ばめ温度での寸法差および焼
ばめ後(4) の締め代が決まる。加工精度が悪い場合には、焼ばめ温
度での寸法差の変動や締め代の変動が大きくなり、安定
した焼ばめができないばかりか焼ばめ部め結合力も一定
しなくなる。
(1) High precision is required in processing the joining members. In other words, the shrink-fit structure heats or cools one of the joining members to create a dimensional difference between the two members that allows them to fit together, and then uses that dimensional difference to fit the two members together. Therefore, the dimensional difference at the shrink fit temperature and the interference after shrink fit (4) are determined by the processing accuracy of both parts. If the machining accuracy is poor, variations in dimensional difference and interference at the shrink fit temperature will increase, not only will stable shrink fit not be possible, but the bonding force of the shrink fit will also become inconsistent.

(2)寸法の小さな部品の結合ができない。すなわち、
焼ばめ温度での焼ばめ部材の熱膨張量は部材寸法に比例
する。小さい寸法の部材について嵌合可能な寸法差を生
せしめるためには、焼ばめ温度を高くしなければならな
い。焼ばめ温度が高くなると、金属製部材の金属組織の
変化、相変態、軟化が生じたり、あるいはセラミックス
製部材との温度差が大きくなりすぎてセラミックス製部
材に熱衝撃破壊が生ずるので好ましくない。このため焼
ばめ可能な寸法に制約がある。
(2) Parts with small dimensions cannot be joined. That is,
The amount of thermal expansion of the shrink-fit member at the shrink-fit temperature is proportional to the member dimensions. In order to create a fitable dimensional difference for small sized members, the shrink fit temperature must be increased. A high shrink fit temperature is undesirable because it may cause changes in the metal structure, phase transformation, or softening of the metal member, or the temperature difference between the metal member and the ceramic member may become too large, causing thermal shock fracture in the ceramic member. . For this reason, there are restrictions on the dimensions that can be shrink-fitted.

本発明の目的は被結合部材の加工に高精度が必要でなく
、結合部材の寸法による制約もない、新しい結合構造の
金属・セラミックス結合体とその製造法を提供すること
である。
An object of the present invention is to provide a metal-ceramic bonded body with a new bonded structure that does not require high accuracy in processing the bonded members and is not limited by the dimensions of the bonded members, and a method for manufacturing the same.

本発明は金属製部材に設けられた四部または貫、通孔に
、セラミックス製部材に設けられた凸部が圧入してなる
金属・セラミックス結合体が、該結合体の使用温度で金
属製部材の四部端面とセラミックス製部材の凸部底面の
間に隙間が存在するように結合されている金属・セラミ
ックス結合体であり、金属製部材とセラミックス製部材
とを一体的に結合する方法において、セラミックス製部
材に設けた凸部の直径を金属製部材に設けた四部の内径
より0.05%〜5%大きくするとともに、該凹部に対
し凸部を金属製部材の焼なまし温度以下および室温また
は結合部が使用中にさらされる最高温度DJ上の温度で
圧入する金属・セラミックス結合体の製造法であり、ま
た、金属製部材とセラミックス製部材とを一体的に結合
する方法において、セラミックス製部材に設けた凸部の
直径を金属製部材に設けた四部の内径より0.05%〜
5%大きくするとともに、該凹部に対し凸部を金属製部
材の焼なまし温度以下および室温または結合部が使用中
にさらされる最高使用温度以上の温度で圧入し、圧入後
所定の寸法に仕上げた金属製部材表面の一1部あるいは
全部を浸炭、窒化、表面焼入れ、メッキのいずれかの方
法で硬化させる金属・セラミックス結合体の製造法であ
る。
The present invention provides a metal-ceramic bonded body in which a convex portion provided in a ceramic member is press-fitted into a hole provided in a metal member. It is a metal-ceramic bonded body that is bonded so that a gap exists between the end faces of the four parts and the bottom surface of the convex part of the ceramic member. The diameter of the convex portion provided on the member is 0.05% to 5% larger than the inner diameter of the four parts provided on the metal member, and the convex portion relative to the concave portion is set at a temperature below the annealing temperature of the metal member and at room temperature or during bonding. A method for manufacturing a metal-ceramic bonded body in which the parts are press-fitted at a temperature above the maximum temperature DJ exposed to during use, and a method for integrally bonding a metal member and a ceramic member. The diameter of the protrusion provided is 0.05% or more than the inner diameter of the four parts provided on the metal member.
5% larger, and press-fit the convex part into the concave part at a temperature below the annealing temperature of the metal member and at room temperature or above the maximum operating temperature to which the joint part is exposed during use, and finish it to the specified dimensions after press-fitting. This is a method of manufacturing a metal-ceramic bonded body in which part or all of the surface of a metal member is hardened by carburizing, nitriding, surface hardening, or plating.

ここでいう圧入とは、セラミックス製部材に設けた凸部
を、その凸部直径より小径の金属製部材に設けた四部に
荷重をかけて強制的に押し込んで嵌合することである。
Press-fitting here refers to fitting a convex portion provided on a ceramic member by forcibly pushing the four portions provided on a metal member having a smaller diameter than the convex portion diameter by applying a load.

本発明の金属・セラミックス結合体は金属製部材に設け
られた四部に、セラミックス製部材に設けられた、金属
製部材上の四部より大径の凸部が強制的に押込まれて得
られる。この場合に、セラミックス製部材の凸部と金属
製部材の四部の寸法差が金属製部材の塑性変形および弾
性変形によって吸収されるように金属製部材の四部の形
状、寸法、肉厚などを決定するので、圧入部の四部と凸
部の仕上げ寸法公差は厳しくする必要はない。
The metal-ceramic bonded body of the present invention is obtained by forcibly pushing convex portions provided on the ceramic member into the four portions provided on the metal member and having a larger diameter than the four portions on the metal member. In this case, the shape, dimensions, wall thickness, etc. of the four parts of the metal member are determined so that the dimensional difference between the convex part of the ceramic member and the four parts of the metal member is absorbed by the plastic and elastic deformation of the metal member. Therefore, the finishing dimensional tolerances of the four parts of the press-fit part and the convex part do not need to be strict.

圧入時のセラミックス製部材の凸部と金属製部材の四部
の寸法差は凸部直径が凹部内径より0.05%〜5%大
きくするのが好ましく、金属製部材の変形量や圧入に要
する荷重を少なくするため0.05(7) 、%〜1%大きくするのがとくに好ましい。この寸法差
が0.05%以下では圧入部の結合力が不足し使用中に
結合部が抜けるので好ましくない。寸法差が5%以上に
なると圧入に必要な荷重が大きくなりすぎて、圧入時に
セラミックス製部材の凸部が折損するので好ましくない
The dimensional difference between the convex part of the ceramic member and the four parts of the metal member during press-fitting is preferably such that the diameter of the convex part is 0.05% to 5% larger than the inner diameter of the concave part, depending on the amount of deformation of the metal member and the load required for press-fitting. It is particularly preferable to increase it by 0.05(7)% to 1% in order to reduce the difference. If this dimensional difference is less than 0.05%, the bonding force of the press-fitted portion will be insufficient and the bonded portion will come off during use, which is not preferable. If the dimensional difference is 5% or more, the load required for press-fitting becomes too large and the convex portion of the ceramic member may break during press-fitting, which is not preferable.

圧入は室温で行ってもよいし、金属製部材を加熱するか
、あるいは金属製部材とセラミックス製部材の両方を加
熱して行ってもよい。加熱する場合の温度は金属製部材
の焼なまし温度以下で結合部が使用中にさらされる最高
温度以上の温度が望ましい。圧入温度が金属製部材の焼
なまし温度以上の温度の場合は、圧入によって金属製部
材の四部に発生した内部応力と歪が緩和され、圧入部の
結合力が減少するので好ましくない。また、金属製部材
とセラミックス製部材の両方を加熱して圧入を行う場合
に、圧入を使用温度以下の温度で行うと、使用中の温度
上昇により圧入部の結合力が低下するので好ましくない
Press-fitting may be performed at room temperature, or may be performed by heating the metal member or by heating both the metal member and the ceramic member. The heating temperature is preferably below the annealing temperature of the metal member and above the maximum temperature to which the joint is exposed during use. If the press-fitting temperature is higher than the annealing temperature of the metal member, it is not preferable because the internal stress and strain generated in the four parts of the metal member due to press-fitting will be alleviated, and the bonding force of the press-fitted portion will be reduced. Further, when press-fitting is performed by heating both the metal member and the ceramic member, it is not preferable to perform the press-fitting at a temperature below the operating temperature because the bonding force of the press-fitting portion will decrease due to the temperature increase during use.

