JPS60501491A - Soil purification method - Google Patents

Soil purification method

Info

Publication number
JPS60501491A
JPS60501491A JP59502299A JP50229984A JPS60501491A JP S60501491 A JPS60501491 A JP S60501491A JP 59502299 A JP59502299 A JP 59502299A JP 50229984 A JP50229984 A JP 50229984A JP S60501491 A JPS60501491 A JP S60501491A
Authority
JP
Japan
Prior art keywords
soil
mixture
alkali metal
chemical mixture
purification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59502299A
Other languages
Japanese (ja)
Other versions
JPH0349271B2 (en
Inventor
ピーターソン、ロバート・エル
Original Assignee
ギヤルソン・リサ−チ・コ−ポレイシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギヤルソン・リサ−チ・コ−ポレイシヨン filed Critical ギヤルソン・リサ−チ・コ−ポレイシヨン
Publication of JPS60501491A publication Critical patent/JPS60501491A/en
Publication of JPH0349271B2 publication Critical patent/JPH0349271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/874Pseudomonas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S71/00Chemistry: fertilizers
    • Y10S71/903Soil conditioner

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 土壌浄化方法 本発明の技術分野 第1の面において、本発明は土壌のハロゲン化有機汚染物を生物の攻撃を受け易 い脱ハロゲン化化合物へ部分的または完全に現場で変換することからなるハロゲ ン化有機汚染物の生分解性を増大するための新規な改善された方法に関する。ま た第ユの面において、本発明はポリハロゲン化有機化合物で汚染した土壌を先ず 該化合物を加水分解して該化合物の生分解性を増大し、次に加水分解した7種ま たはユ種以上の反応生成物を生物学的に分解することによって浄化するための新 規な改善された方法に関する。[Detailed description of the invention] Soil purification method Technical field of the invention In a first aspect, the present invention removes halogenated organic contaminants from soil that are susceptible to biological attack. Halogens consisting of partial or complete in-situ conversion to dehalogenated compounds This invention relates to a new and improved method for increasing the biodegradability of carbonized organic pollutants. Ma In a third aspect, the present invention provides for first treating soil contaminated with polyhalogenated organic compounds. The compound is hydrolyzed to increase the biodegradability of the compound, and then the seven hydrolyzed species are A new method for purifying reaction products by biologically decomposing them. and an improved method.

多くのポリハロゲン化有機化合物は周囲環境及び公衆衛生に対して明らかに有害 である。該化合物の多くは植物及び動物に有力であり、生理学的に活性で且つ発 癌性である。またポリハロゲン化有機化合物は食物連鎖過程において生体蓄積( bioaccumutate )する。7例として、汚染した十迩で育成した植 物で飼育した動物の肉またはミルクを飲食する人間はその結果として人間に損害 を与える該化合物を摂取すること(こなるであろう。Many polyhalogenated organic compounds are clearly harmful to the surrounding environment and public health. It is. Many of these compounds are potent in plants and animals, and are physiologically active and It is cancerous. Polyhalogenated organic compounds also bioaccumulate ( bioaccumulate). As a seventh example, plants grown in contaminated Humans who eat or drink meat or milk from animals raised on food may suffer harm to humans as a result. Ingestion of the compound that gives .

また、上述の化合物は、該化合物が存在する土壊から浸出し、小川、河川、湖ま たは同様な環境に入り込み、ここで該化合物は同様に相当危害を生ずる。タバク (Tabak )らの「BiOdegradability 5tudies  WithOrganic Pr1ority Po1lutant C!omp ounds JジャーナルWPC!F1 第53巻、Nα/θ(/9.7/年/ θ月)の7503〜151g頁を参照されたい。In addition, the above-mentioned compounds can be leached from soil damage where they are present, and can be found in streams, rivers, lakes, etc. or similar environments, where the compounds likewise pose considerable hazards. Tabak (Tabak) et al.'s "BiOdegradability 5 studies" WithOrganic Pr1ority Po1lutant C! omp ounds J Journal WPC! F1 Volume 53, Nα/θ (/9.7/year/ Please refer to pages 7503-151g of θ Month).

上述のような危険な特性を所持するポリハロケン化化合物の例はポリ塩化ビフェ ニル類及びタイオキシン類、ヘキサクロロベンゼン及びポリ塩化フェノール類の ような他の高塩素化芳香族類、及び四塩化炭素及びトリクロロエチレンのような ポリハロゲン化脂肪族類である。An example of a polyhalogenated compound that possesses the dangerous properties mentioned above is polychlorinated biphenyls. Nils and tyoxins, hexachlorobenzene and polychlorinated phenols. other highly chlorinated aromatics such as carbon tetrachloride and trichlorethylene Polyhalogenated aliphatics.

工業界において、ポリハロゲン化有機化合物は温媒類、伝熱流体類、雛燃材頑と して広く使用されており、また該化合物の一部が水に安定で且つ不溶性であるた めに、他の目的にも使用される。これらの潜在的に危険なポリハロゲン化化合物 は使用禁止化学薬品、使用ずみ化学薬品及び使用中の化学薬品の満尚でない廃棄 処理;偶発的なこぼれ落ち:輸送中の事故等のためにかなりの童が土壌中に導入 されて来たし、また現在も導入され続けている。In industry, polyhalogenated organic compounds are used in thermal media, heat transfer fluids, and fuel materials. It is widely used as a compound, and some of the compounds are stable and insoluble in water. It is also used for other purposes. These potentially dangerous polyhalogenated compounds is the improper disposal of prohibited chemicals, used chemicals, and chemicals in use. Treatment: Accidental spillage: A large number of children are introduced into the soil due to accidents during transportation, etc. It has been and continues to be used today.

上述の化合物の危険な性質のために、土壌中のポリハロゲン化化合物の存在は、 特に該化合物が安定性及び不溶性であるために危険な形態で無期限に存続するこ とになるからかなり憂慮すべきことである。Due to the hazardous nature of the above-mentioned compounds, the presence of polyhalogenated compounds in the soil In particular, the stability and insolubility of the compound means that it may persist indefinitely in a dangerous form. This is quite a cause for concern.

技術的背景 ポリハロゲン化有機化合物を処理するための数種の方法が提唱された。ポリ塩化 ビフェニル類(FCBS)にライて、米国環境保護庁(UnitecL 5ta tes EnvironmentalFretθction Agency)に よって認可された7つの方法は焼却である。該化合物が土壌汚染物として存在す る場合、この解決策は汚染物を含有する物質の体積が大量であるために実現不可 能な程高価なものになる。また焼却は焼却器流出流から腐食性物質及び有毒物質 を除去するためζこ複雑且つ高価な装置の必要性及び有毒な灰分の処分のような 多くの他の問題を生ずる〔ピトレウスキー(Pytlθwski )らの/91 .2年6月コデ日に発布された米国特許第’1,337..3tざ号「ハロゲン 化有機化合物を分解するための薬剤及び分解方法」を参照されたい〕。Technical background Several methods have been proposed for treating polyhalogenated organic compounds. Polychloride For biphenyls (FCBS), the U.S. Environmental Protection Agency (UnitecL 5ta) tes Environmental Fretθction Agency) Therefore, the seven methods approved are incineration. If the compound is present as a soil contaminant this solution is not feasible due to the large volume of material containing contaminants. It becomes as expensive as possible. Incineration also removes corrosive and toxic substances from the incinerator effluent. This includes the need for complex and expensive equipment to remove ash and the disposal of toxic ash. [Pytlθwski et al. /91] which gives rise to many other problems. .. U.S. Patent No. ’1,337, issued June 2, 2017. .. 3tza issue ``Halogen Please refer to ``Agents and Decomposition Methods for Decomposing Chemical Organic Compounds''].

汚染した土壌を安全な埋立て地へ排棄し移動させることも有害なポリハロケン化 化合物を処分するために使用できる他の技法である。この技法もまた経済的に実 用的ではない。この場合もまた、上記ポリハロケン化化合物は分解されずζこ残 り、埋土地の保全性が損われないままではいないから潜在的な脅威を示し続ける 。Dumping and moving contaminated soil to safe landfills is also harmful due to polyhalogenation. Other techniques that can be used to dispose of compounds. This technique is also economically viable. It's not useful. In this case as well, the polyhalokenated compound is not decomposed and ζ remains. and the integrity of buried land remains intact and continues to present a potential threat. .

ポリハロゲン化炭化水素類の紫外線分解、熱水分解及び放射馴分解もまた提唱さ れた0該技法は土壌が存在しない場合でさえ効果がなく及び/または経済的に実 用的でなく、また分解生成物は元の物質より危険性があまり低いものではない〔 ハタノ(Hatano )らのiqtコ年7月コ3日に発布された米国特許第り 、3j197g号「ポリ塩化ビフェニル類の廃棄方法」を参照されたい〕。Ultraviolet decomposition, hydrothermal decomposition and radiative decomposition of polyhalogenated hydrocarbons have also been proposed. 0 The techniques are ineffective and/or economically unviable even in the absence of soil. It is of no use and the decomposition products are not significantly less dangerous than the original material. U.S. Patent issued on July 3, 2013 by Hatano et al. , No. 3j197g ``Disposal method of polychlorinated biphenyls''].

また、ポリハロゲン化有機物類で汚染された環境の微生物の攻撃による浄化方法 も研究された〔前述のタバクら及びシャーリース(5hiaris)及びセイラ ー(Sayler )の「バイオトランスフォーメーション・オン・PCB−パ イ費ナチュラル・アッセンブリース・オン・フレッシュウォーターφマイクロオ ルゲナイズムス(BiotransfOrmatiOn of PCB by  Natural Assemblies OfFreshwater Micr oorganisms月gnvir、Sci+Tech、、第16巻、尚乙、/ テにコ年367〜36?頁を参照されたい〕。In addition, a method for purifying an environment contaminated with polyhalogenated organic substances by attacking microorganisms. was also studied [Tabak et al. and Shiaris and Seira, supra. (Saylor)'s “BioTransformation on PCB-Paper” Natural Assembly on Fresh Water φMicro Lugenaismus (BiotransfOrmatiOn of PCB by Natural Assemblies OfFreshwater Micr oorganisms month gnvir, Sci+Tech,, Volume 16, Naotsu, / Teniko year 367-36? Please refer to page].

