JPS6050153A - Production of aluminum alloy conductor having high strength and heat resistance - Google Patents

Production of aluminum alloy conductor having high strength and heat resistance

Info

Publication number
JPS6050153A
JPS6050153A JP15753883A JP15753883A JPS6050153A JP S6050153 A JPS6050153 A JP S6050153A JP 15753883 A JP15753883 A JP 15753883A JP 15753883 A JP15753883 A JP 15753883A JP S6050153 A JPS6050153 A JP S6050153A
Authority
JP
Japan
Prior art keywords
heat resistance
conductor
strength
alloy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15753883A
Other languages
Japanese (ja)
Other versions
JPH0335373B2 (en
Inventor
Hitoshi Yanase
仁志 柳瀬
Mototsugu Hoshino
星野 元次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15753883A priority Critical patent/JPS6050153A/en
Publication of JPS6050153A publication Critical patent/JPS6050153A/en
Publication of JPH0335373B2 publication Critical patent/JPH0335373B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a titled conductor having the conductivity and strength equivalent to those of the conventional conductor and much higher heat resistance and flexibility by casting continuously or semi-continuously a molten Al alloy contg. Zr and Mg respectively at prescribed ratio then hot rolling the cast alloy to a roughly drawn wire immediately thereafter and subjecting the drawn wire to cold drawing after a heating treatment. CONSTITUTION:A molten Al alloy contg. 0.15-0.8wt% Zr and 0.05-0.5wt% Mg and consisting of the balance Al and ordinary impurities is cast continuously or semi-continuously at >=740 deg.C to solutionize thoroughly Zr. The resulted casting ingot is hot-rolled immediately to a roughly drawn wire without reheating and the drawn wire is subjected to a heating treatment for 1-100hr at 100- 500 deg.C to precipitate Zr and to provide improved heat resistance and recovered conductivity. The roughly drawn wire after the heating treatment is cold drawn and is finished to a conductor having a desired size and at the same time the strength is further improved by work hardening, by which the intended Al alloy conductor having high strength and heat resistance is obtd.

Description

【発明の詳細な説明】 本発明(ま高力耐熱アルミニウム合金導体の製造法に関
俳るもので、特に従来の高力側熱アルミニウム合金)9
体と同等の導°市率及び強j灸を有し、かつはるかに優
れた耐熱性どlJJ撓性をイ1づる合体を製造するもの
で゛ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention (also relates to a method for manufacturing a high-strength heat-resistant aluminum alloy conductor, particularly a conventional high-strength side heat-resistant aluminum alloy) 9
The purpose is to produce a composite that has the same conductivity and strong moxibustion as the body, but has far superior heat resistance and flexibility.

従来架空送電線に【J電気用へ柔からなる導体を用いた
調芯アルミニウl\撚線が用いられ、特殊な送電条件、
例えば耐熱性が要求される送電線に(ま△(−7f系合
金からなる−[・1熱心体を用いた沖1芯耐熱アルミニ
ウム合金撚線が用いられていた。また長径間送電線のよ
うに強度が要求される場合には5005系合金(AJ2
−0.5へ・1.1wt%1Vlfl >からなる高力
導体を用いた鋼芯高カシノルミーウlX合金撚線が用い
られていた。
Conventionally, aligned aluminum stranded wires using flexible conductors have been used for overhead power transmission lines, and due to special power transmission conditions,
For example, for power transmission lines that require heat resistance, heat-resistant aluminum alloy stranded wire with a single-core heat-resistant aluminum alloy made of a -7f alloy was used. 5005 series alloy (AJ2
-0.5 to 1.1wt% 1Vlfl>A steel-core high-casinoluminium X alloy stranded wire using a high-strength conductor was used.