本発明の金属・セラミックス結合体では金属製(8) 、部材とセラミックス製部材の圧入時に金属製部材の四
部が変形することが必要である。このため、金属製部材
としては、焼なまし処理後使用するのが望ましい。硬化
処理した金属製部側を使用する場合には金属製部材の四
部が変形できる寸法、形状にする必要がある。
In the metal/ceramic composite of the present invention, it is necessary that four parts of the metal member (8) deform when the metal member and the ceramic member are press-fitted. For this reason, it is desirable to use the metal member after annealing. When using the hardened metal part side, it is necessary to have a size and shape that allow the four parts of the metal member to be deformed.

圧入後の金属製部材に耐摩耗性が要求される場合には、
金属製部材の全表面あるいは一部表面を浸炭、窒化、表
面焼入れ、メッキなどの方法で硬化させる。金属製部材
表面の硬化処理は圧入前に実施してもよい。
If wear resistance is required for metal parts after press-fitting,
The entire surface or a portion of the surface of a metal member is hardened by carburizing, nitriding, surface hardening, plating, or other methods. The surface of the metal member may be hardened before press-fitting.

図面により本発明をさらに詳しく説明する。The present invention will be explained in more detail with reference to the drawings.

第1図ないし第2図は本発明の金属・セラミックス結合
体の一具体例の構造を示したものである。
FIGS. 1 and 2 show the structure of a specific example of the metal-ceramic composite of the present invention.

第1図はセラミックス製部材lに設けられた凸部4が金
属製部材2に設けられた四部3に強制的に圧入した場合
の金属・セラミックス結合体の縦断面図、第2図は使用
温度において、士うミックス製部材上の凸部4の底面7
と金属製部材上の四部8の端面6との間に隙間5が存在
するように、強、制約に圧入した場合の金属・セラミッ
クス結合体の圧入部の縦断面図である。両部材の圧入を
容易にするため、セラミックス製部材上の凸部先端と、
金属製部材上の四部入口にはテーパーを付けてもよい。
Fig. 1 is a longitudinal cross-sectional view of the metal-ceramic composite when the protrusion 4 provided on the ceramic member 1 is forcibly fitted into the 4th part 3 provided on the metal member 2, and Fig. 2 shows the operating temperature. , the bottom surface 7 of the convex portion 4 on the mixed mix member
FIG. 3 is a vertical cross-sectional view of a press-fitted part of a metal-ceramic bonded body when the metal-ceramic bonded body is press-fitted with strong constraints so that a gap 5 exists between the end face 6 of the four parts 8 on the metal member. In order to facilitate press-fitting of both parts, the tip of the convex part on the ceramic member,
The four-part inlet on the metal member may be tapered.

本発明の金属・セラミックス結合体を構成する金属とセ
ラミックスの熱膨張係数は等しいことが望ましい。しか
し、一般には金属の熱膨張係数の方がセラミックスの熱
膨張係数より大きい。したがって、室温でセラミックス
製部材の凸部4の底面7と金属製部材の四部3の端面6
の間に隙間が存在しない場合には、圧入部の温度が上昇
すると、金属製部材とセラミックス製部材の熱膨張差の
ためセラミックス部材が破損する。これをさけるため、
本発明の金属・セラミックス結合体では隙間5を設ける
It is desirable that the coefficients of thermal expansion of the metal and ceramic constituting the metal-ceramic composite of the present invention are equal. However, the coefficient of thermal expansion of metals is generally larger than that of ceramics. Therefore, at room temperature, the bottom surface 7 of the convex portion 4 of the ceramic member and the end surface 6 of the four parts 3 of the metal member
If there is no gap between them, when the temperature of the press-fit portion increases, the ceramic member will be damaged due to the difference in thermal expansion between the metal member and the ceramic member. To avoid this,
In the metal-ceramic composite of the present invention, a gap 5 is provided.

本発明では、この隙間の間に、弾性体あるいは圧入後の
金属部材の仕上げ加工により生じたはりなどセラミック
ス製部材と金属製部材の熱膨張差による応力で実質的に
変形可能な物体が存在する場合も隙間が存在するものと
みなす。隙間5の大きさはつぎの関係を満足する大きさ
であればよい。
In the present invention, between this gap there is an object that can be substantially deformed by stress caused by the difference in thermal expansion between the ceramic member and the metal member, such as an elastic body or a beam generated by finishing processing of the metal member after press-fitting. It is also assumed that there is a gap. The size of the gap 5 may be any size that satisfies the following relationship.

(隙間5の大きさ)〉(金属部材とセラミックス部材の
熱膨張差)×(圧入距離×最高使用湿度) この隙間はスペーサーの利用あるいは圧入を圧入部の最
高使用温度以上の温度で行うことなどにより得られる。
(Size of gap 5)〉(Thermal expansion difference between metal member and ceramic member) x (Press-in distance x Maximum operating humidity) This gap should be filled with a spacer or press-fitted at a temperature higher than the maximum operating temperature of the press-fit part. It is obtained by

第2図はセラミックス製部材1の凸部4が、胴部の一端
に胴部直径より大径の7ラング部9を有する円筒状金属
製部材2の四部8に圧入してなる金属・セラミックス結
合体の一構造例である。このフランジ9によって、本発
明の金属・セラミックス結合体の金属製部材の胴部に他
の金属製部材を組込んで胴部端部に設けたネジ8で締め
た場合に、ネジの締めつけによって生ずる軸力や本発明
の金属・セラミックス結合体胴部の熱膨張とこの胴部上
に組込まれた他の金属製部材の熱膨張差による応力がセ
ラミックス製部材に作用しないようにする。
FIG. 2 shows a metal-ceramic bond formed by press-fitting a convex portion 4 of a ceramic member 1 into a four-part 8 of a cylindrical metal member 2, which has seven rung portions 9 with a diameter larger than the diameter of the body at one end of the body. This is an example of a body structure. With this flange 9, when another metal member is assembled into the body of the metal member of the metal-ceramic composite of the present invention and tightened with the screw 8 provided at the end of the body, the problem that occurs due to tightening of the screw. Stress due to axial force or the difference in thermal expansion between the body of the metal-ceramic composite body of the present invention and the other metal members assembled on the body is prevented from acting on the ceramic member.

第8図はセラミックス製タービンホイール16と一体的
に形成されている回転軸11の先端に設けた凸部14が
コンプレッサーホイール側の鋼製回転軸12の先端に設
けた四部13に圧入されている本発明の金属・セラミッ
クス結合体の一具体例を示すターボチャージャローター
である。
FIG. 8 shows that a convex portion 14 provided at the tip of a rotating shaft 11 that is integrally formed with a ceramic turbine wheel 16 is press-fitted into a four-part portion 13 provided at the tip of a steel rotating shaft 12 on the compressor wheel side. 1 is a turbocharger rotor showing a specific example of the metal-ceramic composite of the present invention.

圧入部の金属とセラミックスの熱膨張差により、セラミ
ックスが破損するのを防ぐため、隙間15が設けられて
いる。また、コンプレッサーホイール側のシャフトに組
込まれたベアリングとコンブレツザーホイール(ともに
図示せず)をナツトで締めつける場合に、シャフトに作
用する軸力およびアルミ合金製コンプレッサーホイール
と鋼製シャフト12との熱膨張差による応力がセラミッ
クス製回転軸に作用しないようにフランジ17が設けら
れている。
A gap 15 is provided to prevent the ceramic from being damaged due to the difference in thermal expansion between the metal and the ceramic in the press-fitted part. In addition, when tightening the bearing built into the shaft on the compressor wheel side and the combustor wheel (both not shown) with a nut, the axial force acting on the shaft and the heat generated between the aluminum alloy compressor wheel and the steel shaft 12 A flange 17 is provided so that stress due to differential expansion does not act on the ceramic rotating shaft.

第4図、第5図、・第6図は金属製部材2に設けられた
貫通孔3に、この貫通孔より大径のセラミックス製部材
の凸部4を圧入してなる金属・セラミックス結合体の胴
部外周に設けたネジ2人を利用して、他の金属製部材と
結合した本発明の金属・(12) セラミックス結合体の一応用例を示す断熱エンジン用ピ
ストンならびにタペットである。
Figures 4, 5, and 6 show a metal-ceramic composite formed by press-fitting a protrusion 4 of a ceramic member with a larger diameter than the through-hole into a through-hole 3 provided in a metal member 2. This is a piston and a tappet for an adiabatic engine showing an application example of the metal/(12) ceramic composite of the present invention, which is connected to another metal member using two screws provided on the outer periphery of the body.