この解決策はそれぞれ塩素含量27%及び32係のPCBハ―/及びPCB / 232のような比較的塩素の置換度の低い塩素化化合物lこ有効である。しかし 、この技法はより塩素の置換度が高いpCB /コク。2(グ、2%cl)、P CB/、2に’l (541%(:J−)またはPCB/IAO(4θ%l0f )のような塩素化化合物には有用ではない。これらのPCB類の全てはまだ大量 に存在する。This solution consists of PCB hardware/and PCB/with chlorine content of 27% and 32%, respectively. Chlorinated compounds with a relatively low degree of chlorine substitution such as No. 232 are effective. but , this technique produces pCB/koku with a higher degree of chlorine substitution. 2 (g, 2% cl), P CB/, 2’l (541% (:J-) or PCB/IAO (4θ%l0f ) is not useful for chlorinated compounds such as All of these PCBs are still in large quantities exists in

上述の微生物の攻撃が高ハロゲン化有機物を分解するために有効な技法でないこ さはバースチャーレン著[ハントフック・オン・エンバイロンメンタル・データ ◆オンeオーガニック善ケミカルズ(■θrsChuθrθn1Handboo k of EnvironmenteIData on OrganicChe micals) Jパンeノーストランド・レインホールド番カンパ= −(V an No5trand R51nhold Company ) (= ニー ヨーク)(/qり7年)刊の236頁1.237頁、36.2頁、343頁、S /1頁、6θグ頁、bor頁から明らかである。The microbial attack described above is not an effective technique for degrading highly halogenated organics. Written by Saha Barscharen [Hunt Hook on Environmental Data] ◆On e Organic Zen Chemicals (■θrsChuθrθn1Handboo k of EnvironmentIData on OrganicChe micals) J Pan e Nordstrand Reinhold Kanpa=-(V an No5trand R51nhold Company) (= Knee 236 pages 1, 237 pages, 36.2 pages, 343 pages, S /1 page, 6θg page, and bor page.

種のハロケン化有機物の生分解性(環崩壊)に関して下記のように報告している (30℃で2θ□ lny/ l含有培養液): ヘキサクロロベンゼン t s o R間70%ペンタクロロフェノール /  、20 時1kl テア%i、2.<t −ト’) クロロベンゼン 7.2θ 時間で72%コ、ダーシク口口フェノール 961fiHfsj テ/ 00% またポリハロゲン化有機化合物を分解し、それによって該化合物を比較的無害な ものにするための数種の化学的方法が提唱されている。上述の方法は塩素分解、 接触水素化−脱塩素化、溶融塩反応、「溶媒和硫子」溶媒中でのアルカリ金属還 元、ナトリウム金属錯化合物での分解及びアルカリ金属アルコラードまたはアル カリ性成分/アルコール混合物との反応を含む。これらの技法はハタノら及びピ トレウスキーの上述の特許;ホワード(Howard )らの19g1年7月2 7日に発布された米国特許第11.J、220.27号「塩素化芳香仮死合物の 化学的解毒方法」、ブラウン(BraWn )らの/9g3年3月、り−Hに発 布された米国特許第’4.37’l’l’77号「変圧器油からのポリ塩化ビフ ェニル類の除去方法」及びピトレウスキーらのプロシーディンゲス・オン・ザ・ シノクス・アニウアル・リサーチ・シンポジウム・オン・ザQトリートメント・ オン・ハザードアス・ワエイスト(Proceeclings of the  5ixth Annual ResearchSymposium on th e Treatment of Hazardous Waste(79gθ年 3月)第7.2〜76頁のザ・リアクション・オン・PCB’θ・ウィズ・ソデ ィム、オキシジエン・エンドΦポリエチレン・グリコールス(The Reac tionof PCB’e With Sodium 、 Oxygen an d Po1yethyleneG17CO1[] )に記載されている。The following is reported regarding the biodegradability (ring disintegration) of halogenated organic substances in seeds. (Culture solution containing 2θ□ lny/l at 30°C): Hexachlorobenzene ts o R 70% pentachlorophenol / , 20 hours 1kl tear%i, 2. <t-t') Chlorobenzene 7.2θ 72% in time, Darsik oral phenol 961fiHfsj te/00% It also decomposes polyhalogenated organic compounds, thereby rendering them relatively harmless. Several chemical methods have been proposed for this purpose. The above method involves chlorine decomposition, Catalytic hydrogenation-dechlorination, molten salt reactions, alkali metal reduction in “solvated sulfur” solvents Decomposition with sodium metal complex compounds and alkali metal alcoholades or alkaline Involves reaction with potassium component/alcohol mixture. These techniques were developed by Hatano et al. Trewsky's above-mentioned patent; Howard et al., July 2, 19g1 U.S. Patent No. 11 issued on the 7th. J, No. 220.27, “Chlorinated Aromatic Asphyxia Compounds” "Chemical detoxification method", published by BraWn et al./9g March 3rd, Ri-H. No. 4.37’1’77 “Polychlorinated Bif from Transformer Oil” "Method for Removal of Phenyls" and Pitrewski et al.'s Proceedings on the Synox Annual Research Symposium on the Q Treatment On Hazardous Us Again (Proceeclings of the 5ixth Annual Research Symposium on th e Treatment of Hazardous Waste (79gθ) March) The Reaction on PCB'θ with Sode on pages 7.2-76 Polyethylene glycols (The Reac) tionof PCB’e With Sodium, Oxygen an dPolyethyleneG17CO1[]).

ポリハロゲン化有機物を無害にするためのこれまでに提唱された化学的技法は上 述の化合物が土壌汚染物の形態で存在しない場合でさえ、上述の技法を実施でき なくするような多くの重大な欠点及び制限を持っている。これらの欠点及び制限 は:1爾師な薬品、高温及び高圧が必要であること:金、属ナトリウムのような 非常に反応性である物質を処理する際に生ずる問題:及び大量のエネルギを必要 とすることを包含する。これらの必要条件及び限定のために、これまで提唱され てきた高度に塩素化した有機化合物の分解の化学的操作は該化合物が土壌汚染物 として存在する環境においては実施不可能である。The chemical techniques proposed so far to render polyhalogenated organics harmless are The above techniques can be carried out even if the mentioned compounds are not present in the form of soil contaminants. It has a number of significant drawbacks and limitations that make it unusable. These drawbacks and limitations 1. Requires special chemicals, high temperatures and pressures: such as metals, metallic sodium, etc. Problems arising when processing substances that are highly reactive and require large amounts of energy It includes that. Because of these requirements and limitations, the The chemical manipulation of highly chlorinated organic compounds that have been It is impossible to implement in an environment that exists as

簡単な報告書(OMEN、79g、2年/θ月q日)はナトリ −ウム/ポリエ チレングルコネート錯化合物カj実験室条外下で土壌試料中の明記してない塩素 含量のPCBの濃度を低下するために好首尾に使用されることを記載している。A simple report (OMEN, 79g, 2 years/θ month q days) Unspecified chlorine in soil samples under laboratory conditions using tylene gluconate complex compounds It has been described that it has been successfully used to reduce the concentration of PCBs in the content.

しかし、実験がPCB / 、2 u /または/23コのような比較的低い塩 素置換度の化合物を含み且つ薬剤が明らかに金属ナトリウムから造られたものも あるという事実は別にしても、7日当り約/、り係の分解速度しか得られなかっ たことは重要である。However, if the experiment is conducted using relatively low salts such as PCB /, 2u / or /23 There are also drugs that contain compounds with a degree of elementary substitution and that are clearly made from metallic sodium. Apart from the fact that That is important.

これとは異なり、私は高ハロゲン化有機物を比較的無害な化合物へ転化するため の本明細書lこ記載する新規な方法を使用することによって現地条件下で高ハロ ゲン化土壌汚染物(PCB/、21Ig)の7日当り2/、:lチ程度の高い分 解速度を達成した。In contrast, I use This paper describes high halogen production under field conditions by using the novel method described here. Concentration of genified soil contaminants (PCB/, 21Ig) as high as 2/:1/7 days Achieved solving speed.

更に該方法は前節で述べたこれまで提唱されてきた技法の欠点は持たず、比較的 安価な薬剤を使用して、環境温度及び圧力で行なうことができ、エネルギーをあ まり必要とせず且つ高反応性物質の処理を含むものではない。またポリハロゲン 化有機物を分解する私の#′r現な技法は適度な時間で土壌中の該化合物を現場 で少なくとも部分的に脱ハロゲン化するために使用できる特異な利点を持つ。得 られた脱ハロゲン化生成物は代表的には元の化合物より水溶性であり、また土壌 微生物によって比較的無害な化合物へより容易に変形できるが、これlこ対して 元の高ハロゲン化不溶性化合物はたとえ微生物の攻撃をうけることがあったとし ても制限された条件のみでしか微生物攻撃を受けることがない(前述のvers chuerenを参照されたい)0本発明の開示 ポリハロゲン化有機土壌汚染物を比較的無害な化合物へ転化するための私の新規 な方法ではアルカリ成分とスルホキシド触媒の薬品混合物を汚染した土壌と緊密 に混合する(上記成分の組み合わせはそれらの成分を別個に、および順次にさえ 汚染土壌に適用できるものであるが、本明細書では薬品混合物として述べる)。Furthermore, the method does not have the drawbacks of the previously proposed techniques mentioned in the previous section, and is relatively It can be carried out at ambient temperature and pressure using inexpensive chemicals and requires no energy. It does not require the treatment of highly reactive substances and does not involve the treatment of highly reactive substances. Also polyhalogen My #'r current technique for decomposing organic matter is to remove the compounds in the soil in a reasonable amount of time. has the unique advantage of being able to be used for at least partial dehalogenation. profit The resulting dehalogenated product is typically more water soluble than the original compound and is also more soluble in soil. whereas they can be more easily transformed by microorganisms into relatively harmless compounds. Even though the original highly halogenated insoluble compound could be attacked by microorganisms, microorganisms can only be attacked under limited conditions (versus Disclosure of the Invention My novel method for converting polyhalogenated organic soil contaminants into relatively harmless compounds The method involves placing a chemical mixture of alkaline components and sulfoxide catalysts in close contact with contaminated soil. (a combination of the above ingredients is a mixture of those ingredients separately and even sequentially) (herein referred to as a chemical mixture).