近年電力錨°要の増大に伴い、大容量送電の見地から耐
熱性があり、しかも強度の高い合体が望、土れるように
なった。しかし4I:がら△(−/1゛系含金からなる
耐熱導体では/r含石枦の用例にかかわらず、導体の強
度がそれほど畠くなら4fいl、め、強度が要求される
長径間送電線に【よ用いることができず、全アルミニウ
ム合金撚線にb用いるJどができないもので′あった。
In recent years, as the demand for power anchors has increased, from the standpoint of large-capacity power transmission, a combination of heat-resistant and high-strength anchors has become desirable, and so it has become possible to build anchors. However, in the case of a heat-resistant conductor made of 4I:Gaara△(-/1゛-based metal), regardless of the usage of the /r stone-containing metal, if the strength of the conductor is that high, it will be 4fl. It could not be used for power transmission lines, and it could not be used for all-aluminum alloy stranded wire.

また5005系合金からイ。Also, from 5005 series alloy.

る高力導体は24 K !J / mm 2の引張強さ
を小りb山1・1熱性は電気用Δ(からなる導体ど同稈
1αCル〕す、耐熱性が要求される大容量送電線には使
用(・込・(「いものであった。
The high strength conductor is 24K! The tensile strength of J/mm2 is reduced, and the thermal resistance is Δ(conductor consisting of 1αC) for electricity, and it is used for large-capacity power transmission lines that require heat resistance (incl. (“It was ugly.

従ってA 、e −Z r系耐熱導体については強度の
向上が、また5005系高力導体については耐熱性の向
上が検討され、最近A、f!−Zr系合金にl”eや3
iを添加4°ることにより導電性及び耐熱性をあまり損
なうことなく強度を改善した高力耐熱アルミニウム合金
導体が開発された。この8体は導電率56%1ΔCS程
度、引張強さ25 K Q / mm 2程度、耐熱性
93%(230℃、1時間加熱)程度の優れた特性を示
J−も、架空送電線どじで重要な可撓性が劣る欠点があ
り、耐熱性についても、より以上の改善が望まれている
Therefore, improvements in the strength of A, e-Zr series heat-resistant conductors and improvements in heat resistance of 5005 series high-strength conductors have been studied, and recently A, f! -L”e and 3 in Zr alloy
A high-strength heat-resistant aluminum alloy conductor has been developed that has improved strength without significantly impairing conductivity and heat resistance by adding 4° of i. These 8 pieces exhibited excellent properties such as electrical conductivity of about 56% 1ΔCS, tensile strength of about 25 KQ/mm2, and heat resistance of about 93% (heated at 230°C for 1 hour). It has the important disadvantage of poor flexibility, and further improvement in heat resistance is also desired.

本発明はこれに鑑み種々検討の結果、従来の高力耐熱ア
ルミニウム合金導体どほぼ同等の導電率と強度を有し、
かつtよるかに優れた耐熱性と司(尭性を有づる高力耐
熱アルミニウム合金導体の製造法を開発したもので、Z
 r O,15・〜0.8wt%(以下wt%を単に%
と略記) 、M(J O,0!1〜0.5%を含み、残
部へ(と通常の不純物からなるアルミニウム合金溶湯を
740℃以」−の温度で連続又は半連続鋳造し、得られ
た鋳塊を再加熱することなく直ちに熱間圧延して荒引線
とし、これを100〜500℃の温度で1〜100時間
加熱処理した後、冷間で伸線加工することを特徴どする
ものである。
In view of this, as a result of various studies, the present invention has almost the same conductivity and strength as conventional high-strength heat-resistant aluminum alloy conductors,
We have developed a method for manufacturing a high-strength, heat-resistant aluminum alloy conductor that has far superior heat resistance and conductivity.
r O, 15・~0.8wt% (hereinafter wt% is simply %
(abbreviated as), M(JO, 0!1 to 0.5%, and the remainder (abbreviated as 0.1% to 0.5%), and the remainder is obtained by continuous or semi-continuous casting of an aluminum alloy molten alloy consisting of normal impurities at a temperature of 740°C or higher. The ingot is immediately hot-rolled into rough wire without reheating, heat-treated at a temperature of 100-500°C for 1-100 hours, and then cold-drawn. It is.