第4図は金属製ピストンのピストンクラウン19の一部
に本発明の金属・セラミックス結合体がはめ込み可能な
一部貫通孔からなる空所を設け、この空所に金属・セラ
ミックス結合体をはめ込んで、貫通孔に設けたネジ19
Aと金属・セラミックス結合体に設けたネジ2人とで固
定したピストンクラウンがセラミックスよりなり、ピス
トン本体が金属からなる断熱エンジン用ピストンである
FIG. 4 shows that a hollow space consisting of a partial through hole into which the metal-ceramic combined body of the present invention can be fitted is provided in a part of the piston crown 19 of a metal piston, and the metal-ceramic combined body is fitted into this hollow space. , screw 19 provided in the through hole
This is an insulated engine piston in which the piston crown, which is fixed by A and two screws provided on the metal/ceramic combination, is made of ceramic, and the piston body is made of metal.

第5図は金属製タペット20のカムとの摺接面に本発明
の金属・セラミックス結合体がはめ込み可能な空所を設
け、その空所内に本発明の金属・セラミックス結合体を
はめ込んで、空所内に設けたネジ2OAと金属・セラミ
ックス結合体に設けたネジ2人とで固定したカムとの摺
接面21がセラミックスからなるタペットである。
FIG. 5 shows that a cavity is provided in the sliding contact surface of the metal tappet 20 with the cam, into which the metal-ceramic composite of the present invention can be fitted, and the metal-ceramic composite of the present invention is fitted into the cavity. The sliding surface 21 between the screw 2OA provided in-house and the cam fixed by two screws provided on the metal-ceramic combination is a tappet made of ceramic.

第6図は金属製タペット28のカムとの摺接面に本発明
の金属・セラミックス結合体がはめ込み可能な貫通孔を
設け、その貫通孔に本発明の金属・セラミックス結合体
をはめ込んで、貫通孔に設けたネジ28Aと金属・セラ
ミックス結合体の外周に設けたネジ2人とで固定した、
カムとの摺接面21およびブツシュロッド当接面22が
セラミックスからなるタペットである。
FIG. 6 shows that a through hole into which the metal/ceramic composite of the present invention can be fitted is provided on the sliding surface of the metal tappet 28 with the cam, and the metal/ceramic composite of the present invention is fitted into the through hole and the metal/ceramic composite of the present invention is inserted into the through hole. It was fixed with a screw 28A provided in the hole and two screws provided on the outer periphery of the metal/ceramic composite.
The sliding surface 21 with the cam and the bushing rod contact surface 22 are tappets made of ceramics.

本発明の金属・セラミックス結合体を構成するセラミッ
クス材料は窒化けい素、炭化けい素、部分安定化ジルコ
ニア、アルミナ、ベリリア等から本発明の金属・セラミ
ックス結合体の使用目的に応じて選択すればよい。たと
えば、本発明の金属・セラミックス結合体でターボチャ
ージャローターを作る場合には、高温になるタービンホ
イールとそれに続く回転軸は高温強度の大きい窒化りい
素が望ましい、また、カムとの摺接面をセラミックスと
したタペットを本発明の金属・セラミックスで作る場合
には、セラミックス材料として高強度、高靭性の部分安
定化ジルコニアが望ましい。さらにまた、本発明の金属
・セラミックス結合体でピストンクラウンがセラミック
スである断熱エンジン用ピストンを作る場合には、セラ
ミックス材料として熱膨張係数がピストン本体を構成す
る鋳鉄に近い部分安定化ジルコニアが望ましい。
The ceramic material constituting the metal-ceramic composite of the present invention may be selected from silicon nitride, silicon carbide, partially stabilized zirconia, alumina, beryllia, etc. depending on the intended use of the metal-ceramic composite of the present invention. . For example, when making a turbocharger rotor using the metal-ceramic composite of the present invention, it is desirable to use silicon nitride, which has high high-temperature strength, for the turbine wheel that gets hot and the rotating shaft that follows it, and also for the sliding surface with the cam. When a tappet made of ceramic is made of the metal/ceramic of the present invention, partially stabilized zirconia with high strength and high toughness is desirable as the ceramic material. Furthermore, when making a piston for an adiabatic engine whose piston crown is made of ceramic using the metal-ceramic composite of the present invention, partially stabilized zirconia, which has a thermal expansion coefficient close to that of cast iron constituting the piston body, is preferable as the ceramic material.

実施例 1 常圧焼結法で作製した窒化けい素丸棒から直径3.1m
tn、長さ20 Wl++nの凸部を有するセラミック
ス製部材を作製した。また、焼なましだクロムモリブデ
ン鋼(JIS−3CM485 )丸棒の一端に内径3.
0mm、深さ25 msの四部と残りの一端にネジ部を
設けた胴径5 mjnの金属製部材を作製した。この金
属製部材の四部にセラミックス製部材の凸部を20°C
で圧入し、金属製部材四部先端とセラミックス製部材凸
部底面の隙間(第7図C)が0.2 mvr (結合体
A)と0柑(結合体B)である第7図に示す形状の金属
・セラミックス結合体を作製した。この金属・セラミッ
クス結合体を加熱炉に入れて、300°Cまで昇温した
ところ結合体Aには何ら異常は認められなかった。しか
し、結合体Bは昇温途中の200°Cでセラミックス製
部材R部から破損した。
Example 1 Silicon nitride round bar made by pressureless sintering method with a diameter of 3.1 m
A ceramic member having a convex portion with a length of 20 Wl++n and a length of 20 Wl++n was produced. In addition, one end of an annealed chromium molybdenum steel (JIS-3CM485) round bar with an inner diameter of 3.
A metal member with a body diameter of 5 mjn was produced, which had four parts with a diameter of 0 mm and a depth of 25 ms and a threaded part at one end of the remaining part. The convex parts of the ceramic member are placed on the four parts of this metal member at a temperature of 20°C.
The shape shown in Figure 7 is that the gaps between the tips of the four parts of the metal member and the bottom of the convex part of the ceramic member (Figure 7C) are 0.2 mvr (combined body A) and 0 mvr (combined body B). A metal-ceramic composite was fabricated. When this metal/ceramic composite was placed in a heating furnace and the temperature was raised to 300°C, no abnormality was observed in composite A. However, the bonded body B broke at the R portion of the ceramic member at 200° C. during the temperature rise.

実施例 2 実施例1と同じ方法で作った結合体Aを圧力2Torr
 、窒素8部、水素2部の混合雰囲気中で530℃、1
0時間、イオン窒化処理を行った。
Example 2 Combined body A made in the same manner as Example 1 was heated to a pressure of 2 Torr.
, 530°C in a mixed atmosphere of 8 parts nitrogen and 2 parts hydrogen, 1
Ion nitriding treatment was performed for 0 hours.

イオン窒化処理により金属製部材の表面硬度(ビッカー
ス硬さ)がイオン窒化処理前(7)HV150からHv
 860まで上昇するとともに、表面から0.1611
1mの深さの位置でもHV 500を示した。このイオ
ン窒化処理によってもセラミックス製部材と金属製部材
の圧入部には何の異常も認められなかった。
Due to ion nitriding treatment, the surface hardness (Vickers hardness) of metal members increases from HV150 to HV before ion nitriding treatment (7)
Rising to 860 and 0.1611 from the surface
It showed HV 500 even at a depth of 1 m. Even after this ion nitriding treatment, no abnormality was observed in the press-fitted portion between the ceramic member and the metal member.

実施例 8 常圧焼結法で作製した窒化けい葉丸俸から第1表に示す
直径で長さ20咋の凸部を有するセラミックス製部材を
作製した。また、焼なましだアルミニラムクOAモ!J
 フテンM (JIS−8AOM 645 )丸棒の一
端に第1表に示す直径の四部、残りの一端にネジを設け
た金属製部材を作製した。この金属製部材の四部にセラ
ミックス製部材の凸部を第1表に示す条件で圧入して第
7肉に示す形状の金(16) 属・セラミックス結合体を作製した。この金属・セラミ
ックス結合体を第8図に示すような治具を用い、第8図
に図示の部分を加熱炉に入れて、第1表に示す温度に加
熱し、上下方向に引抜いて結合部の引抜に要する荷重を
測定した。得られた結果を第1表に示した。
Example 8 Ceramic members having convex portions with diameters shown in Table 1 and a length of 20 cm were manufactured from nitrided silica pellets manufactured by pressureless sintering. Also, annealed aluminum OA model! J
Futen M (JIS-8AOM 645) A metal member was prepared by providing four parts of the diameter shown in Table 1 at one end of a round bar and a screw at the other end. The convex portions of the ceramic member were press-fitted into the four parts of this metal member under the conditions shown in Table 1 to produce a gold(16) metal/ceramic bonded body having the shape shown in No. 7. Using a jig as shown in Fig. 8, this metal-ceramic bonded body is placed in a heating furnace with the parts shown in Fig. 8 heated to the temperature shown in Table 1, and then pulled out in the vertical direction to form the joint. The load required for pulling out was measured. The results obtained are shown in Table 1.