薬品混合物はポリハロゲン化汚染物が吸着されている土壌粒子からポリハロゲン 化汚染物を脱庸し、次に該汚染物を脱ハロゲン化をする。The chemical mixture extracts polyhalogens from soil particles that have adsorbed polyhalogenated contaminants. The pollutants are then dehalogenated.

薬品混合物の汚染した土壌への適用窓よび該混合物と該土壌との混合は現場で行 なうことができるが、しかし必す現場で行なわなければならないものではない。The application window of the chemical mixture to the contaminated soil and the mixing of the mixture with the soil are carried out on site. However, it does not necessarily have to be done on-site.

現場で行なうことができることが明らかに重要な本発明の特異な利点である。The ability to be carried out in situ is clearly an important unique advantage of the present invention.

生起する正確な7種または2種以上の脱ハロゲン化の経路は土壌中に存在するハ ロゲン化有機汚染吻及び特に該汚染物を分解するために使用するアルカリ成分の 性質に大部分依存する。/しoとして、トリクロロベンゼンと水酸化カリウム/ ベンジルアルコール/ジメチルスルホキシド(DMSO)混合物との反応を以下 の一連の反応式で示す: φ−Cil(、OK+φcJ、、−−→c12φocn2φ十Kc、A(9) C12φOCH2φ十H20−−→C12φOH十φ0H20H、及びC1□φ OH+KOH−+ CJ−2φOK+H,0ジクロロフエノール及びそのカリウ ム塩は元のトリクロロベンゼンより非常に生分解性である。The exact seven or more dehalogenation pathways that occur depend on the halogens present in the soil. chlorogenated organic contaminants and especially the alkaline components used to decompose the contaminants. Much depends on nature. /As salt, trichlorobenzene and potassium hydroxide/ The reaction with benzyl alcohol/dimethyl sulfoxide (DMSO) mixture is as follows: Shown by a series of reaction equations: φ-Cil(,OK+φcJ,,--→c12φocn2φ10Kc,A(9) C12φOCH2φ10H20--→C12φOH10H20H, and C1□φ OH+KOH-+CJ-2φOK+H,0 dichlorophenol and its potassium The mu salt is much more biodegradable than the original trichlorobenzene.

該汚染物の脱ハロゲン化の後に、より低級ハ白ケン化物となって、それ故より容 易に代謝できる反応生成物(上述のVerschuerenからのデータを参照 されたい)は微生物の作用により比較的無害な化合物へ分解される。After dehalogenation of the contaminant, it becomes a lower halogen saponified product and therefore more voluminous. Easily metabolized reaction products (see data from Verschueren, supra) ) is decomposed into relatively harmless compounds by the action of microorganisms.

天然産の混合した微生物の集団が本発明の目的のためlこ使用できる。本発明の 原理を適用するための上述の技法において、化学的に処理した土壌を、処理した 区域に移動する微生物による脱ハロゲン化汚染物の生分解が汚染物を許容できる レベルへ低減するまでそのまま単に放置しておく。土壌が自然(こ中オロされる まで化学的脱ハロゲン化反応が長期間(恐らく数年程度)にわたって就くことが この技法の利点である。従って、この解決策は非常に多量の脱ハロゲン化を行な う機会、すなわちその結果として非常に低レベルへの土壌の浄化の機会を提供す るものである。しかし、それには長期間を必要とする。Naturally occurring mixed populations of microorganisms can be used for purposes of the present invention. of the present invention In the above techniques for applying the principles, the chemically treated soil is Biodegradation of dehalogenated contaminants by microorganisms that migrate to the area allows the contaminants to be tolerated. Simply leave it alone until it is reduced to a level. The soil is naturally Until the chemical dehalogenation reaction continues for a long period of time (probably several years). This is an advantage of this technique. Therefore, this solution performs a very large amount of dehalogenation. and, as a result, provide an opportunity for soil remediation to very low levels. It is something that However, this requires a long period of time.

本発明の原理を通用するための第2技法では、汚染された土壌の化学的脱ハロゲ ン化処理の次に核上gHこ数独の適当な種のへテロトロピック微生物を接種する ことである(シャーリースらの前述の文献を参照されたい)。適当な微生物の列 はシュードモナス種である(上述のVerschueren Handbook  を参照されたい)。A second technique for applying the principles of the present invention involves chemical dehalogenation of contaminated soil. Following the conversion treatment, inoculation with suitable species of heterotropic microorganisms such as supranuclear gH Sudoku (See Charlize et al., cited above). row of suitable microorganisms is a Pseudomonas species (Verschueren Handbook mentioned above) Please refer to ).

シュードモナス種のような微生物は所定のpH(代表的には弱酸性〜弱塩基性範 囲)で且つ窒素、リン及び炭素の平衡のとれた供給物をもつ土壌中で最も良く繁 殖する。しかし、アルカリ成分のために、汚染した土壌への薬品混合物の添加は 通常最適なpHより高いpHをもつ。従って、汚染した土壌の化学処理(脱后十 脱ハロゲン化)が完了した後、化学的土壌処理により製造された生成物を分解す るためζこ選択された微生物を該土壌へ接種する前ζこ土壌のpHを低−ドする ことが通常有利である。Microorganisms such as Pseudomonas spp. It grows best in soils with a balanced supply of nitrogen, phosphorus and carbon. breed. However, due to the alkaline content, the addition of chemical mixtures to contaminated soil is Usually has a pH higher than the optimum pH. Therefore, chemical treatment of contaminated soil After the dehalogenation (dehalogenation) is completed, the products produced by chemical soil treatment are decomposed. In order to reduce the pH of the soil before inoculating the selected microorganisms into the soil. That is usually advantageous.

通常、これは処理区域−こ酸希釈溶液を散布し、次に例えば酸を均一に分布させ るために土壌を掻きならすかまたは耕すことtこまって最も経済的に達成できる 。Typically, this involves spraying the treatment area with a dilute solution of acid and then e.g. distributing the acid evenly. It is most economically achievable to rake or till the soil in order to .

通商な酸は硫酸及び酢酸である。Common acids are sulfuric acid and acetic acid.

塩酸もまた使用できる。しかし、塩酸と薬品混合物のアルカリ成分との反応6と よりH4された塩化カリウム塩が微生物の成長をある程度抑制することがある。Hydrochloric acid can also be used. However, the reaction between hydrochloric acid and the alkaline component of the chemical mixture6 More H4 potassium chloride salts may inhibit microbial growth to some extent.

酸性化学肥料を使用するような土壌のpHを低下するための他の技法は文献にお いて既知であり、また経済的に有利であれば場合により使用することができる。Other techniques for lowering soil pH, such as using acidic fertilizers, are available in the literature. are known and may optionally be used if economically advantageous.

汚染した土壌に微生物を接種する前に、汚染した土壌から微生物lこ利用できる 栄養素の窒素、リン、炭素の釣り合いを調節することがまた有利であると判明し た。この割合もpHと同様に処理した土壌中に存在する脱ハロゲン化有機化合物 を生分解するための微生物の能力に明確に影響を及ぼす。Microorganisms from contaminated soil can be used before inoculating the contaminated soil with microorganisms. Adjusting the balance of nutrients nitrogen, phosphorus and carbon has also been found to be advantageous. Ta. This ratio also reflects the dehalogenated organic compounds present in the treated soil, as well as the pH. clearly affects the ability of microorganisms to biodegrade.

市販の化学肥料はこの目的のために処理した土壌へ混合することができる。固体 化学肥料または液体′化学肥料が使用できる;化学肥料の選択は通常側々の状況 の経済的要因lこ従って行なわれる。Commercially available chemical fertilizers can be mixed into the treated soil for this purpose. solid Chemical or liquid fertilizers can be used; the choice of chemical fertilizer usually depends on the circumstances. This is done accordingly due to economic factors.

この第2浄化技法は第7浄化技法より速いという利点がある(恐らく第1浄化技 法が数年間を要するのに対し第2浄化技法は数日または数週間である)。他方、 汚染した土壌へ接種する微生物の培養コストのためにに導入する微生物に最適な 環境を与えるために必要な土壌の中和(pHの低下)が脱ハロゲン化反応を不完 全にするために浄化が完全でないことがある。This second purification technique has the advantage of being faster than the seventh purification technique (probably the first purification technique). The second purification technique takes days or weeks, whereas the method takes several years). On the other hand, Due to the cost of culturing microorganisms to inoculate contaminated soil, Neutralization (lowering of pH) of the soil necessary to provide an environment may cause the dehalogenation reaction to be incomplete. Purification may not be complete in order to make it whole.