即ち本発明は上記組成範囲内の合金溶湯を740℃以上
の温度で連続又は半連続鋳j市りることにより、含イ4
Zrを十分に固溶させる。これを再加熱りることなく直
ちに熱間圧延して荒引線どし、これを100〜500℃
の温度で1へ・100時間加熱処狸処理ことにJ、すZ
rを析出せしめ、7rの析出により耐熱性を向上けしめ
るど其に導電率をI!IJ復させ、更に7−rの析出硬
化とMOの71〜リックス強化により強度を向上uしめ
る。これを冷間C伸線加工することにJ、り所望寸法の
導体に仕上げると共に、加工硬化により更に強度を向上
せしめl、=ものである。このようにして製造した導体
は従来の高ツノ耐熱アルミニウム合金導体とほぼ同宿の
セフ電率及び強度を有し、かつはるかに優れた耐熱11
ど可撓性を右りるもので、導体としてより多くの電流を
流すことができる。またこの導体は可撓性が優れており
通常の銅芯アルミニウム撚線にみられる鉄芯損のない全
アルミニウム合金撚線の導体としての使用を可能にする
ものである。
That is, the present invention is capable of casting a molten alloy within the above composition range continuously or semi-continuously at a temperature of 740°C or higher.
Sufficiently dissolve Zr in solid solution. This is immediately hot-rolled to a rough wire without reheating, and then heated to 100-500°C.
Heat treatment for 100 hours at a temperature of J, SuZ
The heat resistance is improved by precipitating 7r, but the conductivity is also increased by I! Strength is improved by IJ recovery, 7-R precipitation hardening and MO 71-Rix strengthening. This is then subjected to cold C wire drawing to finish it into a conductor of desired dimensions, and the strength is further improved by work hardening. The conductor manufactured in this way has approximately the same electrical conductivity and strength as the conventional high-horn heat-resistant aluminum alloy conductor, and has a far superior heat resistance of 11.
Due to its flexibility, it can conduct more current as a conductor. Furthermore, this conductor has excellent flexibility and enables the use of all-aluminum alloy stranded wire as a conductor without the core loss found in ordinary copper-core aluminum stranded wire.

しかして本発明にJ3いて合金組成を上記の如く限定し
たのは次の理由によるものである。
However, the reason why the alloy composition of J3 is limited as described above in the present invention is as follows.

7r含右川を0.15〜0.8%と限定したのはZ r
の添加により耐熱性を向上せしめるためであるが、その
含有量が0.15%未満では加工条件及び加熱処理条件
をどのように選んでも耐熱性が不十分であり、0.8%
を超えると耐熱性の向上効果より導電率の低下が著しく
なり、導体として使用できなくなるためである。またM
g含有但を0.05〜0.5%と限定しlこのはMgの
添加により更に強度を向上させると共に、可撓性を向上
させるためであるが、その含有量が0.05%未満で【
j、その効果が小さく、0.5%を越えるど可撓性の向
上よりも導電率の低下が著しく、導体として使用できな
くなるためである。
It is Zr that limited the 7r-containing right river to 0.15-0.8%.
The purpose is to improve heat resistance by adding 0.8%, but if the content is less than 0.15%, the heat resistance will be insufficient no matter how the processing conditions and heat treatment conditions are selected.
This is because if the value exceeds 100%, the conductivity decreases more significantly than the effect of improving heat resistance, making it impossible to use it as a conductor. Also M
The g content is limited to 0.05 to 0.5%. This is to further improve strength and flexibility by adding Mg, but if the content is less than 0.05%, [
This is because the effect is small, and if it exceeds 0.5%, the conductivity decreases more significantly than the improvement in flexibility, making it impossible to use it as a conductor.

尚その他の不純物としては通常の電気用A(地金に不可
避的に含まれる程度の不純物であれば導体の特性を損な
うことはない。
Other impurities include ordinary electrical grade A (impurities that are unavoidably included in the base metal will not impair the characteristics of the conductor.