A1とA2はセラミックス製部材が第7図R部で破損し
たので、結合部の引抜に要する荷重(結合力)がセラミ
ックス製部材のR部の破断荷重以上であることは明らか
である。
In A1 and A2, the ceramic members were damaged at the R section in FIG. 7, so it is clear that the load (bonding force) required to pull out the joint is greater than the breaking load at the R section of the ceramic member.

第1表から明らかなように、本発明の金属・セラミック
ス結合体は800°Cにおいても大きな結合力を有して
いる。
As is clear from Table 1, the metal-ceramic composite of the present invention has a large bonding strength even at 800°C.

これに対して、本発明の範囲外のものを示した比較例で
は、金属製部材の四部にセラミックス製部材の凸部が圧
入不可能であったり、圧入が可能でも結合力の弱いもの
しか得られない。比較何屋101N76108はそれぞ
れ金属製部材の硬さ、金属製部材上の凹部外壁の厚さ、
セラミックス製部材上の凸部寸法と金属製部材上の四部
寸法の差がいずれも本発明の範囲より大きいため、圧入
時にセラミックス製部材の凸部が破損したものである。
On the other hand, in comparative examples outside the scope of the present invention, the convex parts of the ceramic member cannot be press-fitted into the four parts of the metal member, or even if press-fitting is possible, only a weak bonding force can be obtained. I can't do it. Comparative Nanaiya 101N76108 has the hardness of the metal member, the thickness of the outer wall of the recess on the metal member,
Since the difference between the dimensions of the protrusion on the ceramic member and the dimensions of the four parts on the metal member were both larger than the scope of the present invention, the protrusion of the ceramic member was damaged during press-fitting.

また、比較例IG 104と應105はそれぞれ圧入温
度より引抜試験温度が高温の場合とセラミックス製部材
の凸部寸法と金属製部材の凹部寸法の差が本発明の範囲
より小さい場合の例であるが、この場合には結合力が弱
くて低い荷重で結合部が抜けたものであるう (19) 実施例 4 直径(l l amのタービンホイールとi径9+mの
タービンシャフトを常圧焼結法による窒化けい素で一体
的に形成した全長73mmのセラミックス製部材を作製
した。このセラミックス製部材のタービンシャフト先端
に直径6 * O酎、長さ17市の凸部を加工した。ま
た、全長70酬、直径9開のアルミク誼ムモリブデンm
 (JIS −SAOM 645 )の一端ニ内径5.
8報、深さ19IIIInの四部を形成した。この四部
にタービンシャフト先端の凸部を850 ”Cで圧入し
て、タービンホイールとタービンシャフトの一部が窒化
けい素からなり、しかも上記四部端面と凸部底面の間隔
が0.05+e+であるターボチャージャローターを作
製した。このターボチャージャローターのコンプレッサ
ーホイール側回転軸を直径5−に加工し、第8図に示す
形状とした。
Furthermore, Comparative Examples IG 104 and 105 are examples in which the pull-out test temperature is higher than the press-in temperature, and where the difference between the convex dimension of the ceramic member and the concave dimension of the metal member is smaller than the range of the present invention. However, in this case, the bonding force was weak and the bonded part came off under a low load (19). A ceramic member with a total length of 73 mm was fabricated integrally with silicon nitride according to the method.A convex portion with a diameter of 6 * O and a length of 17 mm was machined at the tip of the turbine shaft of this ceramic member. 9 diameter aluminium molybdenum
(JIS-SAOM 645) One end inner diameter 5.
8 reports, four parts with a depth of 19IIIn were formed. The convex part at the tip of the turbine shaft is press-fitted into these four parts at 850"C to create a turbo in which the turbine wheel and part of the turbine shaft are made of silicon nitride, and the distance between the end face of the four parts and the bottom of the convex part is 0.05+e+. A charger rotor was manufactured.The compressor wheel side rotating shaft of this turbocharger rotor was machined to have a diameter of 5 mm, giving it the shape shown in FIG.

このコンプレッサーホイール側回転軸12に内径5.2
印、外径80舵渭、長さ25門のアルミニウム合金(J
IS−AO40)製内筒をはめ、フランジ17とコンプ
レッサーホイール側回転軸の一端に設けたネジ18の間
で、締付トルク15に9・cmでナツトにより固定した
。このターボチャージャローターを電気炉に入れて、2
00°Cまで昇温したが、タービンシャフト上のセラミ
ックスと金属の圧入部、コンプレッサーシャフトおよび
ネジ部には何ら異常は認められなかった。
This compressor wheel side rotating shaft 12 has an inner diameter of 5.2 mm.
Aluminum alloy (J
An inner cylinder made of IS-AO40) was fitted and fixed with a nut between the flange 17 and the screw 18 provided at one end of the rotating shaft on the compressor wheel side with a tightening torque of 15 and 9 cm. Put this turbocharger rotor into an electric furnace and
Although the temperature was raised to 00°C, no abnormality was observed in the press-fitted part between the ceramic and metal on the turbine shaft, the compressor shaft, and the threaded part.

実施例 5 実施例4と同じ方法で第3図に示す形状のターボチャー
ジャローターを作製した。このターボチャージャロータ
ーを高温回転試験装置に組込んで、燃焼ガスにより15
0.00Orpmで1時間の回転試験を行ったが何ら異
常は認められなかった。
Example 5 A turbocharger rotor having the shape shown in FIG. 3 was manufactured in the same manner as in Example 4. This turbocharger rotor was installed in a high-temperature rotation test equipment, and the combustion gas
A rotation test was conducted for 1 hour at 0.00 rpm, but no abnormality was observed.

実施例 6 5.2%のY2O3を含む部分安定化ジルコニアセラミ
ックスで、板面中央に直径15門、長さ15開の凸部を
有する直径69叩、厚さ3 wの円板を作製した。また
、球状黒鉛鋳鉄でフランジ部外径85m、m、胴部外径
25 men、凹部内径14.81m、全長10 m1
aの金属製部材を作製した。金属製部材の四部にジルコ
ニアセラミックスの凸部を500℃で圧入して金属・セ
ラミックス結合体を作製した。
Example 6 A disk having a diameter of 69 mm and a thickness of 3 W and having a convex portion of 15 holes in diameter and 15 holes in length at the center of the plate surface was prepared using partially stabilized zirconia ceramics containing 5.2% Y2O3. Also, made of spheroidal graphite cast iron, the outer diameter of the flange part is 85 m, the outer diameter of the body is 25 m, the inner diameter of the recess is 14.81 m, and the total length is 10 m1.
The metal member of a was produced. A convex portion of zirconia ceramics was press-fitted into the four parts of the metal member at 500° C. to produce a metal-ceramic bonded body.

一方、直径7Qamの球状黒鉛鋳鉄製ピストンのピスト
ンクラウンの一部にこの金属・セラミックス結合体かは
み込み可能な一部貫通孔からなる空所を設けた。ついで
、貫通孔に設けたネジと金属・セラミックス結合体の金
属製部材胴部上のネジとを固定し、第4図に示す形状の
ピストンクラウンの一部が部分安定化ジルコニアセラミ
ックス、ピストン本体が球状黒鉛鋳鉄である断熱エンジ
ン用ピストンを作製した。このピスト、ンは直径7 Q
 mrn、ストローク75mm、回転数220Orpm
のディーゼルエンジンで1時間運転しても何ら異常は認
められなかった。
On the other hand, in a part of the piston crown of a piston made of spheroidal graphite cast iron having a diameter of 7 Qam, a cavity consisting of a partially through hole into which this metal/ceramic composite could be inserted was provided. Next, the screw provided in the through hole and the screw on the metal member body of the metal-ceramic combination are fixed, and a part of the piston crown of the shape shown in FIG. 4 is made of partially stabilized zirconia ceramic, and the piston body is made of partially stabilized zirconia ceramic. A piston for an insulated engine made of spheroidal graphite cast iron was fabricated. This piston has a diameter of 7 Q.
mrn, stroke 75mm, rotation speed 220Orpm
No abnormalities were observed even after one hour of operation with this diesel engine.