本発明の原理による土壌浄化のための第3の選択は先ず汚染された区域の予備浄 化を行ない、次に上述の第2番目の化学的微生物処理手順を行なうことを含む( 化学的処理を行ない、次にシュードモナス種または他の微生物を化学的に処理し た区域lこ導入する)。A third option for soil remediation according to the principles of the invention is to first pre-clean the contaminated area. oxidation followed by the second chemical microbial treatment procedure described above ( chemical treatment and then chemical treatment of Pseudomonas species or other microorganisms. (introduce a new area).

この第3の選択方法はジクロロフェノール及びヘキサクロロベンゼンのような生 分解性汚染物と非生分解性汚染物の混合物が存在する場合に有用である。予備生 分解工程は該環境で生分解性汚染物の全てまたは一部を汚染された土壌から除去 するために使用でき、それによって次の土壌の化学処理に必要な薬品混合物の量 及びコストを低減できる。This third method of selection is based on raw materials such as dichlorophenol and hexachlorobenzene. Useful where a mixture of degradable and non-biodegradable contaminants is present. Preparatory student The decomposition process removes all or part of the environmentally biodegradable contaminants from the contaminated soil. the amount of chemical mixture that can be used to and costs can be reduced.

はとんどの場合に、上述の3種の土壌浄化方法の第コ方法が浄化操作が速いとい う大部分の理由lこよって最も有利であることが判明した。In most cases, method #1 of the three soil purification methods mentioned above is the fastest in the purification process. For the most part this is why it has been found to be most advantageous.

ポリハロゲン化有機物で被毒された土壌を浄化する本発明の新規な方法の化学処 理工程において、薬品混合物を汚染物1モル当りアルカリ成分を少なくともコモ ルを与える量で汚染した土壌と混合する。Chemical treatment of the novel method of the present invention for remediating soil poisoned with polyhalogenated organics In the chemical process, chemical mixtures are mixed with at least alkali components per mole of contaminants. mix with the contaminated soil in the amount given.

通常、汚染物と薬品混合物のアルカリ成分の間の反応速度は、薬品混合物のニー −成分の適用率の上限を決める個々の状況の経済性に従って適用されるLム龜偏 七成分の率の関数であるから薬品混合物のより篩い濃度を使用することができる 。Typically, the reaction rate between the contaminant and the alkaline component of the drug mixture is -Limensions applied according to the economics of the individual situation, which determines the upper limit of the application rate of the ingredients. A more sieve concentration of the drug mixture can be used since it is a function of the rate of the seven components. .

本発明方法に有用な上述のアルカリ成分はアルカリ金属水酸化物類、7価アルコ ール類及びコ価アルコール類及び上記水酸化物類の混合物及びアルコキシド類で ある。The above-mentioned alkali components useful in the method of the invention include alkali metal hydroxides, heptahydric alcohols, mixtures of alcohols and covalent alcohols and the above hydroxides and alkoxides. be.

単独またはアルコールとの混合物として使用する好適な水酸化物は水酸化カリウ ムである。容易に入手でき(量的に)且つ安価な2種のアルカリ金属水酸化物( 他は水酸化ナトリウムである)のうちで水酸化カリウムははるかに速い反応速度 が得られる。しかし、水酸化ナトリウムもまた使用することができ、同様に水酸 化リチウム、水酸化セシウム及び水酸化ルビジウムも使用できる。とはいうもの の後者3種の水酸化物は現在実際には高価すぎるものである。A preferred hydroxide for use alone or in a mixture with an alcohol is potassium hydroxide. It is mu. Two types of alkali metal hydroxides that are easily available (quantitatively) and inexpensive ( The other is sodium hydroxide), but potassium hydroxide has a much faster reaction rate. is obtained. However, sodium hydroxide can also be used, as well as hydroxide Lithium chloride, cesium hydroxide and rubidium hydroxide can also be used. What is that? The latter three hydroxides are currently too expensive in practice.

水酸化物/アルコール混合物をアルカリ成分として選択した場合、7価アルコー ル及びコ価アルコールの両方が使用できる。If a hydroxide/alcohol mixture is selected as the alkaline component, the heptahydric alcohol Both alcohol and covalent alcohols can be used.

7価アルコール類のうちでベンジルアルコールが好適である。これはベンジルア ルコールが本発明の目的のために非常に強力な薬剤であり、更に比較的低分子量 であるためである。他の芳香族アルコール類もまた使用でき、同様Iこオクタツ ールのような高級脂肪族アルコール類も使用できるが、高級脂肪族アルコール類 はベンジルアルコールはどには作用しない。低級脂肪族アルコール類−%1こメ チルアルコール−は非常に貧弱な作用しかない。Among the heptahydric alcohols, benzyl alcohol is preferred. This is benzilua Lukol is a very potent drug for the purposes of this invention, and also has a relatively low molecular weight. This is because. Other aromatic alcohols can also be used, as well as Higher aliphatic alcohols such as alcohol can also be used; Benzyl alcohol has no effect on the throat. Lower aliphatic alcohols - %1 rice Chill alcohol has a very poor effect.

(/り ) 使用できるコ価アルコールにはエチレングリコール、プロピレングリコール及び ポリエチレングリコール類、特に分子量−〇〇〜tθ0 をもつポリエチレング リコールを包含する。(/the law of nature ) Covalent alcohols that can be used include ethylene glycol, propylene glycol and Polyethylene glycols, especially polyethylene glycols with a molecular weight of -〇 ~tθ0 Includes recalls.

アルコキシド類は1つのクラスとして本発明の目的のため使用可能である。アル コキシド類の活性及び市販性の点でカリウム第3級ブトキシド及びカリウム第3 級ベントキシドが好適である。しかし、これらの化合物類は高価であるという欠 点を持つ。Alkoxides can be used as a class for purposes of this invention. Al Potassium tert-butoxide and potassium tert-butoxide Grade benoxides are preferred. However, these compounds have the disadvantage of being expensive. have points.

一般に、スルホキシド類は本明細書に開示する新規な方法の触媒として有用であ る。しかし、スルホキシド類は分子量が大きければ大きい程モル当量を基準とし て高価になる;また分子量が太きければ大きい程スルホ、キシド類は融点はより 高くなり、その結果として低分)子量のスルホキシド類より早く凍結する(実施 不可能となる)。In general, sulfoxides are useful as catalysts in the novel process disclosed herein. Ru. However, the larger the molecular weight of sulfoxides, the more Also, the thicker the molecular weight, the higher the melting point of sulfo and oxides. and as a result freeze faster than lower molecular weight sulfoxides (in practice). becomes impossible).

ジメチルスルホキシド(DMSCI)は好適なスルホキシド触媒である。スルホ ラン(テトラメチレンスルホン)は使用できる他のスルホキシドの例であるが、 スルホランはDMSOより融点が高い〔スルホランコア℃(gθ、6T)に対し DMSO/ gj℃(A s、3’F)) o従ッテ、スルホフランが接触的に 活性な非固体状態で存在する日数は7年当りDMS Oより少ない。Dimethyl sulfoxide (DMSCI) is a suitable sulfoxide catalyst. Sulho Ran (tetramethylene sulfone) is an example of another sulfoxide that can be used; Sulfolane has a higher melting point than DMSO [relative to sulfolane core °C (gθ, 6T)] DMSO/gj℃(As, 3'F)), sulfofuran is catalytically The number of days it exists in the active non-solid state is less than DMS O per 7 years.

薬品混合物中の触媒/アルカリ成分の割合は臨界的なものではない。これは多量 のスルホキシドが反応混合物中に存在していて、そのためスルホキシドが薬品混 合物のアルカリ成分と吸着したポリハロゲン化汚染物の間の必要な接触を抑制す るほど多量のスルホキシドの上限量はまだわかっていないが、そのような上限ま で存在する触媒の量に比例してアルカリ成分の活性が増加するためである。The proportion of catalyst/alkaline components in the chemical mixture is not critical. this is a lot of sulfoxide is present in the reaction mixture, and therefore the sulfoxide is a drug contaminant. suppressing the necessary contact between the alkaline component of the compound and the adsorbed polyhalogenated contaminants. The upper limit for the amount of sulfoxide present is not yet known; This is because the activity of the alkaline component increases in proportion to the amount of catalyst present.

大抵の場合l/q〜’I//の範囲のアルカリ成分/スルホキシド触媒比が効果 とコストの最適な釣り合いのために好適である(本明細書に記載する全ての割合 及びパーセントは重量を基準とするものである)。In most cases, an alkaline component/sulfoxide catalyst ratio in the range of l/q to 'I// is effective. and for the best balance of cost (all proportions mentioned herein). and percentages are by weight).

個々の施用についての薬剤の選択は種々の要因によって決定される。アルコキシ ド、水酸化物/グリコール、及び水酸化Wアルコール混合物は水酸化物より実質 上強い塩基であるが、しかしより高価である。アルコキシド/スルホキシド混合 物は水準水酸化物/スルホキシド混合物より非常に粘稠な傾向にあり、汚染した 土壌からの有機汚染物の抽出速度を低下することがある(汚染物の脱ハロゲン化 は脱着なしlこは起こらない)。The choice of drug for a particular application is determined by a variety of factors. Alkoxy Hydroxide, hydroxide/glycol, and hydroxide W-alcohol mixtures are substantially less than hydroxide. Stronger base, but more expensive. Alkoxide/sulfoxide mixture substances tend to be much more viscous than standard hydroxide/sulfoxide mixtures and are May reduce the rate of extraction of organic contaminants from soil (dehalogenation of contaminants) (No attachment or detachment will occur).