次に上記組成範囲内の合金の鋳造温度を74 (1”C
以上と限定したのは、連続又は半連続鋳造によりZrを
十分に固溶さゼるためであり、740℃未満では7r固
溶量が少なく、その後の加工条件及び加熱処理条件!1
をどのように選/Vでも」分な耐熱11が得られないた
めである。J:た熱間圧延した荒引線の加熱処理条件を
100〜500℃の温度で1・〜100時間と限定した
のは、加熱処理により鋳造時に固溶させた7rを析出さ
せることにより耐熱1t1=をイ4与づると共(ご導電
率を回復さけ、史にZrの析出硬化により強度を向上さ
せるためであり、加熱湯面が100℃未満では十分な析
出効果が寄られず、500℃の温度を越えると過時効ど
なって強度が低下するためである。また加熱時間が1時
間未満では導電率の回復が少なく、100時間を越える
と強度低下が若しくなるためである このようにして加熱処理することにより、71゛を十分
析出ざ(士た後、冷間で伸線加工するのは、加工硬化に
より更に強度を高めると共に所望の導体寸法に仕上げる
lcめCある。
Next, the casting temperature of the alloy within the above composition range was set to 74 (1"C
The reason for limiting the above is that continuous or semi-continuous casting allows Zr to be sufficiently dissolved in solid solution, and below 740°C, the amount of 7r solid solution is small, so the subsequent processing conditions and heat treatment conditions! 1
This is because no matter how you select /V, a heat resistance of 11'' cannot be obtained. J: The heat treatment conditions for the hot-rolled rough drawn wire were limited to 1-100 hours at a temperature of 100 to 500°C, because heat resistance 1t1= This is to improve the strength by precipitation hardening of Zr without restoring the electrical conductivity, and if the heated molten metal surface is below 100℃, sufficient precipitation effect will not be obtained, and at 500℃ This is because if the heating time exceeds the temperature, over-aging occurs and the strength decreases.Furthermore, if the heating time is less than 1 hour, there is little recovery of conductivity, and if the heating time exceeds 100 hours, the strength decreases prematurely. After the wire has been heat-treated to produce 71", cold wire drawing is performed to further increase the strength through work hardening and to finish the conductor to the desired dimensions.

以下本発明を実施例について汀線に説明りる。Hereinafter, the present invention will be explained along the shoreline with reference to embodiments.

純度99.6%の電気用△(地金と、A(−5%71゛
母合金どMu単イホを用いで第1表に承り組成の合金を
配合、溶融し、これをベルトアンドホイール型連続鋳造
機により断面積2000 nun ”の台形状鋳塊に鋳
造し、これを再加熱づることなく直らに熱間圧延し、直
径9.5mtnの荒引線とした。この荒引線を加熱処理
した後、冷間で伸線加]−シ、直径4.0 mmの合体
を製造した。
Using 99.6% pure electrical grade △ (base metal) and A (-5% 71゛ mother alloy or other Mu single metal), mix and melt the alloy with the composition shown in Table 1. A trapezoidal ingot with a cross-sectional area of 2000 nun'' was cast using a continuous casting machine, and this was immediately hot-rolled without reheating to form a rough drawn wire with a diameter of 9.5 mtn. After this rough drawn wire was heat treated, , cold wire drawing] - 4.0 mm in diameter was produced.

この合体につい′C導電率、引張強さ、耐熱性及びiI
J撓性を測定し、ぞの結果を11″L来の高力耐熱アル
ミニウ18合金導体と比較しC第1表に併記しlこ。
Regarding this combination, 'C conductivity, tensile strength, heat resistance and iI
The flexibility was measured and the results were compared with that of a 11"L high-strength heat-resistant aluminum 18 alloy conductor and are also listed in Table 1.