以上述べたことから明らかなとおり、本発明の金属・セ
ラミックス結合体はセラミックス製部材に設けた凸部を
その凸部直径より小径の金8製部材に設けた四部に、荷
重をかけて強制的に押し込むとともに、本発明の金属・
セラミックス結合体の使用温度において、セラミックス
製部材上の凸部底面と金属製部材上の四部端面との間に
隙間を(22) 設けて嵌合するものであるから、セラミックス製部材と
金属製部材の加工精度は焼ばめの場合のような高精度を
必要とせず、結合体の寸法上の制約もない。さらにまた
、圧入部のセラミックスと金属の熱膨張係数の差による
破損も防止できる。
As is clear from the above description, the metal-ceramic bonded body of the present invention is produced by forcibly applying a load to the convex portion provided on the ceramic member and the four portions provided on the gold 8 member having a smaller diameter than the convex portion diameter. At the same time, the metal of the present invention
At the operating temperature of the ceramic bonded body, a gap (22) is provided between the bottom surface of the convex part on the ceramic member and the end face of the four parts on the metal member, so that the ceramic member and the metal member fit together. The machining accuracy does not require the same high precision as in the case of shrink fitting, and there are no restrictions on the dimensions of the joined body. Furthermore, damage caused by the difference in coefficient of thermal expansion between the ceramic and metal of the press-fitted part can be prevented.

とくに、セラミックス製タービンホイールとそれに続く
セラミックス製シャフトに金属製のシャフトを圧入して
結合した構造のターボチャージャローターはタービンが
軽量で高温強度のすぐれたセラミックス製なので高効率
のターボチャージャローターとすることができる。
In particular, a turbocharger rotor with a structure in which a metal shaft is press-fitted into a ceramic turbine wheel and a subsequent ceramic shaft is a highly efficient turbocharger rotor because the turbine is made of ceramics that are lightweight and have excellent high-temperature strength. I can do it.

また、金属製ピストンのピストンクラウンに、本発明の
金属・セラミックス結合体のはめ込み可能な空所を設け
、この空所内に設けたネジと、本発明の金属・セラミッ
クス結合体の金属製部材胴部に設けたネジとを固定した
ピストンクラウンの一部がセラミックス、ピストン本体
が金属からなる断熱エンジン用ピストンは高温の燃焼ガ
スにさらされるピストンクラウンを断熱性の高いセラミ
ックスとすることができるので、容易に断熱効果c 2
8 ) の高いピストンを作ることもできる。
Further, a hollow space into which the metal-ceramic combined body of the present invention can be fitted is provided in the piston crown of the metal piston, and a screw provided in the hollow space and the metal member body of the metal-ceramic combined body of the present invention are provided. A piston for an insulated engine is made of ceramic, with a part of the piston crown that fixes the screw installed in the piston made of ceramic, and the piston body made of metal. Thermal insulation effect c2
8) It is also possible to make a high piston.

また、タペットも本発明の金属・セラミックス結合体を
はめ込んで、カムとの摺接面をセラミックスとすること
ができるので、耐摩耗性にすぐれたタペットとすること
ができる。
Further, the tappet can also be fitted with the metal-ceramic composite of the present invention so that the sliding surface with the cam can be made of ceramic, so that the tappet can have excellent wear resistance.