他方、より強い塩基はほとんどのハロゲン化有機物とより速く反応でき、また水 酸化物により影響を受けない有機物類を脱ハロゲン化できる。例えばPCB / #’1(平均sti重量%の塩素をもつPCB )の場合、KOH/PEGりO O/DMsO混合物は純粋な溶液中の5θ%xoH/DMSO混合物より70〜 二〇倍早く反応することができる(PEGり00は分子量q−OOをもつポリエ チレングリコールである)。しかし、土壌への適用に際して、水酸化物/スルホ キシド混合物の粘度がK OH/P E G/DM S O混合物より低く、且 つ水酸化物/スルホキシド混合物 1のコストがKOH/P E G/DM S  O混合物より低いために適用の所定のコストでより多体積の水酸化物/スルホ キシドが使用できるために、KOH/DMSO溶液の等コスト量を添加すると、 しばしばKOH/PRG/DMSO溶液よりよい作用をすることができる。従っ て、最もコスト的に効果的な薬品混合物の選択は抽出及び反応の相対速度の約り 合いに依存する。On the other hand, stronger bases can react faster with most halogenated organics and also react with water more quickly. Organic substances that are not affected by oxides can be dehalogenated. For example, PCB / For #’1 (PCB with average sti wt% chlorine), KOH/PEG The O/DMsO mixture has a 5θ% xoH/DMSO mixture in pure solution with a can react 20 times faster (PEG resin 00 is a polyester with a molecular weight of q-OO). ethylene glycol). However, when applied to soil, hydroxide/sulfonate The viscosity of the oxide mixture is lower than that of the KOH/PEG/DMSO mixture, and The cost of hydroxide/sulfoxide mixture 1 is KOH/P E G/DM S Higher volumes of hydroxide/sulfonate at a given cost of application due to lower O mixtures Adding an equal cost amount of KOH/DMSO solution for the availability of oxide Often a KOH/PRG/DMSO solution can work better. follow Therefore, the selection of the most cost-effective chemical mixture is a function of the relative rates of extraction and reaction. Depends on fit.

土壌及び薬品混合物(または溶液)を緊密Iこ混合して、薬品溶液とハロゲン化 有機物の間の接触を最大にすべきである。混合はロートティラー、ハローまたは 類似の装置を用いて処理現場で行なうことができる。The soil and the chemical mixture (or solution) are intimately mixed together and the chemical solution and halogenated Contact between organic matter should be maximized. Mixing is done using a funnel tiller, harrow or This can be done on-site using similar equipment.

また反応混合物への有機汚染物の脱着を促進するために7回以上土壌を混合する ことが梁丈しい。Also mix the soil at least 7 times to promote desorption of organic contaminants into the reaction mixture. That's a great thing.

薬品溶液とハロゲン化汚染物々を薬品溶液の量、含有する特定のハロゲン化有機 物の反応速度、土壌温度及び必要な反応程度に依存して数日間、数週間またはそ れ以上Iこわたって反応させる。若干の場合において、土壌をプラスチックまた は類似の材料の雨よけで覆へ雨水による薬品溶液の希釈を回避することが望まし い。The chemical solution and the halogenated contaminants in the amount of the chemical solution containing certain halogenated organic Depending on the rate of reaction of the substance, soil temperature and degree of reaction required, it may take several days, weeks or more. React for at least 1 hour. In some cases, the soil may be treated with plastic or It is advisable to cover the chemical solution with a rain screen of similar material to avoid dilution of the chemical solution by rainwater. stomach.

コーヘン(Cohen )の/qA9年lユ月ユ白に発布された米国特許第3. ’Ig199/ 号「塩素化ヒドロキシ化合物類の調製法」は塩素化化合物をス ルホキシドの存在下でアルカリ金属水酸化物と反応させ、塩素化化合物を加水分 解する点で上述の新規な浄化方法に使用できる灰地に類似反応を開示している。Cohen's U.S. Patent No. 3, issued in 1999. 'Ig199/No. ``Preparation method of chlorinated hydroxy compounds'' Hydrolyzes chlorinated compounds by reacting with alkali metal hydroxides in the presence of sulfoxides Discloses a reaction similar to ash that can be used in the novel purification method described above in terms of understanding.

しかし、特許権者は上述の反応がヘキサクロロベンゼンからペンタクロロフェノ ールを製造するために使用できることを開示しているのにすぎない。更にコーヘ ンは反応が本発明方法では使用しない上昇した温度下で行なわれなければならな らいことを教示している;また勿論該特許に開示された反応剤が本明細書で開示 する土壌浄化操作Jこ必要であるような土壌粒子の先ず脱着及び次に脱着した汚 染物の脱ハロゲン化に使用できることは何ら示唆していない。However, the patentee claims that the above-mentioned reaction is possible from hexachlorobenzene to pentachlorophenol. It merely discloses that it can be used to make a roll. More Kohe The reaction must be carried out at elevated temperatures, which are not used in the process of the invention. and, of course, the reagents disclosed in that patent are disclosed herein. Soil remediation operations that require first desorption of soil particles and then desorption of the desorbed contaminants There is no suggestion that it can be used to dehalogenate dyed fabrics.

高ハロゲン化汚染物含有土壌の浄化は有機土壌汚染物を表面上に吸着されていて 反応に利用できない点でコーヘンの方法で行なわれたような液体中での有機ハロ ゲン化物の脱ハロゲン化とは大きく異なるものである。Remediation of highly halogenated pollutant-containing soils involves the removal of organic soil pollutants that are adsorbed onto the surface. Organic halides in liquids, such as those carried out in Cohen's method, are not available for reaction. This is very different from dehalogenation of genides.

従って、土壌用薬品は土壌からハロゲン化有機物を脱着し、また脱着した有機汚 染物を脱ハロゲン化することができるものでなければならない。この要因は液体 溶液中での土壌用薬品の性能を試験することによって該薬品の効果を決定するこ とを不可能にするものである。例えば、KOH/PEG 1ooo薬品は高温の 液体として施用するときは優れた作用をする。しかし、汚染した土壌を処理する 際には全く有用でない。これとは異な(7g ) って、環境条件下で液体への使用(こは比較的貧弱な作用をする薬品である左θ チxon/DMso薬品はKOH/PEGダ0θ薬品の久のコストで7日当り、 2/、、1.*の顕著な反応速度で土壌中の汚染物濃度を低減する。Therefore, soil chemicals can desorb halogenated organic matter from the soil and also desorb the desorbed organic pollutants. It must be able to dehalogenate dyed materials. This factor is due to liquid Determining the effectiveness of soil chemicals by testing their performance in solution This makes it impossible. For example, KOH/PEG 1ooo chemicals are used at high temperatures. Works well when applied as a liquid. However, treating contaminated soil Not useful at all. Different from this (7g) Therefore, its use in liquids under environmental conditions (this is a chemical with relatively poor action) Thixon/DMso drugs have the same cost per 7 days as KOH/PEG da0theta drugs, 2/,,1. *Reduces pollutant concentration in soil with remarkable reaction speed.

本発明の目的 上述から読者は本発明の7つの重要且つ主要な目的が高ハロゲン化有機汚染物を 土壌から除去するための新規な改善された方法(こあることが明らかであろう。Purpose of the invention From the foregoing, the reader will understand that the seven important and primary objectives of the present invention are to eliminate highly halogenated organic contaminants. It will be clear that there is a new and improved method for removing soil from the soil.

本発明の前述と同様に重要で且つ主要な目的は土壌中の高ハロゲン化有機化合物 のハロゲン含量を現場で減少し、それによって該化合物を生分解し易くするため の新規な方法を提供するにある。An equally important and primary objective of the present invention is the treatment of highly halogenated organic compounds in soil. to reduce the halogen content of the compound in situ, thereby making the compound more biodegradable. The aim is to provide a novel method for

本発明の他のより特別でそれにもかかわらず重要な目的は前述の目的に記載した ような方法を提供するにある: 適度な期間内で効果的である; 現場で土壌中で行なうことができる; コスト的に効果がある; 環境温度及び圧力で行なうことができる;危険または非常tこ反応性な物質の処 理を含まない;高エネルギーを必要としない。Other more particular and nevertheless important objects of the invention are those mentioned in the foregoing objects. Here is to provide a method like: Effective within a reasonable period of time; Can be carried out in the soil on site; cost effective; Can be carried out at ambient temperatures and pressures; Does not involve high energy; does not require high energy.

本発明の他の重要な目的及び付加的性質及び利点は上述の記載、添付する請求の 範囲及び後述する例から読者に明らかとなるであろう。後述する例は本発明の説 明のみを意図するものであって、本発明さして請求する範囲を制限することを意 図するものではない。Other important objects and additional features and advantages of the invention are set forth in the foregoing description and appended claims. The scope and examples below will make it clear to the reader. The examples described below are illustrative of the present invention. They are intended for clarity only and are not intended to limit the scope of the invention as claimed. It is not intended to be illustrated.

発明の好適な実施態様 例 1 PCB /:17g を含有するSフィートス5フイート×/フイー) (5’ X j’X /’ )の試験用小地区を5ガロンの!r 09G KOHを、次 に7ガロンのDMSOを注加した。Preferred embodiments of the invention Example 1 PCB /: 17g 5 gallons of test subdivision of r 09G KOH, next 7 gallons of DMSO was added.

次にこれらの薬品をロートティラーを用いてこの区域の土壌と混合した。試験用 小地区を透明なプラスチックで覆い、雨水による薬品の希釈を回避した。These chemicals were then mixed with the soil in this area using a rototiller. For testing The small area was covered with clear plastic to avoid dilution of the chemicals by rainwater.

汚染した土壌の実験室分析は次の結果を与えた:薬品添加剤 /、2S 添加一時間後 5コ 添加後70日 /S 添加後/り日 3.2 全体で、汚染した土壌中のPCBの濃度のqq、qgの低下があり、また/り日 間にわたる汚染物レベルの平均/ 7.!r%/日のPCB濃度の低下があった 。Laboratory analysis of the contaminated soil gave the following results: Chemical additives /, 2S One hour after addition, 5 pieces 70 days after addition /S After addition/day 3.2 In total, the concentration of PCBs in contaminated soil decreased by qq, qg, and Average contaminant level over time/7. ! There was a decrease in PCB concentration by r%/day. .