尚導電率はグルごンダブルブリッジにより電気抵抗を測
定しで帥出し、引張強さはアムスラー型試験1幾により
測定した。耐熱性は試オ′ミIを230℃の温度で1時
間加熱し、加熱1)aの引張強さに対り−る加熱後の引
張強さの割合で表示した。また可撓性は試料を直径の2
イ1”1の曲面で挾持し、h−6交Hに90°繰返し曲
げを行ない、破断までの90’曲げ回数を測定した。
The electrical conductivity was determined by measuring the electrical resistance using a Gurgon double bridge, and the tensile strength was determined using the Amsler type test 1. The heat resistance was determined by heating the test sample I at a temperature of 230° C. for 1 hour and expressing the tensile strength after heating to the tensile strength of heating 1) a. In addition, the flexibility of the specimen is
It was held between the curved surfaces of A1"1 and repeatedly bent at 90° at the h-6 intersection H, and the number of times of 90' bending until breakage was measured.

”i’I ;% Fh No 合’k l1fl 成(
%) l+jufoiI17r Mq A柔 (℃) 本発明ン人 1 0,20 0.10 残 76011
21IO0251I800 1I31I0.457! Il4 0.、+0 0,10 、。
``i'I ;% Fh No combination'k l1fl formation (
%) l+jufoiI17r Mq A soft (℃) Inventor 1 0,20 0.10 Remaining 76011
21IO0251I800 1I31I0.457! Il4 0. , +0 0,10 ,.

IT 5 JJ O,2On ll0IJ0.401? ’!7 0.70 0,10 、。IT 5 JJ O, 2On ll0IJ0.401? '! 7 0.70 0,10.

Il 8 ツノ 0.25 II II 9 IJ 0.45 ノl 比較法10 0.08 0.20 ツノl111 i、
20 η I/ !!12 0,40 0.01 、。
Il 8 Horn 0.25 II II 9 IJ 0.45 Nol Comparative method 10 0.08 0.20 Horn l111 i,
20 η I/! ! 12 0.40 0.01.

Il13 n O,70、。Il13 n O,70,.

Il 14 ll 0.20 ツノ 7()Oノ!15
nIru8QQ nl(iITIII) n l 7 7+ 77 J/ n 18n u n 従 x< ’c人 19 △i −0,7Fe −0,
I Si −0,12Zr、、 20 A、e−0,3
5Fe −0,I Si −0,122’l= −0,
2CulI21 Δp −0,4Fe −0,I Si
 −0,12Zr −0,15Cu+III熱処理 導
電率 引張強ざ耐熱性可撓・F11温度(°C)時間(
hr) (%■△C8) (K’;f/mm2) (%
) (回)200 96 56.8 24.8 9[i
、3 364B 55,9 25,7 95.4 40
350 24 5G、Il 2G、4 97,0 43
400 57.0 25.8 97.6 35350 
5G、4 26.2 98.2 42450 57.2
 24,8 97.0 4G500 2 56.6 2
5.Il 95,9 3812 57.4 24,6 
95.2 40350 96 5G、8 25.9 9
8.7 4224 57.4 24.878.4 3B
49.2 25.6 95,1 42 55.8 23.8 9G、2 16 49.6 25.4 9G、9 11G5G、2 24
,9 74.1 39 7OA8.625,4 95.8 40550 57.
3 18.1 04,9 37350 0.5 48.
225゜1 95.G 41120 57.6 1f1
.49G、1 3956.0 25,0 94.3 1
G 55.6 25,6 92.1 20 56.1 25.2 93.13 18第1表から明ら
かなように本発明法N o、 1〜9により製造した尋
体は、導電率55.9〜57.4%lAC31引張強さ
24.G 〜26.2)(g/m〃、2 、耐熱性95
.2〜98.7%、可撓性35〜46回の特性を示し、
従来法No、19〜21による導体と比較し、導電率及
び引張強さはほぼ同等の特性を有し、耐熱性及び可撓性
がはるかに優れていることが判る。
Il 14 ll 0.20 Horn 7()Oノ! 15
nIru8QQ nl(iITIII) n l 7 7+ 77 J/ n 18n un n subordinate x<'c person 19 △i -0,7Fe -0,
I Si -0,12Zr,, 20 A, e-0,3
5Fe −0, I Si −0, 122′l= −0,
2CulI21 Δp −0,4Fe −0,I Si
-0,12Zr -0,15Cu+III heat treatment Electrical conductivity Tensile strength Heat resistance Flexibility/F11 temperature (°C) Time (
hr) (%■△C8) (K'; f/mm2) (%
) (times) 200 96 56.8 24.8 9[i
, 3 364B 55,9 25,7 95.4 40
350 24 5G, Il 2G, 4 97,0 43
400 57.0 25.8 97.6 35350
5G, 4 26.2 98.2 42450 57.2
24.8 97.0 4G500 2 56.6 2
5. Il 95,9 3812 57.4 24,6
95.2 40350 96 5G, 8 25.9 9
8.7 4224 57.4 24.878.4 3B
49.2 25.6 95, 1 42 55.8 23.8 9G, 2 16 49.6 25.4 9G, 9 11G5G, 2 24
,9 74.1 39 7OA8.625,4 95.8 40550 57.
3 18.1 04.9 37350 0.5 48.
225°1 95. G 41120 57.6 1f1
.. 49G, 1 3956.0 25,0 94.3 1
G 55.6 25.6 92.1 20 56.1 25.2 93.13 18 As is clear from Table 1, the fat bodies produced by the methods No. 1 to 9 of the present invention had a conductivity of 55.9. ~57.4% lAC31 tensile strength 24. G ~26.2) (g/m〃, 2, heat resistance 95
.. 2 to 98.7%, flexibility 35 to 46 times,
It can be seen that, compared with the conductors made by conventional method Nos. 19 to 21, the conductivity and tensile strength are almost the same, and the heat resistance and flexibility are far superior.