コノヨウニ、本発明の金属・セラミックス結合体は本発
明の金属・セラミックス結合体そのもの、あるいは他の
金属製部材と組合せて使用することにより、セラミック
スの耐熱性、断熱性、高温強度ならびに耐摩耗性を生か
してターボチャージャ、ピストン、タペット、吸気弁、
排気弁、ロッカーアーム、カムなどのエンジン部品その
他高温や繰り返し荷重を受ける構造体部品として使用で
きる。
By using the metal-ceramic composite of the present invention itself or in combination with other metal members, the metal-ceramic composite of the present invention can improve the heat resistance, heat insulation, high-temperature strength, and wear resistance of ceramics. Turbocharger, piston, tappet, intake valve,
It can be used in engine parts such as exhaust valves, rocker arms, cams, and other structural parts that are subject to high temperatures and repeated loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第2図は本発明の金属・セラミックス結合
体の一具体例の構造の縦断面を示す説明図、第8図は本
発明の金属・セラミックス結合体の具体的応用例のター
ボチャージャローターの圧入部の縦断面を示す説明図、
第4図は本発明の金属・セラミックス結合体を他の金属
製部材と組合せて使用する具体例である断熱エンジン用
ピストンの断面を示す説明図、第5図ないし第6図は本
発明の金属・セラミックス結合体を他の金属製部材と組
合せて使用する他の具体例であるタペットの断面を示す
説明図、第7図は本発明の金属・セラミックス結合体の
他の具体例の構造の断面を示す説明図、第8図は金属・
セラミックス結合体のぢ1抜試験の方法を示す説明図で
ある。 1・・・セラミックス製部材、2・・・金属製部材、2
人・・・ネジ・8・・・金属製部材上の四部、4・・・
セラミックス製部材上の凸部、5・・・四部端面と凸部
底面の隙間、6・・・凹部の端面、7.・・凸部底面、
8・・・金属製部材の胴部に設けたネジ、9・・・フラ
ンジ、11・・・タービンホイール側回転軸、12・・
・コンプレッサーホイール側回転軸、18・・・コンプ
レッサーホイール側回転軸先端の凹部、14・・・ター
ビンホイール側回転軸先端の凸部、15・・・四部端面
と凸部底面の隙間、16・・・タービンホイール、17
・・・フランジ、18・・・ネジ、19・・・ピストン
クラウン、19A・・・ネジ、20.28・・・金属製
タペット、2OA、28A・・・ネジ、21・・・カム
との摺接面、22・・・ブツシュロッド当接面、81・
、・プルロッド、82・・・引抜用ツカミ具。 特許出願人 日本碍子株式会社 34 特開昭GO−50204(9) 手続補正書 昭和59年6 月14日 1、事件の表示 昭和58年特許 願第158070号 7、補正の内容 (別紙の通り) 1、明細書第14頁第3行〜第4行中「金属製ピストン
の・・・・・の一部に」を「金属製ピストン19のピス
トンクラウンの−R+(に」と訂正する。 2、同第8行中「固定したピストン」を「固定したとこ
ろのピストン」と訂正する。 3同第26頁第19行〜第20行[19・・・ピストン
クラウン」を「IO・・・金属製ピストンJと訂正する
。 (2) 手続補正書 昭和59年8 月 10 B 昭和58年特許 願第158070号 製造法 3、補正をする者 特許出願人 ?「 話 (581) 2241番(代表)明細書の「
特許請求の範囲」1.「発明の詳細な説明」の掴1、明
MfI書第1頁第4行〜第4頁第2行間を下記の通り訂
正する。 [2、特許請求の範囲 1 金属製部材に設けられた四部又は貫通孔に、セラミ
ックス製部材に設けられた凸部が圧入してなる金属・セ
ラミックス結合体が、該結合体の使用湿度で金属製部材
の凹部端面とセラミックス製部材の凸部底面の間に隙間
が存在するように結合されたことを特徴とする金属・セ
ラミックス結合体。 2 金属製部材の四部側胴部の一部に金属製部材胴部直
径より大径の7ラング部が形成されていることを特徴と
する特許請求の範囲第1項記載の金属・セラミックス結
合体。 & セラミックス製部材がターボチャージャローターの
タービンホイール側の回転軸の一部、金属製部材がター
ボチャージャローターのコンプレッサーホイール側の回
転軸の一部である特許請求の範囲第1項または第2項の
いずれかに記載の金属・セラミックス結合体。 表 セラミックス製部材が窒化けい素、金属製部材が浸
炭、窒化、表面焼入れのいずれか1つの方法で表面硬化
処理可能な鋼であることを特徴とする特許請求の範囲第
8項記載の金属・セラミックス結合体。 五 セラミックス製部材がピストンクラウンの一部、金
属製部材がピストン本体の一部である特許請求の範囲第
1項または第2項のいずれかに記載の金属・セラミック
ス結合体。 a セラミックス製部材が部分安定化ジルコニア、金属
製部材が鋳鉄であることを特徴とする特許請求の範囲第
5項記載の金属・セラミックス結合体。 7、 金属製部材とセラミックス製部材とを一体的に結
合する方法において、セラミックス製部拐に設けた凸部
の直径を金属製部材に設けた四部の内径より0.5%〜
5%大きくするとともに、該凹部に対し凸部を′金属製
部材の焼なまし温度以下および室温または結合部が使用
中にさらされる最高温度以上の湿度で圧入すること全特
徴とする金属・セラミックス結合体の製造法。 8、 金属製部材とセラミックス製部材とを一体的に結
合する方法において、セラミックス製部材に設けた凸部
の直径を金属製部材に設けた四部の内径より免i−%〜
5%大きくするとともに、該凹部に対し凸部を金属製部
材の焼なまし温度以下および室温または結合部が使用中
にさらされる最高使用温度以上の温度で圧入し、圧入後
所定の寸法に仕上げた金属製部材表面の一部あるいは全
部を浸炭、窒化、表面焼入れ、メッキのいずれかの方法
で硬化させることを特徴とする金属・セラ(3) ミックス結合体の製造法。 9、 金属・セラミックス結合体がターボチャージャロ
ーターであり、金属製部材がコンプレッサーホイール側
の金属製回転軸で、セラミックス製部材がタービンホイ
ール側回転軸であることを特徴とする特許請求の範囲第
7項または第8項のいずれかに記載の金属・セラミック
ス結合体の製造法。」 (4) 2、明細書第7頁第9行、第16行、第8頁第18行、
第20行、第9頁第2行中「0.05%」を[0,5%
jと訂正する。 代理人弁理士 杉 村 暁 秀 外1名
Figures 1 and 2 are explanatory diagrams showing a longitudinal section of the structure of a specific example of the metal-ceramic composite of the present invention, and Figure 8 is a turbocharger as a specific application example of the metal-ceramic composite of the present invention. An explanatory diagram showing a vertical cross section of the press-fitting part of the rotor,
FIG. 4 is an explanatory diagram showing a cross section of a piston for an adiabatic engine, which is a specific example of using the metal-ceramic composite of the present invention in combination with other metal members, and FIGS. 5 and 6 show the metal of the present invention.・An explanatory diagram showing a cross section of a tappet which is another specific example in which a ceramic bonded body is used in combination with another metal member, and FIG. 7 is a cross section of the structure of another specific example of the metal/ceramic bonded body of the present invention. An explanatory diagram showing the metal
FIG. 1 is an explanatory diagram showing a method for performing a 1-output test on a ceramic bonded body. 1... Ceramic member, 2... Metal member, 2
Person... Screw 8... Four parts on a metal member, 4...
Convex portion on the ceramic member, 5... Gap between the end faces of the four parts and the bottom surface of the convex part, 6... End face of the concave part, 7.・・Bottom surface of the convex part,
8... Screw provided on the body of the metal member, 9... Flange, 11... Turbine wheel side rotating shaft, 12...
- Compressor wheel side rotating shaft, 18... Concave portion at the tip of the compressor wheel side rotating shaft, 14... Convex portion at the tip of the turbine wheel side rotating shaft, 15... Gap between the end face of the four parts and the bottom of the convex part, 16...・Turbine wheel, 17
...Flange, 18...Screw, 19...Piston crown, 19A...Screw, 20.28...Metal tappet, 2OA, 28A...Screw, 21...Sliding with cam Contact surface, 22... Bush rod contact surface, 81.
,・Pull rod, 82... Pulling knob. Patent Applicant Nippon Insulators Co., Ltd. 34 JP-A-50204 (9) Procedural Amendment June 14, 1980 1, Indication of Case 1982 Patent Application No. 158070 7, Contents of Amendment (as attached) 1. In the third to fourth lines of page 14 of the specification, "on a part of the metal piston" is corrected to "-R+(on) the piston crown of the metal piston 19." 2 , in line 8 of the same, "fixed piston" is corrected to "piston in a fixed place". 3, page 26 of the same, lines 19 to 20 [19... piston crown] is replaced with "IO... metal Corrected as manufactured piston J. (2) Procedural amendment August 1980 10 B 1982 patent Application No. 158070 Manufacturing method 3, person making the amendment Patent applicant? "Story (581) No. 2241 (Representative) " on the statement
Scope of Claims”1. Section 1 of "Detailed Description of the Invention", page 1, line 4 of the Mei MfI book, page 4, line 2 is corrected as follows. [2.Claim 1] A metal-ceramic bonded body in which a convex portion provided on a ceramic member is press-fitted into four portions or through holes provided in a metal member is provided with 1. A metal-ceramic bonded body, characterized in that the metal and ceramic members are bonded together such that a gap exists between the end face of the concave part of the made member and the bottom face of the convex part of the ceramic member. 2. The metal-ceramic bonded body according to claim 1, wherein seven rungs having a diameter larger than the diameter of the metal member body are formed in a part of the four side body parts of the metal member. . & Claim 1 or 2, wherein the ceramic member is a part of the rotating shaft of the turbocharger rotor on the turbine wheel side, and the metal member is a part of the rotating shaft of the turbocharger rotor on the compressor wheel side. The metal/ceramic composite described in any of the above. Table 1. The metal according to claim 8, wherein the ceramic member is silicon nitride, and the metal member is steel that can be surface hardened by any one of carburizing, nitriding, and surface hardening. Ceramic composite. 5. The metal-ceramic bonded body according to claim 1 or 2, wherein the ceramic member is a part of the piston crown, and the metal member is a part of the piston body. The metal-ceramic composite according to claim 5, wherein the ceramic member is partially stabilized zirconia and the metal member is cast iron. 7. In the method of integrally joining a metal member and a ceramic member, the diameter of the convex part provided on the ceramic part is 0.5% or more than the inner diameter of the four parts provided on the metal member.
5% larger, and the convex part is press-fitted into the concave part at a humidity below the annealing temperature of the metal member and at room temperature or above the maximum temperature to which the joint part is exposed during use. Method for producing conjugates. 8. In the method of integrally joining a metal member and a ceramic member, the diameter of the convex portion provided on the ceramic member is less than the inner diameter of the four portions provided on the metal member.
5% larger, and press-fit the convex part into the concave part at a temperature below the annealing temperature of the metal member and at room temperature or above the maximum operating temperature to which the joint part is exposed during use, and finish it to the specified dimensions after press-fitting. A method for producing a metal/ceramic (3) mixed composite body, characterized by hardening part or all of the surface of a metal member by carburizing, nitriding, surface hardening, or plating. 9. Claim 7, characterized in that the metal/ceramic combined body is a turbocharger rotor, the metal member is a metal rotating shaft on the compressor wheel side, and the ceramic member is a rotating shaft on the turbine wheel side. A method for producing a metal-ceramic bonded body according to any one of Items 1 and 8. (4) 2. Specification page 7, line 9, line 16, page 8, line 18,
Line 20, page 9, line 2, replace “0.05%” with [0.5%
Correct it as j. Representative patent attorney Akira Sugimura Hidegai 1 person

Claims (1)