PCB /、24t、2をj / Oppm含有する土壌?Iを水中のSOチ水 酸化カリウム0.’lAm1及びDMSOO,7rslと混合した。室温で77 日後の分析値は土壌中のPCBレベルの低下がq o、s −+ s、o %で あることを示した。Soil containing PCB/, 24t, 2/Oppm? I in SO water Potassium oxide 0. 'lAm1 and DMSOO, 7rsl. 77 at room temperature The analysis values after 1 day showed that the PCB level in the soil decreased by q o, s - + s, o %. It showed that there is.

例 1 約ytra)の塩素含量のPCBを含有するSフィートメ3フイート×/フイー ) (j’X j’X /’)の試験小地区の土壌を5ガロンのj(1)IKO H,jガロンのベンジルアルコール及び10ガロンのDMSOと例Iに記載した ように混合した。汚染した土壌の実験室分析は以下の結果を得た: 薬品添加前 ll/ 添加後一時間 デg 添加後10日 ココ 添加後79日 /、、2 この試験において、土壌中のPCBの低下は9g、9%であり、またPCB含量 の平均7日当りの低下率はコt、2ペンタク、ロロフェノール/2.7.7pp mで汚染すれた土壌をKOH溶液(水中のjOlKOH)、?チ及びDMSO/ 、2チと混合した。5日後の分析値は試料中にペンタクロロフェノールを検出で きなかった(検出限界/ Oppm )0例■ 50 % KOH100pJ、%PEG4100 100pJ、及びDMSOg 00μm を含有する薬品混合物をqgの土壌及びPCB 7.2kll含有油 7gと混合した。得られた混合物に覆いをし、環境条件下にg日間保持し、分析 した。土壌中のPCB濃度は、24t Oppmから/g!i ppmへ降下し 、また全体の減少率はユ2.9チであり、また平均7日当りの減少率は31.2 チであった。Example 1 S feet containing PCBs with a chlorine content of approximately ytra) ) 5 gallons of soil from the test plot of (j'X j'X /') H,j gallons of benzyl alcohol and 10 gallons of DMSO as described in Example I. Mixed like this. Laboratory analysis of contaminated soil yielded the following results: Before adding chemicals ll/ One hour after addition Deg 10 days after addition Here 79 days after addition /,,2 In this test, the reduction of PCBs in soil was 9g, 9%, and the PCB content The average 7-day decline rate is kot, 2 pentac, lolophenol/2.7.7pp Soil contaminated with m is treated with KOH solution (jOlKOH in water), ? CH and DMSO/ , 2chi. Analysis values after 5 days showed that pentachlorophenol was detected in the sample. (Detection limit/Oppm) 0 cases■ 50% KOH100pJ, %PEG4100 100pJ, and DMSOg A chemical mixture containing 00 μm was added to qg of soil and oil containing 7.2kll of PCBs. 7 g. The resulting mixture was covered, kept under ambient conditions for g days, and analyzed. did. PCB concentration in soil is from 24t Oppm/g! i ppm , the overall decrease rate was 2.9%, and the average decrease rate per 7 days was 31.2%. It was Chi.

各々の場合lこおいて、分解生成物はあまり高度にハロゲン化されていないため に、該生成物は次に元の化合物より生分解を受け易い。これはバースチャーシン 1ハンドブツク(verschueren Handbook )のそれらの部 分のデータによって明確である(この情報はあまり価値のあるものではないため に例1−Vに要約した操作において生じた分解生成物の正確な性質を確認するも のではない)。In each case, the decomposition products are not very highly halogenated, so Second, the product is then more susceptible to biodegradation than the original compound. This is Bhascha Singh 1 Those parts of a handbook minute data (as this information is not very valuable) To confirm the exact nature of the decomposition products produced in the procedure summarized in Example 1-V. ).

本発明は主に上述の高塩素化有機化合物に関して開示するものである。これは私 が受けようとする保護の範囲を限定することを意図するものではない。これは本 発明が同様に他の高ハロゲン化有毒物または他の所望でない有機物で汚染した土 壌を除去するために使用できるためである。上述の物質の7例はポリ臭化ビフェ ニル類(PBBS )である。該化合物は植物によって吸収され、次ζこ該植物 を与えることによって動物に摂取され、食物連鎖に入ることは既知である。The present invention is primarily disclosed with respect to the highly chlorinated organic compounds mentioned above. this is me It is not intended to limit the scope of protection to which individuals may be entitled. this is a book The invention also applies to soils contaminated with other highly halogenated toxic substances or other undesirable organic matter. This is because it can be used to remove soil. Seven examples of the substances mentioned above are polybrominated biphenyls. PBBS). The compound is absorbed by the plant and then It is known that it is ingested by animals and enters the food chain by feeding them.

更に、本発明はその精神または本質的な特徴を逸脱することなしに上述以外の特 別な形態で実施することができる。それ故上述の本発明の実施態様は説明したよ うな全ての面lこ考慮されるものであって、制限されるものではない。本発明の 範囲を添付する請求の範囲によって表示する代りに、請求の範囲さ同等の意味及 び範囲内である全ての変化を本発明に包含することを意図するものである。Furthermore, the present invention may have features other than those described above without departing from its spirit or essential characteristics. It can be implemented in other forms. The embodiments of the invention described above are therefore as described. All such aspects are considered and are not limiting. of the present invention Instead of denoting the scope by the appended claims, It is intended that the present invention encompass all changes within the range.

国際調査報告international search report

Claims (1)