これに対し比較法No、10〜13から判るように、本
発明で規定する合金組成範囲より外れるものは導電率、
引張強さ、耐熱性、I′IJ撓性の何れかが劣る。即ち
Zr含イJ量の少ない比較法N0.10では耐熱性が低
く、M(]含有量の少ない比較法No、12では可撓性
が悪く、また/1゛含有量の多い比較法No、11及び
MCI含有量の多い比較法N o、13では導電率が低
いことが判る。
On the other hand, as can be seen from Comparative Method Nos. 10 to 13, those that fall outside the alloy composition range defined by the present invention have a low electrical conductivity.
Any one of tensile strength, heat resistance, and I'IJ flexibility is inferior. That is, comparative method No. 0.10 with low Zr content and J content has low heat resistance, comparative method No. 12 with low M(] content has poor flexibility, and comparative method No. 1 with high content of /1゛, It can be seen that the electrical conductivity is low for Comparative Methods No. 11 and No. 13, which have a high MCI content.

また比較法NO,14〜18から判るJ、うに本発明で
規定する合金組成範囲内のものでも、鋳造条件又は加熱
処理条件の外れるものは導電率、引張強さ及び耐熱性の
何れかが劣る。即ち鋳造温度が低い比較法N o、14
でtよ耐熱性が低く、加熱処理温度が低い比較法N 0
.15及び処理時間が短い比較法No。
Furthermore, as can be seen from Comparative Method Nos. 14 to 18, even if the alloy composition is within the alloy composition range specified in the present invention, if the casting conditions or heat treatment conditions are not met, the electrical conductivity, tensile strength, and heat resistance are inferior. . That is, comparative method No. 14 with lower casting temperature
Comparative method N 0 with lower heat resistance and lower heat treatment temperature than t.
.. 15 and comparative method No. 1 with shorter processing time.