【特許請求の範囲】 1 金属製部材に設けられた四部又は貫通孔に、セラミ
ックス製部材に設けられた凸部が圧入してなる金属・セ
ラミックス結合体が、該結合体の使用温度で金属製部材
の凹部端面とセラミックス製部材の凸部底面の間に隙間
が存在するように結合されたことを特徴とする金属・セ
ラミックス結合体。 区 金属製部材の四部側胴部の一部に金属製部材胴部直
径より大径の7ラング部が形成されていることを特徴と
する特許請求の範囲第1項記載の金属・セラミックス結
合体。 & セラミックス製部材がターボチャージャローターの
タービンホイール側の回転軸の一部、金属製部材がター
ボチャージャローターのコンプレッサーホイール側の回
転軸の一部である特許請求の範囲第1項または第2項の
いずれかに記載の金属・セラミックス結合体。 生 セラミックス製部材が窒化けい素、金M製部材が浸
炭、窒化、表面焼入れのいずれか1つの方法で表面硬化
処理可能な鋼であることを特徴とする特許請求の範囲第
8項記載の金属、セラミックス結合体。 五 セラミックス製部材がピストンクラウンの一部、金
属製部材がピストン本体の一部である特許請求の範囲第
1項または第2項のいずれかに記載の金属・セラミック
ス結合体。 a セラミックス製部材が部分安定化ジルコニア、金属
製部材が鋳鉄であることを特徴とする特許請求の範囲第
5項記載の金属・セラミックス結合体。 I 金属製部材とセラミックス製部材とを一体的に結合
する方法において、セラミックス製部材に設けた凸部の
直径を金属製部材に設けた凹部の内径より0.05%〜
5%大きくするとともに、該凹部に対し凸部を金属製部
材の焼なまし湿度以下および室温または結合部が使用中
にさらされる最高温度以上の湿度で圧入することを特徴
とする金属・セラミックス結合体の製造法。 8、 金属製部材とセラミックス製部材とを一体的に結
合する方法において、セラミックス製部材に設けた凸部
の直径を金属製部材に設けた四部の内径より0.05%
〜5%大きくするとともに、該凹部に対し凸部を金属製
部材の焼なまし温度以下および室温または結合部が使用
中にさらされる最高使用温度以上の温度で圧入し、圧入
後所定の寸法に仕上げた金属製部材表面の一部あるいは
全部を浸炭、窒化、表面焼入れ、メッキのいずれかの方
法で硬化させることを特徴とする金属・セラミックス結
合体の製造法。 9、 金属・セラミックス結合体がターボチャージャロ
ーターであり、金属製部材がコンプレッサーホイール側
の金属製回転軸で、セラミックス製部材がタービンホイ
ール側回転軸であることを特徴とする特許請求の範囲第
7項または第8項のいずれかに記載の金属・セラミック
ス結合体の製造法。
[Claims] 1. A metal-ceramic bonded body in which a convex portion provided on a ceramic member is press-fitted into four portions or a through hole provided in a metal member, is made of metal at the operating temperature of the bonded body. A metal-ceramic bonded body, characterized in that the metal-ceramic bonded body is bonded such that a gap exists between the end face of the concave part of the member and the bottom face of the convex part of the ceramic member. 7. The metal-ceramic composite body according to claim 1, wherein seven rungs having a diameter larger than the diameter of the metal member body are formed in a part of the four side body parts of the metal member. . & Claim 1 or 2, wherein the ceramic member is a part of the rotating shaft of the turbocharger rotor on the turbine wheel side, and the metal member is a part of the rotating shaft of the turbocharger rotor on the compressor wheel side. The metal/ceramic composite described in any of the above. The metal according to claim 8, wherein the raw ceramic member is silicon nitride, and the gold M member is steel that can be surface hardened by any one of carburizing, nitriding, and surface hardening. , ceramic composite. 5. The metal-ceramic bonded body according to claim 1 or 2, wherein the ceramic member is a part of the piston crown, and the metal member is a part of the piston body. The metal-ceramic composite according to claim 5, wherein the ceramic member is partially stabilized zirconia and the metal member is cast iron. I. In a method of integrally joining a metal member and a ceramic member, the diameter of the convex portion provided on the ceramic member is 0.05% or more than the inner diameter of the recess provided on the metal member.
5% larger, and the convex part is press-fitted into the concave part at a humidity below the annealing humidity of the metal member and at room temperature or above the maximum temperature to which the joint part is exposed during use. How the body is manufactured. 8. In the method of integrally joining a metal member and a ceramic member, the diameter of the convex part provided on the ceramic member is 0.05% of the inner diameter of the four parts provided on the metal member.
~5% larger, and press-fit the convex part into the concave part at a temperature below the annealing temperature of the metal member and at room temperature or at a temperature above the maximum operating temperature to which the joint part is exposed during use, and after press-fitting, the convex part is pressed into the predetermined size. A method for producing a metal-ceramic bonded body, characterized by hardening part or all of the surface of a finished metal member by carburizing, nitriding, surface hardening, or plating. 9. Claim 7, characterized in that the metal/ceramic combined body is a turbocharger rotor, the metal member is a metal rotating shaft on the compressor wheel side, and the ceramic member is a rotating shaft on the turbine wheel side. A method for producing a metal-ceramic bonded body according to any one of Items 1 and 8.
JP58158070A 1983-08-31 1983-08-31 Metal-ceramics bonded body and its manufacturing process Granted JPS6050204A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58158070A JPS6050204A (en) 1983-08-31 1983-08-31 Metal-ceramics bonded body and its manufacturing process
US06/641,339 US4690617A (en) 1983-08-31 1984-08-16 Metal-ceramic composite article and a method of producing the same
AT84305818T ATE35306T1 (en) 1983-08-31 1984-08-24 METAL AND CERAMIC OBJECT AND METHOD FOR ITS MANUFACTURE.
DE8484305818T DE3472289D1 (en) 1983-08-31 1984-08-24 Metal-ceramics composite article and a method of producing the same
EP84305818A EP0139406B1 (en) 1983-08-31 1984-08-24 Metal-ceramics composite article and a method of producing the same
CA000461847A CA1230953A (en) 1983-08-31 1984-08-27 Metal.sup..ceramics composite article and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158070A JPS6050204A (en) 1983-08-31 1983-08-31 Metal-ceramics bonded body and its manufacturing process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27321389A Division JPH02211359A (en) 1989-10-20 1989-10-20 Ceramics crown piston and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6050204A true JPS6050204A (en) 1985-03-19
JPH0415361B2 JPH0415361B2 (en) 1992-03-17

Family

ID=15663639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158070A Granted JPS6050204A (en) 1983-08-31 1983-08-31 Metal-ceramics bonded body and its manufacturing process

Country Status (6)

Country Link
US (1) US4690617A (en)
EP (1) EP0139406B1 (en)
JP (1) JPS6050204A (en)
AT (1) ATE35306T1 (en)
CA (1) CA1230953A (en)
DE (1) DE3472289D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109276A (en) * 1990-08-24 1991-05-09 Ngk Spark Plug Co Ltd Structure for joining ceramics and metal
JPH0532707A (en) * 1991-07-26 1993-02-09 Sekisui Chem Co Ltd Production of vinyl chrolide-based resin
US6874324B2 (en) 2002-05-22 2005-04-05 Hitachi, Ltd. Gas turbine and gas turbine power generator
JP2021032352A (en) * 2019-08-26 2021-03-01 光洋シーリングテクノ株式会社 Friction damper

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050204A (en) * 1983-08-31 1985-03-19 Ngk Insulators Ltd Metal-ceramics bonded body and its manufacturing process
JPS6140879A (en) * 1984-08-03 1986-02-27 日本碍子株式会社 Metal ceramic bonded body and manufacture
US4719074A (en) * 1984-03-29 1988-01-12 Ngk Insulators, Ltd. Metal-ceramic composite article and a method of producing the same
EP0157479B1 (en) * 1984-03-29 1989-07-19 Ngk Insulators, Ltd. A metal ceramics composite article and a process for manufacturing the same
JPS613901U (en) * 1984-06-13 1986-01-11 トヨタ自動車株式会社 Turbine wheel structure of turbocharger
US4749334A (en) * 1984-12-06 1988-06-07 Allied-Signal Aerospace Company Ceramic rotor-shaft attachment
JPS61219767A (en) * 1985-03-25 1986-09-30 日本碍子株式会社 Metal ceramic bonded body
JPS624528A (en) * 1985-06-12 1987-01-10 Ngk Insulators Ltd Ceramics-metal combined structure
JPS6322225A (en) * 1986-03-20 1988-01-29 Ngk Insulators Ltd Metal and ceramic bond body and manufacture thereof
JPS63139075A (en) * 1986-12-02 1988-06-10 日本碍子株式会社 Ceramic-metal joined body, manufacture and joining apparatus
US4777844A (en) * 1986-12-23 1988-10-18 Ford Motor Company Hybrid ceramic/metal compression link for use in higher temperature applications
US4794894A (en) * 1987-03-05 1989-01-03 Cummins Engine Company, Inc. Ceramic tipped pivot rod and method for its manufacture
JPH043129Y2 (en) * 1987-05-11 1992-01-31
JP2531708Y2 (en) * 1988-10-18 1997-04-09 日本碍子株式会社 Ceramic / metal composite
US5087483A (en) * 1988-11-22 1992-02-11 Masco Corporation Carburizing ceramic plates for a faucet valve
US4975014A (en) * 1989-09-01 1990-12-04 The Boeing Company High temperature low thermal expansion fastener
US5022313A (en) * 1990-01-08 1991-06-11 General Motors Corporation Composite piston assembly for automotive air conditioning compressor
JP2747939B2 (en) * 1990-08-22 1998-05-06 日本特殊陶業株式会社 Supercharger
US5056950A (en) * 1990-08-31 1991-10-15 Allied-Signal Inc Thermally activated joint
US5108025A (en) * 1991-05-20 1992-04-28 Gte Laboratories Incorporated Ceramic-metal composite article and joining method
US7874059B2 (en) * 2006-01-12 2011-01-25 Siemens Energy, Inc. Attachment for ceramic matrix composite component
DE102010011486A1 (en) * 2010-03-16 2011-09-22 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotor for a charging device
GB201014059D0 (en) * 2010-08-24 2010-10-06 Element Six Production Pty Ltd Wear part
CN113409963A (en) * 2021-06-17 2021-09-17 中国核动力研究设计院 Fuel rod and fuel assembly for overcoming pellet cladding mechanical interaction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442520A (en) * 1977-06-27 1979-04-04 Kuehnle Kopp Kausch Ag Gas turbine
JPS5730301U (en) * 1980-07-28 1982-02-17
JPS5792002U (en) * 1980-11-26 1982-06-07
JPS57168004A (en) * 1981-04-10 1982-10-16 Nissan Motor Co Ltd Installation structure of ceramic turbine rotor