【特許請求の範囲】 l 高ハロゲン化有機土壌汚染物のより低く塩素化さた化合物であって、且つそ れによって微生物によってより可溶性且つ代謝し易い化合物への転化方法におい て、高ハロゲン化有機汚染物により汚染した土壌を少くとも部分的に脱ハロゲン 化できる薬品の有効量と混合し、該薬品がアルカリ成分及びスルホキシド触媒を 含有し、前記アルカリ成分がアルカリ金属水酸化物、アルカリ金属水酸化物とア ルコールの混合物、才たはアルコキシドであることを特徴とする高ハロゲン化有 機汚染物の転化方法。 ユ 薬品混合物のアルカリ成分が水酸化カリウムてあ゛る請求の範囲第1項記載 の方法。 3 薬品混合物のアルカリ成分がアルカリ金属水酸化物とベンジルアルコールの 混合物である請求の範囲第1項記載の方法。 グ アルカリ金属水酸化物が水酸化カリウムである請求の範囲第1項記載の方法 。 S 薬品混合物のアルカリ成分がアルカリ金属水酸化物とポリエチレングリコー ルの混合物である請求の範囲第7項記載の方法。 ム アルカリ金属水酸化物が水酸化カリウムであり、ポリエチレングリコールが コθθ〜6θ0 の範囲の分子量をもつ請求の範囲第S項記載の方法。 ク 薬品混合物のアルカリ金属成分がアルコキシドであり、該アルコキシドがカ リウム第3級ブトキシドまたはカリウム第3級ブトキシドである請求の範囲第1 項記載の方法。 よ 薬品混合物の触媒のスルホキシドがジメチルスルホキシドである請求の範囲 第1項記載の方法。 デ 薬品混合物中のアルカリ成分/触媒比が重量部でi/lrt〜q//の比で ある請求の範囲第1項記載の方法。 /a薬品混合物を汚染した土壌中のポリハロゲン化有機化合物1モル当りアルカ リ金属成分少なくとも一モルを提供する量の汚染した土壌と混合する請求の範囲 第1項記載の方法。 ll 土壌を汚染してポリハロゲン化有機化合物を生分解的に分解することによ る土壌の浄化方法において、前記土壌を、前記有機化合物を少なくとも部分的に 脱ハロゲン化することができる薬品混合物の有効量と混合し、それによって前記 有機化合物の生分解性を増大し、前記混合物がアルカリ成分及びスルホキシド触 媒を含有し、前記アルカリ成分がアルカリ金属水酸化物、アルカリ金属水酸化物 とアルコールの混合物またはアルコキシドであることを特徴とする土壌浄化方法 。 /U 薬品混合物のアルカリ成分が水酸化カリウムである請求の範囲第11項記 載の土壌浄化方法。 /3薬品混合物のアルカリ成分がアルカリ金属水酸化物トベンジルアルコールの 混合物である請求の範囲第1/項記載の土壌浄化方法。 ム アルカリ金属水酸化物が水酸化カリウムである請求の範囲第1/項記載の土 壌浄化方法。 /3 薬品混合物のアルカリ成分がアルカリ金属水酸化物とポリエチレングリコ ールの混合物である請求の範囲第1/項記載の土壌浄化方法。 /l−アルカリ金属水酸化物が水酸化カリウムであり、ポリエチレングリコール が、200〜A00 の範囲の分子量をもつ請求の範囲第1j項記載の土壌浄化 方法。 /2 薬品混合物のアルカリ金属成分がアルコキシドであり、前記アルコキシド がカリウム第3級ブトキシドまたはカリウム第3級ベントキシドである請求の範 囲第1/項記載の土壌浄化方法。 7g 薬品混合物のスルホキシド触媒がジメチルスルホキシドである請求の範囲 第1/項記載の土壌浄化方法。 /q、薬品混合物を現場で汚染した土壌に施用する請求の範囲第1/項記載の土 壌浄化方法。 、2O,薬品混合物と土壌を混合した後に、少なくとも部分的に脱ハロゲン化し た有機化合物を生分解的に分解するために有効な少なくきも7種の微生物を土壌 に接種する工程を特徴とする請求の範囲第1/項記載の土壌浄化方法。 xi 薬品混合物と汚染した土壌を混合した後に、土壌のpHを脱ハロゲン化し た有機汚染物を分解するために汚染した土壌中に接種した微生物の能力を促進す るために有効なレベルへ低下する工程を包含する請求の範囲第一0項記載の土壌 浄化方法。 2ユ薬品混合物と土壌を混合した後に、汚染した土壌中の栄養素の炭素:窒素ニ リンの比をハロゲン化有機汚染物を分解するために汚染した土壌中に混入させた 微生物の能力を促進するために有効な比へ調節する工程を包含する請求の範囲第 20項記載の土壌浄化方法。 、2.2 土壌に接種した微生物がシュードモナス種である請求の範囲第二0項 記載の土壌浄化方法。 2’A 4h薬品混合物中のアルカリ成分/触媒比が//lI〜り//である請 求の範囲第1/項記載の土壌浄化方法。 λよ薬品混合物を土壌中のポリハロゲン化有機化合物1モル当り少なくともコモ ルのアルカリ金属成分を提供する量で浄化される土壌と混合する請求の範囲第1 /項記載の土壌浄化方法。 、2ム 反応混合物で処理した土壌中の汚染物の加水分解した反応生成物が次に 処理した区域へ移動した天然産微生物によって分解される請求の範囲第1/項記 載の土壌浄化方法。 コク 土壌が生分解性汚染物及び非生分解性汚染物を含有し、且つ薬品混合物と 土壌を混合する前に、土壌に生分解性汚染物を生分解的に分解するために有効な 少なくとも7種の微生物を接種する請求の範囲第1/項記載の土壌浄化方法。 (1)[Claims] l A less chlorinated compound of highly halogenated organic soil contaminants; This allows for the conversion of compounds into more soluble and easily metabolized compounds by microorganisms. to at least partially dehalogenate soil contaminated with highly halogenated organic contaminants. the alkaline component and the sulfoxide catalyst. The alkali component contains an alkali metal hydroxide, an alkali metal hydroxide and an alkali component. Highly halogenated mixtures of alcohols or alkoxides Method of converting machine contaminants. U. Claim 1, wherein the alkaline component of the chemical mixture is potassium hydroxide. the method of. 3 The alkaline component of the chemical mixture is a combination of alkali metal hydroxide and benzyl alcohol. The method according to claim 1, which is a mixture. The method according to claim 1, wherein the alkali metal hydroxide is potassium hydroxide. . S The alkaline component of the chemical mixture is alkali metal hydroxide and polyethylene glycol. 8. The method according to claim 7, wherein the method is a mixture of Mu Alkali metal hydroxide is potassium hydroxide, polyethylene glycol is The method according to claim S, having a molecular weight in the range of θθ to 6θ0. H) The alkali metal component of the chemical mixture is an alkoxide, and the alkoxide is Claim 1: Lithium tert-butoxide or potassium tert-butoxide The method described in section. Claims that the sulfoxide of the catalyst in the chemical mixture is dimethyl sulfoxide. The method described in paragraph 1. The alkaline component/catalyst ratio in the chemical mixture is i/lrt~q// in parts by weight. A method according to claim 1. /a per mole of polyhalogenated organic compound in the soil contaminated with the chemical mixture Claimed to be mixed with contaminated soil in an amount to provide at least one mole of the metal component. The method described in paragraph 1. ll By contaminating the soil and biodegrading polyhalogenated organic compounds. In the soil purification method, the soil is at least partially freed from the organic compounds. mixed with an effective amount of a chemical mixture capable of dehalogenating, thereby The biodegradability of organic compounds is increased and the mixture contains alkaline components and sulfoxide catalysts. the alkaline component is an alkali metal hydroxide, an alkali metal hydroxide and a mixture of alcohol or alkoxide. . /U Claim 11, wherein the alkaline component of the chemical mixture is potassium hydroxide. Soil purification method. /3 The alkali component of the chemical mixture is the alkali metal hydroxide tobenzyl alcohol. The soil purification method according to claim 1, which is a mixture. Mu: The soil according to claim 1, wherein the alkali metal hydroxide is potassium hydroxide. Soil purification method. /3 The alkaline components of the chemical mixture are alkali metal hydroxide and polyethylene glyco The soil purification method according to claim 1, which is a mixture of soil. /l-alkali metal hydroxide is potassium hydroxide, polyethylene glycol has a molecular weight in the range of 200 to A00. Method. /2 The alkali metal component of the chemical mixture is an alkoxide, and the alkoxide is potassium tertiary butoxide or potassium tertiary bentoxide The soil purification method described in box 1/. 7g Claims that the sulfoxide catalyst of the chemical mixture is dimethyl sulfoxide The soil purification method described in Section 1/. /q, the soil according to claim 1/1, in which the chemical mixture is applied to contaminated soil on site; Soil purification method. , 2O, at least partially dehalogenated after mixing the chemical mixture and the soil. At least seven types of microorganisms that are effective in biodegrading organic compounds are introduced into the soil. The soil purification method according to claim 1, characterized by the step of inoculating the soil. xi After mixing the chemical mixture and contaminated soil, dehalogenate the pH of the soil. promotes the ability of microorganisms inoculated into contaminated soil to degrade organic pollutants. The soil according to claim 10, which includes the step of reducing the soil to a level effective for Purification method. After mixing the soil with the 2-unit chemical mixture, the nutrients carbon:nitrogen in the contaminated soil A ratio of phosphorus was mixed into contaminated soil to degrade halogenated organic pollutants. Claim No. 3 includes the step of adjusting the ratio to be effective to promote the performance of the microorganism. The soil purification method described in Section 20. , 2.2 Claim 20, wherein the microorganism inoculated into the soil is Pseudomonas species. Soil purification method described. 2'A 4h Make sure that the alkaline component/catalyst ratio in the chemical mixture is //lI~ri// The soil purification method described in item 1/of the scope of the request. λ, the chemical mixture should be at least 100% Claim 1: mixing with the soil to be purified in an amount to provide alkali metal components / Soil purification method described in section. , 2m The reaction product of hydrolysis of the pollutants in the soil treated with the reaction mixture is then Decomposed by naturally occurring microorganisms transferred to the treated area Soil purification method. Rich: The soil contains biodegradable pollutants and non-biodegradable pollutants, and also contains chemical mixtures. Before mixing the soil, add an effective amount of biodegradable contaminants to the soil. The soil purification method according to claim 1, wherein at least seven types of microorganisms are inoculated. (1)
JP59502299A 1983-06-06 1984-05-25 Soil purification method Granted JPS60501491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US501620 1983-06-06
US06/501,620 US4447541A (en) 1983-06-06 1983-06-06 Methods for decontaminating soil

Publications (2)

Publication Number Publication Date
JPS60501491A true JPS60501491A (en) 1985-09-12
JPH0349271B2 JPH0349271B2 (en) 1991-07-29

Family

ID=23994326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59502299A Granted JPS60501491A (en) 1983-06-06 1984-05-25 Soil purification method

Country Status (8)