17では導電率が低く、また加熱!2!X理湿瓜が1a
い比較法No、16及び処理時間が長い比較法N o、
 18 TニーtJ引張強さが低くなっていることが判
る。1このJ、うに本発明によれば従来の高力耐熱アル
ミニウム合金導体とほぼ同等の導電率及び強度を右し、
かつはるかに優れた耐熱性ど可撓性をイ1りる導体を得
ることができるもので、鋼芯高力耐熱アルミニウム合金
撚線に使用し、送電容量を増大し得るばかりか、鉄芯損
のない全アルミニウlX台金撚線への使用をI]J能に
リ−るもので、王業圭顕著な効果を奏り゛るムのである
17 has low conductivity and heats up! 2! X-ri wet melon is 1a
Comparative method No. 16 and comparative method No. 16 with long processing time,
18 It can be seen that the T knee tJ tensile strength is low. 1. According to the present invention, the conductivity and strength are almost the same as those of conventional high-strength heat-resistant aluminum alloy conductors,
Furthermore, it is possible to obtain a conductor with far superior heat resistance and flexibility, and when used in steel core high strength heat resistant aluminum alloy stranded wires, it not only increases power transmission capacity but also reduces iron core loss. The use of all-aluminum aluminum stranded metal wires without any metal strands is extremely effective, and has a remarkable effect.

手続?巾正書(自発) 1、事件の表示 昭和58年 特許願 第157538号2、発明の名称 高力耐熱アルミニウム合金導体の製造法3、補正をする
者 事件との関係 特許出願人 4、代理人 住 所 東京都千代田区神田北乗物町16番地〒101
 英 ビル3階 補 正 の 内 容 1、特許請求の範囲を別紙の通り訂正する。
procedure? Paperback (spontaneous) 1. Indication of the case 1982 Patent Application No. 157538 2. Name of the invention Method for manufacturing high-strength heat-resistant aluminum alloy conductor 3. Person making the amendment Relationship to the case Patent applicant 4. Agent Address: 16-101, Kanda Kita Jomonocho, Chiyoda-ku, Tokyo
Contents 1 of the English Building Third Floor Amendment and the scope of claims are revised as shown in the attached sheet.

2、発明の詳細な説明において下記事項を訂正づる。2. The following matters have been corrected in the detailed description of the invention.

(1)第4頁第1行、第4頁第8行及び第6頁第7行に
[100〜b 「200〜500℃」と訂正する。
(1) Page 4, line 1, page 4, line 8, and page 6, line 7 are corrected as [100-b "200-500°C."

(2)第6頁第12行に「100℃」とあるを「200
℃」と訂正す”る。
(2) On page 6, line 12, replace “100℃” with “200℃”
℃” and corrected it.

特許請求の範囲 Z r O,15〜o、awt%、M (10,05〜
0.5wt%を含み、残部A(ど通常の不純物からなる
アルミニウム合金溶湯を740℃以上の温度で連続又は
半連続鋳造し、得られた鋳塊を再加熱することなく直ち
に熱間圧延して荒引線とし、これを200〜500℃の
温度で1〜100時間加熱処理した後、冷間で伸線加工
することを特徴とする高力耐熱アルミニウム合金導体の
製造法。
Claims Z r O, 15~o, awt%, M (10,05~
A molten aluminum alloy containing 0.5 wt% and the remainder A (common impurities) is continuously or semi-continuously cast at a temperature of 740°C or higher, and the resulting ingot is immediately hot rolled without reheating. A method for manufacturing a high-strength, heat-resistant aluminum alloy conductor, which is characterized in that a rough drawn wire is heat treated at a temperature of 200 to 500° C. for 1 to 100 hours, and then cold wire drawn.

Claims (1)

【特許請求の範囲】[Claims] 7 l’ 0.15〜0.8wt%、M (J O,0
5〜0.5wt%を含み、残部A℃と通詰“の不純物か
らなるフルミニウ11合金溶潟を740°C以上の温度
で連続又は半連続鋳造し、得られた鋳塊を再加熱りるこ
となく直らに熱間圧延し−C荒引線どし、これを 10
0〜500°Cの温度r1・〜10力時間加熱処理した
後、冷間C伸線加工することを特徴どり−る高力耐熱ア
ルミニウム合金導体の製造法。
7 l' 0.15-0.8 wt%, M (J O,0
Fluminiu 11 alloy melt lagoon containing 5 to 0.5 wt% and the balance A°C and condensed impurities is continuously or semi-continuously cast at a temperature of 740°C or higher, and the obtained ingot is reheated. Hot-rolled straight without any heat rolling, and then rolled it into a rough wire. 10
A method for producing a high-strength, heat-resistant aluminum alloy conductor, which is characterized in that it is heat-treated at a temperature of 0 to 500°C for a time of r1 to 10 forces, and then subjected to cold C wire drawing.
JP15753883A 1983-08-29 1983-08-29 Production of aluminum alloy conductor having high strength and heat resistance Granted JPS6050153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15753883A JPS6050153A (en) 1983-08-29 1983-08-29 Production of aluminum alloy conductor having high strength and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15753883A JPS6050153A (en) 1983-08-29 1983-08-29 Production of aluminum alloy conductor having high strength and heat resistance