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1794782A (en) * 1926-10-19 1931-03-03 Hugh C Lord Joint
US1940870A (en) * 1930-09-15 1933-12-26 Fed Telegraph Co Metal-to-glass seal
US2297508A (en) * 1940-02-29 1942-09-29 Schutte Alfred Rotor for turbines
CH304836A (en) * 1951-04-06 1955-01-31 Maschf Augsburg Nuernberg Ag Machine component made from ceramic materials.
US2891525A (en) * 1955-08-01 1959-06-23 Thompson Ramo Wooldridge Inc Tappet barrel
US2933386A (en) * 1956-08-01 1960-04-19 Rca Corp Method of sintering and nitriding ferrous bodies
US3321565A (en) * 1964-01-03 1967-05-23 Eastman Kodak Co Method of manufacturing a friction clutch
US3604819A (en) * 1969-10-14 1971-09-14 United States Steel Corp Impeller shaft assembly
GB1318526A (en) * 1969-11-28 1973-05-31 Cav Ltd Rotor assemblies
US3801226A (en) * 1970-08-28 1974-04-02 Goulds Pumps Pump impeller
DE2159531C3 (en) * 1971-12-01 1980-11-13 N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Metal-ceramic implementation
SE366575B (en) * 1972-08-18 1974-04-29 Seco Tools Ab
US4176519A (en) * 1973-05-22 1979-12-04 United Turbine Ab & Co., Kommanditbolag Gas turbine having a ceramic rotor
SU502133A1 (en) * 1973-07-05 1976-02-05 Предприятие П/Я А-1270 Permanently tensioned connection
JPS5730301B2 (en) * 1974-05-24 1982-06-28
US4014968A (en) * 1974-07-19 1977-03-29 Corning Glass Works Shrinkage control of cellular ceramic bodies having axial cavities
US4214906A (en) * 1974-11-29 1980-07-29 Volkswagenwerk Aktiengesellschaft Method of producing an article which comprises a first zone of a nonoxide ceramic material and a second zone of a softer material
JPS5924242B2 (en) * 1976-03-31 1984-06-08 株式会社東芝 Turbine rotor structure
DE2734747A1 (en) * 1977-08-02 1979-02-15 Daimler Benz Ag Mounting for ceramic turbine rotor on metal shaft - uses shrink or friction fit or friction welding at end faces
DE2845716C2 (en) * 1978-10-20 1985-08-01 Volkswagenwerk Ag, 3180 Wolfsburg Thermally highly stressable connection
DE2851507C2 (en) * 1978-11-29 1982-05-19 Aktiengesellschaft Kühnle, Kopp & Kausch, 6710 Frankenthal Isolation spring body and its use
JPS6026459B2 (en) * 1979-04-09 1985-06-24 トヨタ自動車株式会社 Turbocharger rotation speed detection device
US4270380A (en) * 1979-05-25 1981-06-02 Corning Glass Works Metal shaping die assembly
US4256441A (en) * 1979-06-19 1981-03-17 Wallace-Murray Corporation Floating ring bearing structure and turbocharger employing same
US4341826A (en) * 1980-02-13 1982-07-27 United Technologies Corporation Internal combustion engine and composite parts formed from silicon carbide fiber-reinforced ceramic or glass matrices
JPS56122659A (en) * 1980-02-28 1981-09-26 Aisin Seiki Co Ltd Production of ceramic insert piston
WO1982001034A1 (en) * 1980-09-19 1982-04-01 A Goloff Tappet with wear resisting insert
US4768476A (en) * 1981-02-20 1988-09-06 Stanadyne, Inc. Tappet with ceramic camface
US4404935A (en) * 1981-04-27 1983-09-20 Kyocera International, Inc. Ceramic capped piston
JPS6018621B2 (en) * 1981-05-21 1985-05-11 日本碍子株式会社 engine parts
JPS583902A (en) * 1981-07-01 1983-01-10 Toyota Motor Corp Manufacture of cam shaft
US4531269A (en) * 1981-07-06 1985-07-30 Deere & Company Method of assembling an improved heat insulated piston
DE3129220A1 (en) * 1981-07-24 1983-02-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München "DEVICE FOR CONNECTING A CERAMIC IMPELLER, IN PARTICULAR TURBINE IMPELLER OF A FLUID MACHINE, E.g. A GAS TURBINE ENGINE, WITH A METAL SHAFT"
US4479293A (en) * 1981-11-27 1984-10-30 United Technologies Corporation Process for fabricating integrally bladed bimetallic rotors
FR2522647A1 (en) * 1982-03-05 1983-09-09 Rolls Royce METALLOCERAMIC COMPOSITE PIECE AND PROCESS FOR PRODUCING THE SAME
JPS58193304A (en) * 1982-05-08 1983-11-11 Hitachi Powdered Metals Co Ltd Preparation of composite sintered machine parts
JPS58210302A (en) * 1982-05-31 1983-12-07 Ngk Insulators Ltd Ceramic rotor
JPS58214018A (en) * 1982-06-08 1983-12-13 Asahi Glass Co Ltd Power transmission method
DE3230388A1 (en) * 1982-08-14 1984-02-16 Karl Schmidt Gmbh, 7107 Neckarsulm METHOD FOR CONNECTING AN INLET POWDERED INTO A COMPONENT MOLDED IN A LIGHT METAL MATERIAL FOR INTERNAL COMBUSTION ENGINE
US4479735A (en) * 1983-01-13 1984-10-30 Westinghouse Electric Corp. Shrink fit sleeve for rotating machinery
US4548786A (en) * 1983-04-28 1985-10-22 General Electric Company Coated carbide cutting tool insert
JPS6050204A (en) * 1983-08-31 1985-03-19 Ngk Insulators Ltd Metal-ceramics bonded body and its manufacturing process
JPS60103082A (en) * 1983-11-09 1985-06-07 日本碍子株式会社 Metal ceramic bonded body and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442520A (en) * 1977-06-27 1979-04-04 Kuehnle Kopp Kausch Ag Gas turbine
JPS5730301U (en) * 1980-07-28 1982-02-17
JPS5792002U (en) * 1980-11-26 1982-06-07
JPS57168004A (en) * 1981-04-10 1982-10-16 Nissan Motor Co Ltd Installation structure of ceramic turbine rotor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109276A (en) * 1990-08-24 1991-05-09 Ngk Spark Plug Co Ltd Structure for joining ceramics and metal
JPH0532707A (en) * 1991-07-26 1993-02-09 Sekisui Chem Co Ltd Production of vinyl chrolide-based resin
US6874324B2 (en) 2002-05-22 2005-04-05 Hitachi, Ltd. Gas turbine and gas turbine power generator
JP2021032352A (en) * 2019-08-26 2021-03-01 光洋シーリングテクノ株式会社 Friction damper

Also Published As

Publication number Publication date
EP0139406A1 (en) 1985-05-02
ATE35306T1 (en) 1988-07-15
CA1230953A (en) 1988-01-05
EP0139406B1 (en) 1988-06-22
US4690617A (en) 1987-09-01
JPH0415361B2 (en) 1992-03-17
DE3472289D1 (en) 1988-07-28

Similar Documents

Publication Publication Date Title
JPS6050204A (en) Metal-ceramics bonded body and its manufacturing process
US4614453A (en) Metal-ceramic composite body and a method of manufacturing the same
US4719074A (en) Metal-ceramic composite article and a method of producing the same
US4784574A (en) Turbine rotor units and method of producing the same
US4854025A (en) Method of producing a turbine rotor
US4856970A (en) Metal-ceramic combination
US4798493A (en) Ceramic-metal composite body
US4719075A (en) Metal-ceramic composite article and a process for manufacturing the same
EP0238321B1 (en) Metal-ceramic composite bodies and a method for manufacturing the same
US5066547A (en) Metal and ceramic heat-connected body
US4908256A (en) Ceramic-metal composite bodies
EP0157479B1 (en) A metal ceramics composite article and a process for manufacturing the same
JPH02211359A (en) Ceramics crown piston and manufacture thereof
JPH0658044B2 (en) Turbine rotor and method for producing the same
JPS60204901A (en) Bonded metal-ceramics and manufacture thereof
JPS6148486A (en) Metal ceramic binder and manufacture
JPH0449512B2 (en)
JP2001130974A (en) Metal-ceramic bonded material and sliding part using the same