Country Link
US (1) US4447541A (en)
EP (1) EP0145750B1 (en)
JP (1) JPS60501491A (en)
AT (1) ATE32533T1 (en)
CA (1) CA1209360A (en)
DE (1) DE3469376D1 (en)
IT (1) IT1177775B (en)
WO (1) WO1984004936A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511657A (en) * 1982-05-25 1985-04-16 Occidental Chemical Corporation Treatment of obnoxious chemical wastes
IT1161215B (en) * 1983-03-10 1987-03-18 Sea Marconi Decontamin Srl PROCESS FOR THE DECOMPOSITION AND DECONTAMINATION OF ORGANIC COMPOUNDS AND HALOGENATED TOXIC AGENTS
US4662948A (en) * 1984-11-28 1987-05-05 Electric Power Research Institute On-site removal of PCB and dioxins from soils
US4574013A (en) * 1985-04-18 1986-03-04 Galson Research Corporation Method for decontaminating soil
US4713343A (en) * 1985-08-29 1987-12-15 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Biodegradation of halogenated aliphatic hydrocarbons
DE3545325A1 (en) * 1985-12-20 1987-06-25 Dechema METHOD FOR GROUND DECONTAMINATION BY MICROORGANISMS
DE3612539A1 (en) * 1986-04-14 1987-10-15 Huels Chemische Werke Ag METHOD FOR PRODUCING TECHNICAL PURE, CHLORINE-FREE CYCLOHEXADECADIEN
EP0252688B1 (en) * 1986-07-02 1991-01-30 Biotox Pty. Limited Dehalogenation of halogenated organic compounds
US4675464A (en) * 1986-07-09 1987-06-23 Government Of The United States As Represented By The Administrator Of The Environmental Protection Agency Chemical destruction of halogenated aliphatic hydrocarbons
US4882021A (en) * 1988-01-15 1989-11-21 Barnhart Daniel H Apparatus and method for soil decontamination
US5115986A (en) * 1989-08-02 1992-05-26 Biotrol, Inc Process for treating contaminated soil
US4923125A (en) * 1988-02-08 1990-05-08 Biotrol, Inc. Process for treating contaminated soil
US5303871A (en) * 1988-02-08 1994-04-19 Biotrol, Incorporated Process for treating contaminated soil
DE3843836A1 (en) * 1988-03-31 1989-10-12 Holzmann Philipp Ag METHOD AND DEVICE FOR CLEANING FLOOR LAYERS
US5057221A (en) * 1988-12-19 1991-10-15 Weyerhaeuser Company Aerobic biological dehalogenation reactor
US5037551A (en) * 1988-12-19 1991-08-06 Weyerhaeuser Company High-flow rate capacity aerobic biological dehalogenation reactor
DE3910682A1 (en) * 1989-04-03 1990-10-04 Bayer Ag MICROBIAL DEGRADATION OF MULTIPLE HALOGENED FLAVORS
US5019175A (en) * 1989-05-11 1991-05-28 The United States Of America As Represented By The Administrator, Environmental Protection Agency Method for the destruction of halogenated organic compounds in a contaminated medium
US5039350A (en) * 1990-04-27 1991-08-13 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Method for the decomposition of halogenated organic compounds in a contaminated medium
US5064526A (en) * 1990-04-27 1991-11-12 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Method for the base-catalyzed decomposition of halogenated and non-halogenated organic compounds in a contaminated medium
US5174893A (en) * 1990-05-09 1992-12-29 Chemical Waste Management, Inc. Process for dehalogenation of contaminated waste materials
US5290432A (en) * 1990-05-09 1994-03-01 Chemical Waste Management, Inc. Method of treating toxic aromatic halogen-containing compounds by electrophilic aromatic substitution
US5043054A (en) * 1990-05-09 1991-08-27 Chemical Waste Management, Inc. Process for dehalogenation of contaminated waste materials
US5141629A (en) * 1990-05-15 1992-08-25 State Of Israel, Atomic Energy Commission Process for the dehalogenation of organic compounds
US5490919A (en) * 1990-08-14 1996-02-13 State Of Isreal, Atomic Energy Commission Process for the dehalogenation of organic compounds
US5093011A (en) * 1990-12-12 1992-03-03 Chemical Waste Management, Inc. Process for dehalogenation of contaminated waste materials
CA2066378C (en) * 1991-04-24 2000-09-19 David J. Hardman Dehalogenation of organohalogen-containing compounds
EP0585357A1 (en) * 1991-04-26 1994-03-09 Lockheed Martin Energy Systems, Inc. Amoebae/bacteria consortia and uses for degrading wastes and contaminants
US5449618A (en) * 1991-04-26 1995-09-12 Martin Marietta Energy Systems, Inc. Methods of degrading napalm B
DE4117515C2 (en) * 1991-05-24 1995-03-16 Noell Gmbh Process for the combined decontamination of fine grain soils contaminated with heavy metals and organic pollutants
US5610065A (en) * 1991-06-21 1997-03-11 Institute Of Gas Technology Integrated chemical/biological treatment of organic waste
US5955350A (en) * 1991-06-21 1999-09-21 Institute Of Gas Technology Sequential biological/chemical/biological treatment of organic waste
WO1993005845A1 (en) * 1991-09-20 1993-04-01 Roger Charles Wilkinson Method/process for the disposal of halogenated hydrocarbons and similar intractable materials
US5228921A (en) * 1991-11-25 1993-07-20 Grc Environmental, Inc. Methods for removing contaminants from contaminated solids (I)
US5234504A (en) * 1991-11-25 1993-08-10 Grc Environmental, Inc. Methods for removing contaminants from contaminated solids (II)
US5656489A (en) * 1992-07-22 1997-08-12 E. I. Du Pont De Nemours And Company Method for the remediation of organoleads especially tetraethyllead (TEL) in contaminated natural media
US5246584A (en) * 1992-07-28 1993-09-21 Martin Marietta Energy Systems, Inc. Method and apparatus for destroying organic contaminants in aqueous liquids
WO1994025191A1 (en) * 1993-05-03 1994-11-10 Bruso Bruce L Method and apparatus for in situ soil remediation
JP2638483B2 (en) * 1994-06-30 1997-08-06 株式会社関西テック Method for treating polychlorinated aromatic compounds
US5972691A (en) * 1995-06-07 1999-10-26 Hercules Incorporated Dehalogenation of polyamine, neutral curing wet strength resins
US5730550A (en) * 1995-08-15 1998-03-24 Board Of Trustees Operating Michigan State University Method for placement of a permeable remediation zone in situ
US6492572B2 (en) 1995-08-29 2002-12-10 E. I. Du Pont De Nemours And Company Method for remediating contaminated soils
US5789649A (en) * 1995-08-29 1998-08-04 E. I. Du Pont De Nemours And Company Method for Remediating contaminated soils
US6197199B1 (en) 1995-09-05 2001-03-06 Mcardle Blaise Use of protein-polysaccharide complex in removal of contaminants
JP2942856B2 (en) * 1996-10-09 1999-08-30 財団法人生産開発科学研究所 Cleaning and removal method for persistent chlorine compounds
US6517287B2 (en) 2000-10-03 2003-02-11 The United States Of America As Represented By The Secretary Of The Navy Method for removing contaminants from dredge material in an underwater environment
US6881010B2 (en) 2002-03-18 2005-04-19 Alan Brian Cash Systems for on site treatment and disposal of contaminated soils and sediments
US20040087826A1 (en) * 2002-11-04 2004-05-06 Cash Alan B. Method for treating dioxin contaminated incineration ash
US20080027252A1 (en) * 2006-07-27 2008-01-31 Burkholder Kermit L Oil dehalogenation method
US7883676B2 (en) * 2006-09-27 2011-02-08 General Atomics Hydrolysis system and process for devices containing energetic material
RU2596684C1 (en) * 2015-03-20 2016-09-10 Рамиль Наилевич Нигматуллин Method of cleaning oil sludge and soil contaminated with petroleum products
CN113695382B (en) * 2020-05-23 2023-08-15 中国环境科学研究院 Microbial soil layer dispersion mixing inoculation method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2126648A (en) * 1936-09-09 1938-08-09 Pennsyivania Coal Products Com Process of producing halogenated phenols
US2107650A (en) * 1937-04-26 1938-02-08 Dow Chemical Co Preparation of pentachlorophenol
US2509245A (en) * 1947-03-20 1950-05-30 Givaudan Corp Preparation of 2, 4, 5-trichlorophenol
US2644015A (en) * 1950-02-10 1953-06-30 Columbia Southern Chem Corp Alkaline hydrolysis of hexachlorobenzene
US2692899A (en) * 1951-12-27 1954-10-26 Ethyl Corp Pentachlorophenol
US2952702A (en) * 1952-11-12 1960-09-13 Morton Chemical Co Preparation of polyhalo aryloxy acetic acid esters
US2803670A (en) * 1952-11-12 1957-08-20 Ringwood Chemical Corp Preparation of polyhalo phenols
US2812366A (en) * 1954-04-02 1957-11-05 Diamond Alkali Co Improvements in the preparation of polychlorophenols
US2799713A (en) * 1955-01-24 1957-07-16 Dow Chemical Co Method of making trichlorophenols from tetrachlorobenzenes
US3481991A (en) * 1963-06-03 1969-12-02 Dover Chem Corp Preparation of chlorinated hydroxy compounds
GB1045298A (en) * 1964-06-08 1966-10-12 Coalite Chem Prod Ltd Polyhalophenols
US3347937A (en) * 1965-06-04 1967-10-17 Hooker Chemical Corp Continuous process for manufacture of trihalophenols
US3755470A (en) * 1968-07-31 1973-08-28 E Michaels Process for preparing polyhalo phenols
SU647339A1 (en) * 1977-05-31 1979-02-15 Институт Биохимии И Физиологии Микроорганизмов Ан Ссср Strain pseudomonas aeruginosa 640x
US4327027A (en) * 1979-06-15 1982-04-27 Vertac Chemical Corporation Chemical detoxification of toxic chlorinated aromatic compounds
US4337368A (en) * 1980-04-21 1982-06-29 The Franklin Institute Reagent and method for decomposing halogenated organic compounds
US4351978A (en) * 1980-07-21 1982-09-28 Osaka Prefectural Government Method for the disposal of polychlorinated biphenyls
US4401569A (en) * 1981-07-09 1983-08-30 Groundwater Decontamination Systems, Inc. Method and apparatus for treating hydrocarbon and halogenated hydrocarbon contaminated ground and ground water

Also Published As

Publication number Publication date
US4447541A (en) 1984-05-08
CA1209360A (en) 1986-08-12
EP0145750B1 (en) 1988-02-17
IT8448318A0 (en) 1984-06-05
WO1984004936A1 (en) 1984-12-20
IT1177775B (en) 1987-08-26
EP0145750A4 (en) 1985-09-26
DE3469376D1 (en) 1988-03-24
JPH0349271B2 (en) 1991-07-29
ATE32533T1 (en) 1988-03-15
EP0145750A1 (en) 1985-06-26

Similar Documents

Publication Publication Date Title
JPS60501491A (en) Soil purification method
US6699707B1 (en) Microbial enzyme-enhanced organic-inorganic solid-chemical composition and methods for anaerobic bioremediation
CA1245068A (en) Slurry processes for decontaminating soil
MXPA05000466A (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments.
Zanaveskin et al. Polychlorobiphenyls: problems of the pollution of the environment and technological neutralisation methods
JPH0775772A (en) Method for restoring soil
US20160176726A1 (en) Method for purification of substances contaminated with organic chemicals
Pirog et al. Microbial surfactants in environmental technologies
US5615975A (en) Method for remediation of volatile organic contaminated soils
JP2004230374A (en) Decontamination method for polluted soil, or the like
JP2005103522A (en) Substance treating agent and substance treating method
JPH04370097A (en) Decomposition of pcb
Schupp et al. A performance history of the base catalyzed decomposition (BCD) process
JP2005185873A (en) Cleaning method for harmful substance-containing soil
JP4022267B2 (en) PCB waste detoxification and product recycling
JP2005066576A (en) Purification device of substance polluted with organochlorine compound
Waisner et al. Chemical degradation of PCBs in Alaskan soils
JP4609057B2 (en) Dioxin decomposition agent and decomposition method
des Rosiers Remedial measures and disposal practices for wastes containing dioxins and furans
CN116967271A (en) Repair method for soil polluted by refractory organic matters
Vaz Polychlorinated Biphenyls and Heavy Metals: Source of Emission, Harmful Effects and Prevention
JP4580536B2 (en) Method for treating organic halide-contaminated solids
JP4019558B2 (en) Method for decomposing halogenated organic compounds in soil
KR100545687B1 (en) Desalination of polyphenyl phenyl using acid solution
JPH07265461A (en) Method for decomposing aromatic halogen compound