Publications (2)

Publication Number Publication Date
JPS6050153A true JPS6050153A (en) 1985-03-19
JPH0335373B2 JPH0335373B2 (en) 1991-05-28

Family

ID=15651864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15753883A Granted JPS6050153A (en) 1983-08-29 1983-08-29 Production of aluminum alloy conductor having high strength and heat resistance

Country Status (1)

Country Link
JP (1) JPS6050153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329367U (en) * 1989-07-18 1991-03-22
JPH0747735A (en) * 1994-06-20 1995-02-21 Hitachi Ltd Ink sheet cassette

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146864A (en) * 1980-04-14 1981-11-14 Sumitomo Electric Ind Ltd Mamufacture of heat resistant aluminum alloy with high electric conductivity
JPS59226157A (en) * 1983-06-06 1984-12-19 Sumitomo Electric Ind Ltd Manufacture of high strength and heat resistant aluminum alloy for electric conduction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146864A (en) * 1980-04-14 1981-11-14 Sumitomo Electric Ind Ltd Mamufacture of heat resistant aluminum alloy with high electric conductivity
JPS59226157A (en) * 1983-06-06 1984-12-19 Sumitomo Electric Ind Ltd Manufacture of high strength and heat resistant aluminum alloy for electric conduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329367U (en) * 1989-07-18 1991-03-22
JP2573549Y2 (en) * 1989-07-18 1998-06-04 大日本印刷株式会社 Cassette for thermal transfer film
JPH0747735A (en) * 1994-06-20 1995-02-21 Hitachi Ltd Ink sheet cassette

Also Published As

Publication number Publication date
JPH0335373B2 (en) 1991-05-28

Similar Documents

Publication Publication Date Title
JPS5853057B2 (en) Highly conductive copper-based alloy
US4861388A (en) Method for contact conductor for electric vehicles
JPS6050153A (en) Production of aluminum alloy conductor having high strength and heat resistance
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JP4144184B2 (en) Manufacturing method of heat-resistant Al alloy wire for electric conduction
JPH0125822B2 (en)
JPS6029456A (en) Production of conductor consisting of high-strength heat-resistant aluminum alloy
JPS63293146A (en) Manufacture of high strength heat resistant aluminum alloy for electric conduction
RU2816585C1 (en) Aluminium-based conductor material and article made from it
JPS5989743A (en) High-strength copper alloy with high electric conductivity
JPS59107067A (en) Production of heat resistant aluminum alloy conductor
JPS60125356A (en) Production of high tension aluminum alloy conductor
JP3891699B2 (en) High strength aluminum alloy
JPS6052564A (en) Production of high-strength heat-resistant aluminum alloy conductor
JPS59166660A (en) Preparation of high tensile heat resistant aluminum alloy for electric conduction
JPS6052547A (en) Heat-resistant aluminum alloy for electrical conduction and its production
JPS6054387B2 (en) Manufacturing method of high strength heat resistant aluminum alloy conductor
JP3403763B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP2500143B2 (en) Copper alloy member with both conductivity and strength
JPS60125355A (en) Production of high tension aluminum alloy conductor
JPH1096036A (en) High strength and high conductivity copper alloy wire rod
JPH042664B2 (en)
JPH1143750A (en) Production of silver alloy
JPS6361380B2 (en)
JPS59226157A (en) Manufacture of high strength and heat resistant aluminum alloy for electric conduction